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Robust Registration of Optical and SAR Images
Using Multi-Orientation Relative Total

Variation Structural Representation
Jianwei Fan , Qing Xiong , Jian Li , and Yuanxin Ye

Abstract—Accurate registration of optical and synthetic aper-
ture radar (SAR) images remains a challenging task because of
the potential large modality differences across individual images.
To improve the registration performance, this article proposes a
robust registration method for optical and SAR images based on
a novel multi-orientation relative total variation (MORTV) struc-
tural representation. The MORTV model is designed by integrating
multiple orientation strategy into the original RTV to extract the
structural maps, which can capture more structural features while
removing image noises and textures. Then, a novel feature de-
scriptor called layerwise multiscale histogram of oriented gradient
(LMHOG) is constructed on the multiscale structural maps that
are generated using the MORTV model with different parameters.
The LMHOG can fully characterize structural features at different
scales in a multilayer manner, further enhancing the robustness and
distinctiveness of the descriptor without increasing its dimension.
Comprehensive experiments on two large-scale optical and SAR
image datasets validate that the proposed method obtains superior
registration performance over several state-of-the-art methods.

Index Terms—Image registration, multimodal remote sensing
images, multi-orientation, relative total variation (RTV), structural
feature extraction.

I. INTRODUCTION

W ITH the advancement of imaging techniques, huge
amounts of multimodal remote sensing data, including

multispectral, light detection and ranging, and synthetic aperture
radar (SAR) images, are available. Comprehensive analysis of
these data is beneficial to Earth observation since multimodal
data contain richer complementary information of the same
scene. Currently, optical and SAR images are the two main
sources of multimodal remote sensing data. The integration
of optical and SAR images has been widely used in many
applications, such as image fusion [1], change detection [2],
and object detection [3]. To achieve these tasks, optical and SAR
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Fig. 1. Illustration of challenges of optical and SAR image registration.

image registration is a crucial preliminary step, whose goal is to
identify correct correspondences and spatially align the images
of the same scene acquired by different imaging modalities [4].

It is well known that optical images acquired by passive
sensors reflect the radiometric attributes of ground features and
provide good interpretability. In contrast, SAR images cap-
tured by active sensors reflect the electromagnetic properties
of ground objects, offering the ability of surface penetration
in all weather conditions. Because of their different imaging
mechanisms, there exists complex nonlinear intensity and geo-
metric differences between optical and SAR image pairs. These
challenges bring great difficulty to achieve alignment between
them. Furthermore, strong speckle noise, which often appears in
SAR images, makes the matching task even more challenging.
Different challenges of optical and SAR image registration are
shown in Fig. 1.

To address the abovementioned difficulties, optical and SAR
image registration has been extensively studied over the last
decades. Existing registration methods found in the literature
can be roughly divided into intensity-based methods, feature-
based methods, and learning-based methods [5]. Methods in
the intensity-based category align the optical and SAR images
based on the image similarity measures of the intensity informa-
tion. Commonly used similarity measures include normalization
cross correlation (NCC) [6], [7] and mutual information (MI) [8].
However, the NCC is sensitive to significant intensity variations,
while the MI shows poor performance under severe noises and
geometric differences. The performances of these approaches
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are still unsatisfactory due to an inherent limitation of similarity
measures based on image intensity information [9], [10].

Compared with intensity-based methods, feature-based meth-
ods are more robust for handling nonlinear intensity and geo-
metric differences. Methods in the feature-based category are
composed mainly of two essential stages: feature extraction and
feature description. As surveyed in [4], the point features have
been popularly applied to optical and SAR image registration.
Some well-known point feature detectors are Harris [11], ori-
ented fast and rotated brief [12], difference of Gaussian [13],
and optical-to-SAR scale invariant feature transform (OS-SIFT)
[14]. Although these detectors show promising performance
to some extent, they cannot effectively handle severe intensity
variations and image noises that exist in the optical and SAR
images, and thus, their feature repeatability is still poor [9]. In
recent work, considering that the phase congruency (PC) [15] is
robust to nonlinear intensity changes, some improved detectors,
such as minimum moment of the PC with the Laplacian of Gaus-
sian [16], modified uniform nonlinear diffusion-based Harris
[17], radiation-variation insensitive feature transform (RIFT)
[18], and feature intersection-based detector [19], have been
proposed. These detectors have been shown to be robust for
nonlinear intensity differences, but they provide limited perfor-
mance due to strong speckles in SAR images [20] and huge
complexity of the PC [21].

Describing the local characteristics for given point features
is a key element for image registration tasks. Traditional reg-
istration methods generally explore image intensity or gradient
information to produce the feature descriptors. Among them,
scale invariant feature transform (SIFT)-based methods [14],
[22], [23] are well known for feature description. However,
because of obvious gradient reverses and noise interference
(see Fig. 1), conventional descriptors using image gradients
often fail to capture reliable feature attributions, leading to an
inherent matching ambiguity [24]. For providing the robustness
of the descriptors, a variety of descriptors are also developed
for optical and SAR image registration. Among them, PC-based
methods and local self-similarity (LSS) [25] based methods are
two popular groups for feature description in the last decade.
The PC is used to explore the local structure features, which are
proven to be robust to nonlinear intensity changes [26]. Recently,
Ye et al. [6], [16] developed two structure descriptors, called
histogram of orientated PC (HOPC) and local HOPC, to encode
structural information more robustly. Fan et al. [27] designed
a robust structural descriptor based on multiscale PC features
with an adaptive binning strategy. Li et al. [18] presented a max-
imum index map that was generated via log-Gabor convolution
sequence for constructing the RIFT descriptor. Yu et al. [28]
proposed the amplitudes of log-Gabor orientation histogram
descriptor by using an extended PC model and an improved
log-polar spatial structure. In addition, as a pioneering work,
the LSS is first designed to capture the local structural features
by measuring the correlations between the central patch and its
neighbors, making the descriptor more robust against modality
variations. Several LSS-based descriptors have been success-
fully applied to multimodal image registration, including dense
LSS [29], dense rank-based LSS [30], max-index-based LSS

[31], histogram of oriented self-similarity (OSS) [32], pyramid
features of orientated self-similarity [33], OSS [34], and adjacent
self-similarity (ASS) [21]. Although these PC-based and LSS-
based descriptors perform well, they still have some limitations.
On the one hand, the PC-based descriptors are vulnerable to
strong speckle noise in SAR images [20] and suffer from large
computational costs [21]. On the other hand, the LSS-based
descriptors have low discriminative ability [35], leading to poor
matching performance.

Unlike these traditional methods, the learning-based methods
employ deep convolutional networks to extract more feature rep-
resentations from images, which have made dramatic progress
on multimodal image registration [36], [37]. Ma et al. [38]
proposed a robust two-step registration method for multimodal
images, in which the convolutional neural network features
were combined with local features for feature matching. Quan
et al. [39] introduced a self-distillation feature learning net-
work for optical and SAR image registration that brought an
obvious improvement in matching accuracy. Furthermore, Ye
et al. [40] presented a multiscale registration framework with
unsupervised learning for multimodal images to resist severe
nonlinear intensity and geometric differences. Xiang et al. [41]
designed a novel feature decoupling network based on a residual
denoising network and a pseudo-Siamese fully convolutional
network to achieve the registration of optical and SAR im-
ages. These learning frames have shown promising registration
performance for multimodal images, but they still face two
challenges. The first difficulty is a lack of sufficient and diverse
real datasets that are used for training to obtain a satisfactory
matching model. Another challenge is that their matching pro-
cesses are also sensitive to large geometric differences and image
noises [42].

Based on the observation that optical and SAR images present
similar structural features but have quite different texture fea-
tures and intensity information, this article proposes a novel and
robust registration method using multi-orientation relative total
variation (MORTV) structural representation, aiming to improve
the registration performance of optical and SAR images. The
MORTV, inspired by relative total variation (RTV) [43], is
designed to extract the structural maps with multiple orientations
from optical and SAR images, which can capture more image
structural information and lessen the modality variations by
blending the original image structure and texture. Intuitively,
if the extracted structural maps of optical and SAR images have
high similarity, then the registration task of these two images
can be turned into a conventional image registration problem.
Subsequently, we perform a feature detector and a novel feature
descriptor on the multiscale structural maps constructed by
the MORTV model with different parameters. Specifically, a
multiscale block-based Shi–Tomasi (MBST) detector is intro-
duced by integrating the block and nonmaximum suppression
strategy into the Shi–Tomasi detector [44] to extract reliable
and well-distributed feature points. Then, we design a novel
layerwise multiscale histogram of oriented gradient (LMHOG)
descriptor to enhance the distinctiveness and robustness of the
structural descriptor. Generally, the major contributions of this
study can be summarized as follows.
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Fig. 2. Flowchart of the proposed method.

1) A novel MORTV model is designed to extract the multi-
scale structural maps for feature extraction and descrip-
tion. Different from the RTV, the MORTV identifies spa-
tial structures in a multiple orientation manner. It captures
more structural information while removing textures and
noises, reducing the modality variations and further im-
proving the similarity of optical and SAR images.

2) A novel LMHOG descriptor is constructed on multiscale
MORTV representation with a multilayer manner. The
LMHOG can encode multiscale structural information
and enhance the robustness and distinctiveness of the de-
scriptor without increasing its feature dimension, which is
fundamentally different from the conventional multiscale
descriptors.

3) A robust registration method is proposed based on the
MORTV model for optical and SAR images, including two
main components: the MBST detector and the LMHOG
descriptor. The proposed method can significantly im-
prove the registration performance compared with the
state-of-the-art methods.

The rest of this article is organized as follows. Section II
presents the whole process of the proposed registration method,
including the MORTV model, MBST detector, and LMHOG
descriptor. Section III illustrates the registration performance.
Section IV provides a brief discussion. Finally, Section V con-
cludes this article.

II. PROPOSED REGISTRATION METHOD

The flowchart of our proposed method is given in Fig. 2. The
MORTV model is first constructed for extracting the structural
maps from images. Then, based on multiscale MORTV repre-
sentation, an MBST detector is introduced to extract feature
points, and a novel LMHOG descriptor is designed for dis-
tinctively depicting the attributes of these detected points in a
multilayer manner.

A. MORTV Structural Representation

The challenge of optical and SAR image registration lies
in the inconsistency of modalities between these two images.

From previous studies, it can be observed that structural fea-
tures keep relative saliency under modality differences and are
effective to tackle the registration of multimodal remote sens-
ing images. Recently, the total variation (TV)-based structure
extraction methods have widely applied to image processing
filed, including image classification [45], texture removal [46],
and image fusion [47], due to its outstanding performance in
the structure–texture decomposition tasks. As an extension of
the original TV model, the RTV can effectively preserve image
structural information and remove noise and texture information
simultaneously. According to [43], given an input image I , the
RTV can be expressed as follows:

RTV (p) =
Dx (p)

Lx (p) + ε
+

Dy (p)

Ly (p) + ε
(1)

where Dx(p) andDy(p), respectively, denote windows TVs in
the x and y directions for pixel p, which measures the absolute
spatial difference within the windowR(p). Lx(p) and Ly(p)
are windows inherent variations (IV) in the x and y directions,
respectively, which captures the overall spatial variation. ε is a
small positive number to avoid division by zero.

We note that although the original RTV provides salient per-
formance on structure preservation, they generally only extract
the TVs within local windows of two different directions (hori-
zontal and vertical). However, it is insufficient for these methods
to use only the two orientations to capture all the structural
features of images, which largely limits their applications for
complex scenes. To address this issue, we propose a novel struc-
tural representation, termed MORTV, by integrating multiple
orientation strategy into the original RTV model, since more
orientations can enhance the local structural description ability
[48]. Essentially, the MORTV aims to convert the optical and
SAR images into structural maps such that more discriminative
and robust structural representation can be achieved, further
improving the consistency between images. For this purpose,
we extend the original RTV model (1) by considering multiple
orientations information and then formulate the MORTV as

MORTV (p) =

O∑
o=1

Do (p)

Lo (p) + ε
(2)
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Fig. 3. Comparison of different orientation strategy. (a) Two orientations in
RTV. (b) Eight orientations in MORTV.

where O is the number of orientations.Do(p) denotes window
TV at orientation o for pixel p

Do (p) =
∑

q∈R(p)

gp,q

∣∣∣(∂oS)q∣∣∣ (3)

where q belongs to R(p), the local window centered at the
pixel p. gp,q is a spatial function with standard deviation σ. ∂o
represents the partial derivative at orientation o.S is the resulting
structural map; Lo(p) denotes window IV at orientation o for
pixel p

Lo (p) =

∣∣∣∣∣∣
∑

q∈R(p)

gp,q(∂oS)q

∣∣∣∣∣∣ . (4)

In particular, we set O = 8 in this study since eight orienta-
tions have been shown to represent spatial structural information
better [48]. The different orientation strategies used in RTV and
MORTV are illustrated in Fig. 3. As seen, the MORTV produces
the structural map based on eight different orientations (0◦, 45◦,
90◦, 135◦, 180◦, 225◦, 270◦, 315◦). Such an operation facilitates
the preservation of structural features sufficiently.

After constructing the MORTV regularizer, a new objective
function can be defined to capture the structural map from
images by

argmin
S

∑
p

{
(Sp − Ip)

2 + λ · MORTV (p)
}

(5)

where the term (Sp − Ip) is to make the input image and
the extracted structural map similar. λ is a weight. The term
MORTV(p) is introduced to preserve the main structures while
removing textures. Finally, we adopt the same optimization
method presented in [43] to solve (5) for obtaining the desired
structural map.

To illustrate the advantage of MORTV, the MORTV and RTV
are, respectively, implemented with the following same param-
eter settings to an optical and SAR dataset with 200 image pairs:
{λ, σ} = {0.01, 3}. A simple comparison is presented in Fig. 4.
It is clearly observed that MORTV effectively extracts more
significant structural features while removing the image noises
and textures, which could be helpful for the following feature
detection and description. Conversely, RTV blurs some of the
structure edges to a certain extent [see red rectangular regions

Fig. 4. Comparison of structural map extraction methods. (a) Original images.
(b) RTV. (c) MORTV.

TABLE I
AVERAGE MI AND SSIM VALUES OF DIFFERENT IMAGES

in Fig. 4(b)]. In this way, the obtained structural maps should
be more similar than the original images, namely, the modality
differences between optical and SAR images can be weakened as
much as possible. Furthermore, we employ the MI and structural
similarity (SSIM) [49] metrics to measure the similarity between
the original images (structural maps obtained by MORTV and
RTV). Table I compares the average MI and SSIM of different
images. Large MI and SSIM imply a higher image similarity.
We can see that RTV achieves better similarity values compared
with original images but remains inferior to those of MORTV,
possibly because RTV only utilizes two different orientations for
capturing image structure. In contrast, our MORTV provides
higher average MI and SSIM than those of RTV and original
images, clearly demonstrating the outstanding performance of
our MORTV.

B. Multiscale MORTV Representation

Structure preservation and noise suppression are the main
concern in the design of image multiscale representation. Com-
monly used multiscale representations are constructed with
Gaussian smoothing (GS), nonlinear diffusion filter (NDF) [24],
[27], co-occurrence filter (COF) [50], and rolling guidance filter
(RGF) [51]. Nevertheless, due to the modality variations be-
tween optical and SAR images, the GS and NDF cannot provide
consistent structural information while maintaining the robust-
ness to noises [50]. For COF and RGF, their main deficiency
is the computation overhead [50], [51]. To address that, here
the MORTV is employed with different parameter settings to
construct multiscale representation for feature extraction and
description.
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Fig. 5. Effect of different parameters on the structural maps.

Similar to RTV, the performance of MORTV relies primarily
on two parameters: the weight λ and the standard deviation σ.
Specifically, λ controls the degree of smoothness of the struc-
tural map. Increasing its value blurs image structures without
considering texture removal. σ determines the spatial scales and
altering its value maintains salient structures while separating
textures. The influence of these two parameters on the structural
maps is shown in Fig. 5. As shown, MORTV produces different
structural maps with different parameter settings. The smaller
the values of λ andσ, the more fine structural features it can pro-
vide. In contrast, the larger the values of these two parameters,
the more coarse structural features they can present. Motivated
by this observation, the multiscale structural representation is
designed by performing MORTV with different values of λ and
σ as follows:

Sl = MORTV (I, λl, σl) , l = 0, 1, . . . ,L− 1 (6)

where Sl represents the lth layer structural map. L denotes the
layer number and is suggested to L ≤ 8. λl and σl are the lth
parameters employed in the MORTV. For each layer l, λl, and
σl are calculated as{

λl = λ0 · 3
√
2l

σl = σ0 · 3
√
2l

, l = 0, 1, . . . , L− 1 (7)

where λ0 and σ0 denote the weight and spatial scale of the first
layer, respectively. To achieve better multiscale representation,
we set λ0 = 0.005 and σ0 = 1.2 for the default values.

C. MBST Feature Detection

After constructing the multiscale MORTV representation,
we perform an MBST detector to obtain repeatable and well-
distributed feature points for optical and SAR images. As an im-
proved Harris detector, the Shi–Tomasi detector has been shown
to extract sufficient and reliable feature points for multimodal
images [50]. However, as with many conventional feature detec-
tors, the Shi–Tomasi detector also suffers from some problems in
the distribution of feature points when directly applied to optical

Fig. 6. Comparison of the feature detection between GSST and MBST with
the same feature selection strategy. (a) GSST (repeatability= 20.4%). (b) MBST
(repeatability = 28.1%).

and SAR images. To detect reliable feature points with uniform
distribution, we incorporate the block and nonmaximum sup-
pression strategy with the Shi–Tomasi detector. Specifically, we
first build a multiscale image pyramid by stacking the first layer
of multiscale MORTV maps and the downsampled versions (a
factor of 2) of the other layers. Then, we partition each layer into
m×m nonoverlapping blocks, and perform the nonmaximum
suppression on feature points obtained in each block according
to the Shi–Tomas responses. Finally, we select the first h points
with the highest Shi–Tomas values as the feature points.

To illustrate the performance of our MBST, the traditional
multiscale Shi–Tomasi detector using the GS (denoted as GSST)
is introduced for comparison. We perform these two detectors
on a pair of optical and SAR images to obtain 1000 feature
points, as illustrated in Fig. 6. As seen, MBST performs better
than GSST with the same feature selection strategy (e.g., block
and nonmaximum suppression). The repeatability [23] of MBST
has about 8% improvement compared with GSST. Therefore,
with multiscale MORTV representation, MBST is capable of ex-
tracting repeatable and well-distributed feature points between
optical and SAR images.

D. LMHOG Descriptor Construction

For optical and SAR image registration, although multiscale
feature descriptors are capable of capturing image information at
different scales and enable them to encode image features more
distinctively, they frequently suffer from a considerably higher
feature dimension [27], leading to an increase in computational
complexity. To address that, here we design a novel LMHOG
descriptor on the multiscale MORTV representation with a
multilayer manner to describe each feature point. The proposed
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Fig. 7. Schematic of the LMHOG descriptor.

LMHOG descriptor consists mainly of two steps: orientation
assignment and descriptor construction.

1) Orientation Assignment: Similar to the SIFT-like descrip-
tors, we also use the gradient orientations to assign a dominant
orientation for each feature point to maintain rotation invariance.
However, our orientation assignment differs from conventional
gradient-based methods. Specifically, we estimate the dominant
orientation on the MORTV structural maps, while traditional
assignments directly estimate on the original images. Since the
MORTV largely filter out textures and noises, we can obtain
a more robust estimate of the dominant orientation. Moreover,
to handle the intensity inversion between structural maps, we
transfer the gradient orientation from [0◦, 360◦) to [0◦, 180◦).

2) Descriptor Construction: Unlike these conventional mul-
tiscale descriptors, our LMHOG descriptor encodes the struc-
tural features at different scales in a multilayer manner. Specif-
ically, the feature region (a radius of βσl) is divided into three
nested nonoverlapping layers, spreading from the feature point
to the edge of the feature region. Instead of using fixed-scale
feature region, we treat each layer within the feature region
from different scales. In other word, we capture the fine-scale
structural information for the layer closest to the center of the
feature region. Then, we gradually utilize larger and larger scales
to capture the coarse-scale structural information with increasing
distance to the region center. Intuitively, the coarsest structural
information is captured for the layer closest to the boundary
of the feature region. In this way, a single feature region can
convey image structural information from multiple scales. More
importantly, such a procedure does not increase the dimension
of the descriptor, which is the main difference between our
LMHOG and traditional multiscale descriptors.

Fig. 7 illustrates the processing of how to integrate the mul-
tiscale feature description into a single feature region. First, we

produce three structural maps with different scales by using
MORTV with different parameter settings (i.e., λl and σl) on
the original image. Then, for each scale layer, we divide the
feature region into a log-polar grid with three radial bins and ten
angular bins, resulting in 30 grids. Subsequently, we calculate an
eight-bin (covering 180◦) gradient orientation histogram based
on weighted gradient magnitudes for each grid. Finally, we
separately replace the original histogram values with the new
values in the smoothed structural maps at the same locations.
Specifically, we replace the grid values in the middle layer with
the histogram values obtained in the medium-scale structural
map. Similarly, for each grid in the outer layer, we utilize
the histogram values from the large-scale structural map. All
the orientation histograms of the 30 grids from three different
layers are concatenated into one augmented feature vector which
contains all structural information from different scales. Letting
Vk(k = 1, 2, . . . ,K) represents thekth layer structural vector,
the LMHOG descriptor is thus defined as follows:

LMHOG = {V1, V2, . . . , VK}
Vk = GO_HIST(Rk) (8)

where GO_HIST(·) denotes the histogram of orientation gra-
dient. Rk denotes the kth layer feature region around a given
feature point.K represents the number of layers of the multiscale
feature region, which is fixed as 3. As a result, the dimension
of the LMHOG descriptor is 3× 10× 8 = 240. Herein, the
LMHOG feature vector is required to normalize for gaining
invariance to intensity variation.

In summary, compared with the conventional multiscale de-
scriptors, the proposed LMHOG descriptor offers three main
advantages. First, LMHOG has better robustness to image noises
since it is built on the multiscale MORTV representation, which
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can effectively remove the image noises and textures. Second,
and most importantly, LMHOG has lower feature dimension by
using a multiple layer strategy, making our descriptor suitable
for practical applications. Moreover, considering that multiscale
MORTV representation has the advantages of complementary
structural extraction and noise robustness, LMHOG has better
feature distinctiveness. As a result, LMHOG has an ability to
identify more reliable matches than the conventional descriptors.

E. Feature Matching

Herein, the initial matches between optical and SAR images
are established by performing the nearest neighbor distance ratio
matching strategy. To improve the matching reliability, the fast
sample consensus [52] method is utilized to remove the matching
outliers.

III. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we evaluate the proposed method on two
publicly available optical and SAR image datasets through
both quantitative and qualitative analysis. The performance of
the proposed method is compared with some state-of-the-art
methods for registration, including OS-SIFT [14], ASS [21],
histogram of the orientation of weighted phase (HOWP) [24],
locally normalized image feature transform (LNIFT) [42], and
multiscale histogram of local main orientation (MS-HLMO)
[53]. OS-SIFT, MS-HLMO, and LNIFT are three recent ad-
vanced gradient-based methods, whereas HOWP is a robust
PC-based method. Moreover, ASS is an advanced extension of
the LSS.

A. Experimental Data

Two real optical and SAR image datasets, namely, high-
resolution dataset and medium-resolution dataset, are employed
to evaluate the performance of the proposed method. All im-
age pairs have significant nonlinear intensity differences. The
specific description of experiment data is presented as follows.

1) High-Resolution Optical-SAR (HROS) Dataset: The im-
age pairs in the HROS dataset are derived from the
optical-to-SAR (OS) dataset [54], which consists of 2673
registered optical and SAR image pairs of 512 × 512
pixels with a high resolution of 1 m. The optical images
are obtained from Google Earth and the SAR images are
acquired with the GaoFen (GF)-3 satellite. These pairs
cover several cities around the world, such as Shanghai,
Dengfeng, Renne, Tucson, and Agra. In our experiment,
the HROS dataset contains three groups of experimental
data for different evaluation purposes. In the first group,
200 image pairs with no rotation and scale differences
compose the experimental data, which is randomly se-
lected from the OS dataset. In the second group, 400 image
pairs are randomly selected. Each pair is rotated clockwise
or counterclockwise with a random angle, which is limited
in a range of [0◦, 90◦]. Another 400 image pairs are also
randomly selected as the third group. Each pair is scaled
with a random scale ratio, which is limited in a range of

[0.5, 2]. For all three groups, we can establish the ground
truth transformation according to the rotation angles and
scale factors.

2) Medium-Resolution Optical-SAR (MROS) Dataset: The
image pairs in the MROS dataset are derived from the
medium resolution OS dataset [40], which has 5800 reg-
istered optical and SAR image pairs with a high resolution
of 10 m. These image pairs with the size of 512 × 512 are
acquired by Sentinel-1 and Sentinel-2 in May 2021. These
images cover different scenes, including rivers, forests,
farmland, and urban. Similar to the HROS dataset, the
MROS dataset consists mainly of two groups of experi-
ment data. The first group contains 300 image pairs, which
are randomly selected and have no geometric differences.
For the second group, we randomly choose 500 image
pairs and then simultaneously perform random rotation
and scale transforms on them. The ranges of rotation and
scale parameters are the same as the HROS dataset. Based
on the parameters above, we can also establish its ground
truth transformation for both groups.

B. Evaluation Criteria and Parameter Settings

Four quantitative evaluation criteria are employed for a com-
prehensive evaluation, including the success rate (SR) [42], the
number of correct matches (NCM), the correct matching ratio
(CMR), and the root mean square error (RMSE). SR is used to
measure the matching SR, which can be defined as follows:

SR =
1

T

∑
n

F (In)× 100% (9)

F (In) =

{
1,NCM(In) ≥ 5
0, else

(10)

where F (In) denotes a logical value, 1 represents a correct
matching trail while 0 denotes a failed matching trail. NCM(In)
is the NCM of the nth image pair. T is the total number of image
pairs for each test group. NCM, CMR, and RMSE are used
to measure registration performance. Here, CMR is expressed
as CMR = NCM/TC, where TC denotes the total number of
matches. The matching point pair with a location error less than
three pixels is considered as the NCM. Higher values of SR,
NCM, and CMR, and lower value of RMSE indicate a better
registration performance. Note that RMSE is set to ten pixels if
one image pair fails to register.

Our proposed method is composed of three main stages, i.e.,
MORTV representation, MBST feature extraction, and LMHOG
descriptor construction. In the first stage, the number of orienta-
tions is set to eight since eight orientations can better represent
spatial structural information, while other parameters are drawn
from the original RTV paper [43]. We also follow the parameter
settings in a multiscale representation study to set λ0 = 0.005
and σ0 = 1.2. During the MBST feature extraction stage, the
parameters are the same as those in the uniform nonlinear
diffusion-based Harris detector [26]. For the LMHOG descriptor
construction stage, four key parameters directly influence the
performance of the descriptor, i.e., βσl,K, Nr, and Na.
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TABLE II
ILLUSTRATION OF PARAMETERS SETTINGS

TABLE III
AVERAGE NCM AND SR AS β VARIES FROM 12 TO 16

TABLE IV
AVERAGE NCM AND SR AS Nr,K VARIES FROM 2 TO 5

TABLE V
AVERAGE NCM AND SR AS Na VARIES FROM 6 TO 14

βσl is the radius of the local region for feature description.
A too small β makes descriptor retain insufficient information,
leading to poor distinctiveness. On the contrary, when β is too
large, the descriptor will be less distinctive. K is the number
of layers of multiscale feature regions. Nr and Na determine
the spatial structure of LMHOG. The larger the Nr or Na is,
the higher the dimension of LMHOG, and the more image
information that it contains, which improves the performance
of the LMHOG but reduces its efficiency. Conversely, a small
Nr or Na can improve the efficiency of the LMHOG but at the
cost of degraded performance and distinctiveness. Herein, we
respectively select 100 image pairs from the HROS and MROS
datasets to compose a test dataset and then implement a series of
independent experiments on it to discuss the influence of these
parameters. Note that we set the other parameters to fixed values
when a particular parameter is analyzed, as given in Table II. The
results are depicted in Tables III–V, where NCM and SR are
used as the evaluation criteria.

We have three main observations from Tables III–V. First,
the proposed method produces the highest SR and average
NCM when β is 15. When β > 15, the average NCM de-
creases. Second, larger Nr(K) obtains a better SR and average

Fig. 8. Average NCMs and CMRs under different numbers of looks for six
comparative methods.

Fig. 9. Feature matching results between the original optical image and the
simulated SAR image with three-look speckles. (a) OS-SIFT. (b) MS-HLMO.
(c) LNIFT. (d) HOWP. (e) ASS. (f) Proposed.

NCM. It is noted that the performance gradually decreases
when Nr(K) > 3. Hence, we set Nr(K) = 3. Third, the SR
and average NCM gradually increase with an increasing Na.
Nevertheless, Nagreater than 10 (Na > 10) does not bring a
significant increase of the average NCM and even decreases
the results. Based on the above observations, β = 15, K = 3,
Nr = 3, and Na = 10 are set to be the default parameters in this
work.

C. Analysis of Noise Robustness

To evaluate the noise robustness of the proposed method, we
implement a series of experiments on ten groups of simulated
image pairs. For each image pair, a real optical image is reg-
istered with simulated SAR images with different noise levels,
which is characterized by the number of looks, ranging from
one-look to nine-look. In general, a small look refers to the high
noise level in the simulated SAR image. The average NCMs and
CMRs obtained by six methods under various noise conditions
are presented in Fig. 8. It can be observed that, as the look
number becomes larger, all the methods suffer from obvious
performance degradation, while the proposed method still has
higher performance under increasing noise, i.e., average NCM=
123 and average CMR=20%, when the original SAR images are
corrupted by the speckle noise with one-look. This demonstrates
that the proposed method exhibits much better robustness to
speckle noise than other compared methods. The reason is that
the proposed method is built on the MORTV, which makes the
feature detection and description process more robust against
speckle noise. For better illustration, Fig. 9 presents the feature
matching results of different methods on an original optical
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TABLE VI
COMPARATIVE RESULTS OF SIX METHODS ON THE HROS DATASET

image and a simulated SAR image with a three-look. As seen,
the proposed method still obtains the best performance in terms
of NCM and CMR.

D. Registration Performance

In this section, we evaluate the proposed method on the
HROS and MROS image datasets, in comparison with five
other state-of-the-art methods including OS-SIFT, MS-HLMO,
LNIFT, HOWP, and ASS. For these two datasets, we regard
the optical image as the reference image, and generate the
sensed image by imposing the simulated transformation on SAR
images. The implementations of all the comparison method are
downloaded from the personal website of their authors. For each
of these methods, its best performance is presented according
to the optimal parameters provided by the authors. In addition,
we fix the number of extracted feature points to 4000 for all
methods during our experimental stage. The registration results
on two datasets are as follows.

1) Comparison results on the HROS Dataset: In this dataset,
we conduct three groups of experiments to evaluate the
performance of the proposed method. The quantitative
results for the six comparison methods are given in
Table VI. In the first group, except for OS-SIFT, each
of these methods can achieve an average SR of 100%.
OS-SIFT obtains the lowest SR of 92.5% since it is a
gradient-based method that is vulnerable to intensity dif-
ferences and speckle noise. In the second group, the pro-
posed method performs better than the other five methods
and the average SR is 99.5%, which is closely followed by
ASS and LNIFT. The remaining methods can only produce
a lower average SR than 90%. In the third group, the best
performance is obtained by the proposed method, which

achieves the average SR as 100%. By contrast, the average
SR of LNIFT is only 59.3%, which indicates that LNIFT
can only be employed to register the images with small
scale differences.
As given in Table VI, the proposed method yields bet-
ter average performance for the HROS dataset than the
other five comparison methods. The obtained average SR
over the entire HROS dataset is 99.8% by the proposed
method, 98.8% by ASS, 94.5% by HOWP, 84.4% by
LNIFT, 91.8% by MS-HLMO, and 67.8% by OS-SIFT.
Our proposed method has a maximum improvement of 32
percentage points. In addition, the average NCM of the
proposed method is 113.9, whereas the average NCM of
HOWP is 67.9. Our method identifies about two times as
many correct matches as HOWP. We can also observe
that the proposed method obtains better average CMR
and RMSE (29.9%, 1.98 pixels) than ASS (28.3%, 2.14
pixels), HOWP (21.4%, 2.61 pixels), LNIFT (20.8%, 3.37
pixels), MS-HLMO (17.1%, 3.10 pixels), and OS-SIFT
(10.4%, 7.71 pixels). All the results indicate that the
proposed method is effective to handle the registration
task of optical and SAR images.
To visually investigate the performance of different meth-
ods, Figs. 10 and 11 illustrate the comparative matching
results on eight image pairs that are randomly selected
from three subsets. The corresponding registration results
of the proposed method are presented in Fig. 12. As seen,
the proposed method achieves satisfactory matching (see
Fig. 11) and registration results (see Fig. 12), thereby
demonstrating that the proposed method is more robust
than the other methods in addressing image noises, in-
tensity changes, and geometric differences. OS-SIFT, as
shown in Fig. 10(a), performs the worst for all the images.
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Fig. 10. Feature matching of the comparison methods on the HROS dataset. The yellow lines and red lines denote correct matches and false matches, respectively.
RMSE = �indicates the method fails to register this image pair.

It fails to match the image pairs with obvious intensity
differences and large geometric differences. Fig. 10(b)
and (c) provides the matching results of MS-HLMO and
LNIFT. The former is based on the histogram of the
local main orientation feature, and the latter is based on
the local normalized filter. Both operations make these
two methods robust to nonlinear intensity differences.
However, MS-HLMO and LNIFT are still sensitive to
speckle noise since they both utilize gradient information
for feature description. In addition, without a multiscale
strategy, LNIFT is not invariant to scale differences. From
Fig. 10(d), it can be seen that HOWP produces favorable
results in coping with intensity, scale differences, and
small rotation differences, but it still cannot effectively
address large rotation differences. Fig. 10(e) shows that
the performance of ASS far outperforms the other methods
but remains inferior to those of the proposed method. The
results imply that the proposed method exhibits superior

adaptability to modality differences and speckle noise
compared with the other methods.

2) Comparison results on the MROS Dataset: In this dataset,
we conduct two groups of experiments to evaluate the
performance of the proposed method. The comparative
results for the six methods are given in Table VII. In the
first group, both OS-SIFT and MS-HLMO have a smaller
average NCM (35.3 for OS-SIFT and 53.6 for MS-HLMO)
than other methods, possibly because these two methods
perform feature detection on the original images, resulting
in a low-feature repeatability. In comparison, the proposed
method has an average NCM of 142.5, which is more than
four times as many as OS-SIFT and almost three times
as many as MS-HLMO. In the second group, all these
methods decrease their average NCM by different degrees
due to complex geometric differences. It can be seen that
the gradient-based methods, such as OS-SIFT and LNIFT,
are not reasonably effective, thus they can only obtain the
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Fig. 11. Feature matching of the proposed method on the HROS dataset.

TABLE VII
COMPARATIVE RESULTS OF SIX METHODS ON THE MROS DATASET

average NCM of 12.7 and 21.7, respectively. By contrast,
the proposed method still achieves the best performance
and has an average NCM of 89.8.

In Table VII, we further illustrate the average registration
accuracy on the MROS dataset. It is observed that the proposed
method produces the best average registration accuracy, with
an average NCM of 116.2, average CMR of 33.3%, average
SR of 99.8%, and average RMSE of 1.97 pixels. It is worth
noting that ASS obtains comparable performance on these two
subsets and has an average NCM of 99.6, with a mean CMR of
29.4%, a mean SR of 98.6%, and a mean RMSE of 2.10 pixels.
HOWP performs feature detection and description using the PC
information, it is, thus, more robust to intensity and geometric
differences and obtains a mean NCM of 79.0, with a mean CMR

of 24.0%, a mean SR of 81.2%, and a mean RMSE of 3.54
pixels. Since LNIFT only considers the rotation differences in
the feature extraction stage, it performs a bad performance on the
image pairs with both rotation and scale variations, and only gets
the average SR of 71.8%. In addition, OS-SIFT and MS-HLMO
are also not applicable to the MROS dataset. The average SRs
are only 66.9% and 74.4%, respectively.

The feature matching results are also provided to validate
the effectiveness of the proposed method, as shown in Figs. 13
and 14. The corresponding registration results of the proposed
method are presented in Fig. 15. As shown in Group 1, all the
methods can establish sufficient NCM and correctly match these
two image pairs only with intensity variations. For Group 2, it is
more challenging than Group 1. As seen, OS-SIFT, MS-HLMO,
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Fig. 12. Registration results of the proposed method on the HROS dataset. (a) Group 1. (b) Group 2. (c) Group 3.

and LNIFT fail to register the image pairs with both larger
rotation and scale changes, which indicates that gradient-based
methods cannot capture distinctive common features on this
challenging dataset. HOWP still has limited performance in
handling large rotation differences despite its robust to nonlinear
intensity and scale differences, possibly because HOWP is vul-
nerable to speckle noise in the SAR image, leading to inaccurate
PC orientations. Both ASS and the proposed method achieve
good performance on all the image pairs. One can clearly see
that the proposed method achieves a larger NCM and a lower
RMSE compared with ASS.

These experimental results presented in the HROS and MROS
datasets demonstrate that the proposed method achieves state-
of-the-art performance for optical and SAR image registration.
There are two factors contributing to the improved performance.
First, we convert the optical and SAR images into their corre-
sponding structural maps based on the MORTV, which captures
more structural information while removing noises and textures,
and further decreases the modality differences. Second, based on
the multiscale MORTV representation, MBST has an advantage

in extracting sufficient feature points with high repeatability
and uniform distribution, and LMHOG can encode multiscale
structural information in a multilayer manner, which signifi-
cantly improves the robustness and discrimination of the final
feature representation without increasing the dimension of the
descriptor.

IV. DISCUSSION

A. Adaptability to Complex Image Scenes

To further evaluate the effectiveness of the proposed method,
we implement more experiments on three pairs of optical and
SAR images with complex scenes. Pair 1 contains two images
of GF-1 and GF-3 in Fuzhou, China. This image pair covers
a river and several mountains, and has an obvious scale dif-
ference. Pair 2 also covers a mountainous area, where optical
image is from the Google Earth map and SAR image is from
GF-3. The image pair has significant rotation difference. Pair
3 covers a desert area, which is obtained from the website of
NASA. This pair also has rotation difference and the optical
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Fig. 13. Feature matching of the comparison methods on the MROS dataset. The yellow lines and red lines denote correct matches and false matches, respectively.
RMSE = �indicates the method fails to register this image pair.

Fig. 14. Feature matching of the proposed method on the HROS dataset.

image in this pair is textureless. Fig. 16 shows the feature
matching, evaluation, and registration results on the three im-
age pairs. As seen, the proposed method successfully registers
the three image pairs, which indicates that our method has
a good adaptability for dealing with optical and SAR image
registration.

B. Effectiveness of MORTV

In this study, MORTV is used to convert optical and SAR
images into structural maps. Such a representation significantly
filters out textures and noises, and decreases the modality

differences between optical and SAR images. To verify the
effectiveness of MORTV, four other edge-preserving filters,
including the NDF, COF, RGF, and RTV, are utilized to con-
struct image multiscale representation, instead of using MORTV.
We then separately perform the MBST feature detection and
the LMHOG description on them. For comparison, the GS is
also included. A series of experiments are implemented on the
MROS dataset and the detailed comparison results are given in
Table VIII. Compared with these approaches, MORTV can bring
a significant improvement in terms of four evaluation criteria.
This is because that MORTV can well characterize significant
structural features in images using a multi-orientation strategy
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Fig. 15. Registration results of the proposed method on the MROS dataset. (a) Group 1. (b) Group 2.

Fig. 16. Registration results of the proposed method on three complex scenes.

and further enhance the performance of feature detection and
description.

C. Effectiveness of LMHOG

In our work, LMHOG is used to encode structural informa-
tion with a layerwise multiscale feature region. To verify the
effectiveness of LMHOG, we extract only feature region at a
fixed scale while keeping other stages unchanged. Similarly, the
quantitative results of five methods on the MROS dataset are

TABLE VIII
QUANTITATIVE RESULTS OF DIFFERENT METHODS ON THE MROS DATASET

TABLE IX
QUANTITATIVE RESULTS OF DIFFERENCE METHODS ON THE MROS DATASET

presented in Table IX. Here, LMHOG-S1, LMHOG-S2, and
LMHOG-S3 are the modified LMHOG that are, respectively,
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constructed on small-scale, medium-scale, and large-scale struc-
tural maps, while LMHOG-C refers to the modified LMHOG
that is generated by directly combining all three scale structural
maps. From the results, it can be seen that LMHOG has a signifi-
cant performance improvement over the best performance when
using a single feature region. Moreover, LMHOG-C obtains
comparable results to LMHOG, but it has a feature dimension
of 720, which greatly increases the computational complexity.
Such an ablation experiment demonstrates the effectiveness of
our LMHOG.

V. CONCLUSION

In this article, we present a novel MORTV structural repre-
sentation for optical and SAR image registration. The MORTV
model is first designed to produce the structural maps with
different orientations. Then, based on multiscale MORTV repre-
sentation, the MBST detector is introduced to extract the shared
features. For each extracted point, the LMHOG descriptor is
designed to encode the structural features at different scales in
a multilayer manner, which improves the discriminative ability
of the descriptor without increasing its dimension. Extensive
experimental results on two large-scale datasets demonstrate
that the proposed method brings a significant improvement in
registration performance and produces competitive performance
in matching optical and SAR images with intensity changes,
geometric differences, and image noises. Although the proposed
method provides robust registration performance, it cannot han-
dle the images that contain less structural information. Our future
work will explore an image enhancement method to improve
image quality.
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