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Abstract—Hyperspectral image classification using deep learn-
ing techniques has received great attention in recent years, consid-
ering the powerful spatial feature mining ability of deep learning.
Fully convolutional network is an effective deep learning archi-
tecture that exploits spatial contextual information through a hi-
erarchical convolutional structure. However, it often ignores the
relationships between samples of the same category and different
categories within the global context. Therefore, a fully convolu-
tional spectral–spatial fusion network based on supervised con-
trastive learning (FCSCL) is proposed for hyperspectral image
classification to enhance the separability between different cat-
egories and class aggregation among the same category. In the
FCSCL framework, the spectral–spatial fusion classification net-
work is developed to capture subtle spectral variations and spatial
patterns by adaptively fusing the features extracted by the spectral
branch and spatial branch. To improve intraclass compactness
and interclass separability, the SCL module is integrated into the
FCSCL framework. The positive and negative sample pairs are
constructed by the designed hard example pairs sampling strategy.
These constructed sample pairs are used to guide the network to
learn more discriminative feature representations that pixels of
the same category are closer to each other and pixels of different
categories are pushed further apart in the feature space. The
experiments using three public hyperspectral datasets verify the
effectiveness of the FCSCL algorithm, and the FCSCL method
achieves better classification performance.

Index Terms—Contrastive learning, fully convolutional network
(FCN), hyperspectral image, image classification.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) has rich spectral in-
formation and often has hundreds of nearly continuous

spectral bands, which can be used to identify different materials
with small spectral differences. Therefore, hyperspectral images
play an important role in precision agriculture, mineral explo-
ration, environmental monitoring, and other fields [1], [2], [3].
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HSI classification is a fundamental task for various applications
by labeling each pixel with a semantic category [4].

The early methods of HSI classification were mainly based on
the spectral information of hyperspectral images to identify the
category of materials, such as classification based on artificial
neural network [5], extreme learning machines [6], multilayer
perceptron [7], and support vector machine (SVM) [8]. These
methods achieve good performance on HSI classification. How-
ever, due to the spectral variability in HSI images, the same
land cover category may have significantly different spectra and
different land cover categories may have similar spectra, so it is
difficult to effectively and accurately represent the characteris-
tics of land covers using only single spectral information.

To alleviate the confusion of land cover categories caused
by spectral variability and improve classification accuracy, as
another aspect of HSI image, the spatial information is fully
exploited, and it gradually transitions from manually designed
spatial features based on expert knowledge to automatic spatial
feature representation based on deep learning. The handcrafted
spatial features design some artificial rules to mine the spatial
pattern of pixels and neighboring pixels. For example, the mor-
phological profile feature uses the dilation and erosion opera-
tions to extract spatial structure features [9], [10]. In addition,
the random field model can also mine the spatial information of
HSI images by modeling the relationship between pixels based
on the graph structure [11]. The model mainly includes two
types of conditional random fields (CRF) [12], [13], [14] and
Markov random fields [15], [16]. These methods significantly
improve classification accuracy compared to the method that
only uses spectral information. However, these methods rely
more on handcrafted features, and the generalization ability of
the models is limited, which makes them difficult to achieve
satisfactory classification performance.

To automatically mine spatial structure information of the
image, deep learning classification methods have received great
attention [17], [18]. Based on the different feature information
used in the classification process, the deep learning models
for HSI classification can be mainly divided into the following
three categories. One kind of deep learning algorithm for HSI
classification is spectral information feature extraction network.
The model takes 1-D spectral vectors as input, and learns the
correlation and complex patterns between these spectral features
to achieve classification, such as deep belief networks [19],
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one-dimension convolutional neural networks (1-D CNNs) [20],
and stacked autoencoders [21]. The described network type
sacrifices a certain level of spatial information and experiences
exponential growth in network parameters with the addition
of fully connected layers. The second kind of deep learning
algorithm for HSI classification is spatial feature-based extrac-
tion network. These models take spatial patches as input to
focus on spatial information. Since hyperspectral images often
have a large number of spectral bands, these method often
combined with dimensionality reduction algorithms, such as
principal component analysis (PCA) [22], [23]. The spatial
patch-based mechanism divides the hyperspectral image into
multiple small patches for processing, which may lose important
information due to inappropriate segmentation, thus affecting
classification accuracy. To effectively utilize the spectral and
spatial information of hyperspectral images simultaneously, an-
other method is the spatial–spectral fusion extraction network.
The input of this type of model is a spatial patch-based approach
that combines spectral and spatial information. By this way,
deep learning models can fully utilize all spectral information
and neighborhood spatial information to improve classification
accuracy. This type of model includes 2D-CNN [24], [25] for
extracting spectral information, and 3D-CNN [26], [27], [28] for
performing convolution operations in both spectral and spatial
dimensions, and further derived 3D-GAN [25], [29], spectral–
spatial 3-D fully convolutional network [30], spectral–spatial
residual network [31], oriented self-similarity network [32],
and other high-performance network architectures. In addition,
some network structures construct two branches to extract fea-
tures from spatial and spectral information separately, and then
integrate these features into fully connected layers to achieve
spectral–spatial information fusion. These network architectures
include the two-stream deep architecture [33], spectral-spatial
unified networks [34], and dual-branch multiscale spectral at-
tention network [35].

Although the HSI classification task using deep learning is
equivalent to the semantic segmentation of computer vision,
there are some differences in hyperspectral image classification,
such as the sparsity of training data and lots of unlabeled im-
ages. To enable deep models, such as CNN to effectively train
hyperspectral data, a lot of previous work is patch-based learning
strategy, which will lead to high computational complexity [36].
To solve this problem, some researchers have started using the
whole image as input to achieve end-to-end spectral–spatial
fusion classification. For example, the spectral–spatial fully con-
volutional network (SSFCN) [37] was proposed and achieved
the aggregation of global long-range contextual information by
introducing dense CRF (DenseCRF). Zheng et al. [36] proposed
a fast patch-free global learning approach for HSI classification.
Its speed and accuracy are greatly improved compared to deep
learning models with spatial patch-fetching mechanism. But it
only considers the relationship between pixels in a local region
and ignored the relationships between samples of the same
category and different categories within the global context.

In this study, to effectively utilize the global relationship
between samples, a fully convolutional spectral–spatial fusion

classification network based on supervised contrastive learn-
ing (FCSCL) is proposed. Contrastive learning aims to learn
similar/dissimilar distribution properties by comparing pairs of
samples [38], [39], [40], and achieves a tighter feature space,
which means that the features of similar samples are brought
closer together and the features of different categories of sample
are pushed apart. Contrastive learning has also recently been a
popular research topic for HSI classification. For example, Zhao
et al. [41] proposed an innovative contrastive learning approach
that aims to extract spectral–spatial features from readily avail-
able unlabeled samples and subsequently enhance classification
performance by fine-tuning the parameters of the model using
labeled samples. Hou et al. [42] adopt a self-supervised training
strategy, where differentiating positive and negative sample pairs
are used as pretext tasks during training. Subsequently, the pre-
trained model is employed in downstream classification tasks. To
ensure that features with similar semantic meaning are brought
closer together, a spectral–spatial semantic feature learning net-
work is proposed by Xu et al. [43] to align the projected spectral
spatial features through contrastive loss. However, contrastive
learning in the above methods is often mainly used in patch-
based hyperspectral classification frameworks. The anchor is
the original image patch, its augmented version serves as the
positive sample, and all other image patches in the batch function
as negative samples [44]. This will not take advantage of the
FCN. Therefore, this study integrates an SCL module into a fully
convolutional spectral–spatial fusion classification network to
take the global labeled samples into consideration, which helps
to enhance the distinctiveness between different categories and
the cohesion within the same category. The main contributions
are summarized as follows.

1) An FCSCL framework is proposed for hyperspectral im-
age classification. The FCSCL framework integrates FCN and
contrastive learning by sharing the feature extraction network
and designing an SCL head and a semantic segmentation head.
Therefore, the advantages of the two technologies can be com-
bined, and the aggregate information of the same category
and the difference information of different categories can be
considered in the full convolutional network through contrastive
learning.

2) To effectively utilize the spectral and spatial information
of hyperspectral images, a spectral–spatial fusion classification
architecture is developed. We design the architecture as a con-
catenated structure of two branches, one for extracting spectral
features and the other for extracting spatial features. To maxi-
mize the utilization of the spectral–spatial features, an adaptive
fusion approach is introduced to integrate the spectral–spatial
features to improve the classification accuracy and robustness
of the architecture.

3) An SCL module with an effective sample pair construction
strategy is designed to better learn the similarity and dissimilarity
of data. Sample pair construction strategy is a key part of
contrastive learning. We select the sample pair with the lowest
intra-class similarity as the positive sample pair, maximizing
the difference between the positive sample pairs to improve
the discriminability of the learned features. Meanwhile, new
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Fig. 1. Flowchart of the FCSCL framework.

negative sample pairs are constructed through pairwise com-
binations of positive sample pairs to increase the number of
negative sample pairs, so that the model can better learn the
differences of interclass.

The rest of this article is organized as follows. The FCSCL
framework is described in Section II. The relevant experimental
results and discussions are presented in Section III. Finally,
Section IV concludes this article.

II. FCSCL FOR HSI CLASSIFICATION

In this article, to mine the relationship between different sam-
ples within the global context in hyperspectral classification, an
FCSCL framework is proposed (Fig. 1). The framework mainly
includes a feature extraction network, an SCL head, and a seman-
tic segmentation head. The feature extraction network enhances
class separability from spectral and spatial perspectives, and a
attention mechanism is incorporated at the end of the network
to achieve adaptive fusion to mine useful spectral and spatial
feature information. After that, the contrastive loss is obtained
by the SCL head and the cross-entropy loss is obtained by the
semantic segmentation head. Joint loss consists of the above two
losses, and finally constrains the feature extraction network.

A. Spectral–Spatial Fusion Classification Network

To better utilize the spectral relationships between spectral
bands and the spatial relationships between pixels, we developed
a spectral–spatial fusion classification network (Fig. 2), and the
network consists of feature extraction modules based on spa-
tial branch and spectral branch, and a spectral–spatial adaptive
fusion module based on the attention mechanism.

The spatial feature extraction branch mainly improves the dis-
crimination ability of different categories by mining multiscale
spatial information. Since hyperspectral datasets have different
spectral dimensions, we first compress the spectral dimensions
with 1× 1 convolution to fit different datasets. To capture the
global context information, inspired by U-Net [45], the branch
contains a top-down contraction path, and a bottom-up expan-
sion path. The contraction path is used to compress the size of
the input hyperspectral image layer by layer while adjusting the
spectral dimension. The path consists of four repeated convo-
lutional modules, each containing two cascaded convolutional
groups. The convolution group consists of a convolution layer
with 3× 3 kernel, a group normalization layer (GN), and a linear
activation layer. Each module of the extended path contains a

Fig. 2. Schematic diagram of spectral–spatial fusion classification network.

convolutional layer with 1× 1 kernel to adjust the dimension of
the corresponding layer of the contraction path to be consistent
with the dimension of that layer. The higher level semantic
features are spliced with more complete spatial information by
upsampling, and then the number of channels is adjusted by
the convolution with 1× 1 kernel to utilize the global and local
spatial information at the same time.

For the spectral feature extraction branch, we extract spectral
features by two consecutive convolutions with 1× 1 kernel
acting only on the spectral dimension, where the first convolution
shares weights with the first convolution in the spatial feature
extraction branch. In addition, after each convolutional layer, a
GN layer is added. To better fuse spectral and spatial extracted
features, we design an adaptive fusion mechanism. The spectral
and spatial information are first spliced in dimension. The adap-
tive fusion based on squeeze-and-excitation block [46] is used
to assign different weights to the spectral and spatial features
extracted by the spectral and spatial feature extraction branches
to improve the classification performance. The specific structure
of the proposed adaptive fusion module is shown in Fig. 3.

B. Supervised Contrastive Learning Module

The SCL is integrated into the FCSCL framework, and its
main role is to learn the similarity and dissimilarity of data,
which mainly includes projection head, construction of sample
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Fig. 3. Specific structure of the proposed adaptive fusion module.

Fig. 4. Schematic diagram of sample pairs construction.

pairs, and pixel-to-pixel contrastive loss. The function of projec-
tion head is to map the high-dimensional feature representation
to a more compact and discriminative low-dimensional feature
space, and then the similarity and difference between data pairs
can be learned through contrastive loss. By minimizing the
distance between feature vectors of positive pairs and maxi-
mizing the distance between feature vectors of negative pairs,
the projection head learns a representation where similar sam-
ples’ feature vectors are closer, and dissimilar samples’ feature
vectors are more distant. Therefore, the construction of sample
pairs is very critical in contrastive learning. Considering that
the discriminative ability of samples is crucial for contrastive
learning, a hard example pairs sampling strategy is designed,
which is shown in Fig. 4. For each class (total K classes), the
cosine similarity operation is performed on any two samples
selected within the class. The two sample pairs with the lowest
similarity are chosen as positive sample pairs for the class. These
same-class sample pairs with lower similarity can motivate the
model to pay closer attention to intraclass differences, leading
to better discrimination of different samples. In the end, a total
of 2K samples were selected. Except the anchor point xi and
its corresponding positive sample x+

i , the remaining 2K − 2
samples constitute negative sample pairs with xi. Therefore,
the designed hard example pairs sampling strategy will form K
positive pairs and 2K2 − 2K negative pairs.

Based on the constructed sample pairs, the contrastive loss
function can maximize the similarity of positive sample pairs and
the dissimilarity of negative sample pairs to encourage the model
to learn feature representations with stronger discriminative

capabilities. This leads to similar samples being closer to each
other in the feature space, while dissimilar samples are pushed
further apart. The pixel contrastive loss function is InfoNCE
which was first proposed by Oord et al. [47]. It is defined as

LInfoNCE = −Ex

[
log

exp (s (q, h+) /τ)∑
xi∈X,i�=q exp (s (q, hi) /τ)

]
(1)

where X = {x1, . . . , xN} represent the sampled N samples.
q = f(xq) is the feature value of query samples, where f is
the feature extraction network. h+ = f(xi) is the feature vector
of positive samples corresponding to xq , and τ denotes a tem-
perature parameter. s is the similarity measure function, which
is the cosine similarity function here.

C. FCSCL Framework for HSI Classification

The FCSCL framework mainly composes of three parts:
1) spectral–spatial fusion classification network, 2) SCL module,
and 3) a fully convolutional semantic segmentation module. By
jointly considering both spectral and spatial cues, the spectral–
spatial fusion network can capture subtle spectral variations and
spatial patterns, leading to more discriminative feature represen-
tations. The SCL learns the similarity and dissimilarity between
data pairs. The semantic segmentation head is responsible for
transforming the high-dimensional features into semantic-level
outputs. The cross entropy loss is often used as its loss function,
which can compare the classification result of each pixel with
the ground-truth to get a loss value. Specifically, assuming a hy-
perspectral image has K categories, the one-hot representation
of the true label of each pixel i is yi = (yi1, yi2, . . . , yiK), and
yij = 1 when pixel i belongs to the category j. The model’s
prediction probability for that pixel is ŷi = (pi1, pi2, . . . , piK),
then the cross entropy loss of the pixel is

LCE = −Ex

⎡
⎣ K∑
j=1

yij log (pij)

⎤
⎦ . (2)

It is noticed that the cross-entropy loss focuses on the con-
struction of the decision boundary, and does not consider the
structure of the feature space used for classification. SCL can
accurately construct a tighter feature space, which will be more
conducive to the construction of decision boundaries. There-
fore, the weighted sum of cross-entropy loss and contrastive
loss is used to constrain the whole network at the same time.
To integrate SCL module in the FCSCL framework, a joint
loss function is used, which combines the pixel cross-entropy
loss from the semantic segmentation head and the contrastive
loss from the SCL head. These two losses are complementary
to some extent. The former helps to improve intraclass com-
pactness and interclass separability by exploring the semantic
relationship between pixel samples, and the latter expects the
network to learn discriminative features for HSI classification.
Therefore, the joint loss can be expressed as follows:

LJoint = LCE + λLInfoNCE (3)

where λ > 0 is the coefficient. LCE in (3) is the pixel cross-
entropy loss shown in (2), and LInfoNCE is the aforementioned
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Fig. 5. Pavia University dataset. (a) Three-band false color image. (b) Ground-
truth image.

contrastive loss shown in (1). This joint loss guides the optimiza-
tion of the spectral–spatial fusion classification network, ensur-
ing that the final feature representations are both semantically
meaningful and discriminative for accurate HSI classification.

III. EXPERIMENTAL RESULTS

We evaluate the proposed approach on three typical datasets
(WHU_Hi_HongHu, WHU_Hi_HanChuan [48], [49], and
Pavia University datasets) and compare it with other typi-
cal hyperspectral image classification algorithms. The overall
accuracy (OA), Kappa, average accuracy (AA), and classifica-
tion accuracy of each class are used to evaluate the performance
of various algorithms. In the following we will describe our
experiments in several sections.

A. Data Description

1) Pavia University Dataset: This image was collected by
the ROSIS sensor over the Pavia University, Italy. The image
contains 103 spectral bands ranging from 430–860 nm, and the
spatial size is 610× 340 with a spatial resolution of 1.3 m. The
dataset mainly contains nine categories, including trees, asphalt,
bricks, meadows, etc. Fig. 5 shows the false color image and the
ground-truth image.

2) WHU_Hi_HongHu Dataset: This dataset is a UAV image
collected in HongHu, Hubei Province, China in 2017. The spatial
resolution of the data is 0.043 m when the UAV is flying at an
altitude of 100 m. The spatial size of the dataset is 940× 475,
and it has 270 bands ranging from 400–1000 nm. This dataset
contains a complex agricultural scene with a wide variety of
crops, and different varieties of the same crop are grown in the
area, including Chinese cabbage and cabbage, and small bok
choy and baby cabbage. The dataset contains a total of 22 cate-
gories. Fig. 6 shows the false color image and the corresponding
ground-truth image.

3) WHU_Hi_HanChuan Dataset: This dataset is also a UAV
image collected in Hanchuan, Hubei Province, China in 2017.
The spatial resolution of the data is 0.109 m when the UAV is
flying at an altitude of 250 m. The dataset size is 1217× 303 and
contains 274 bands ranging from 400–1000 nm. This dataset
contains a total of 16 categories. Fig. 7 shows the false color
image and the ground truth.

Fig. 6. WHU_Hi_HongHu dataset. (a) Three-band false color image.
(b) Ground-truth image.

Fig. 7. WHU_Hi_HanChuan data. (a) Three-band false color image.
(b) Ground-truth image.

B. Experimental Setup

In the experiments, the FCSCL method was compared with
several HSI classification approaches, including traditional
classification algorithm and five recently proposed deep learning
classification algorithms. They are SVM [50], CVSSN [32],
RESN [51], DFFN [52], SSFCN-CRF [37], and FreeNet [36].
The SVM [50] algorithm uses the radial basis function (RBF) as
the kernel function for classification. The CVSSN [32] method
utilizes the neighborhood adaptive fusion module of spectral
information and the feature-oriented neighborhood similarity
metric module to better fuse spatial information. The RESN [51]
is a self-ensembling network based on teacher–student model,
which takes full advantage of unlabeled spectral information
through consistency regularization and a consistency filter. The
DFFN [52] is a deep residual network, which incorporates mul-
tilevel features. The SSFCN-CRF [37] is a spectral–spatial full
convolutional network to combine spectral and spatial features.
To balance global and local information, CRF is applied as
a post-processing. The FreeNet [36] is a fully convolutional
end-to-end classification framework, which designs a sampling
strategy to allow the network to converge better and faster.

To verify the classification performance of our algorithm us-
ing limited samples, 25 samples are selected for each category on
the three experimental datasets as training samples. Tables I–III
show the number of training samples and the corresponding
testing samples. All experiments were performed with a single
NVIDIA GTX 1080ti GPU. To ensure the training convergence
of the proposed FCSCL model, the global stochastic stratified
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TABLE I
CLASS INFORMATION FOR THE PAVIA UNIVERSITY DATASET

TABLE II
CLASS INFORMATION FOR THE WHU_HI_HONGHU DATASET

TABLE III
CLASS INFORMATION FOR THE WHU_HI_HANCHUAN DATASET

sampling strategy proposed in FreeNet is used and the parameter
α is set to 5. We set the temperature coefficient in InfoNCE to 0.3,
λ set to 1. The SGD optimizer with a learning rate of 0.01 is used.

C. Experimental Results and Analysis

The classification accuracies of different algorithms on the
three datasets are shown in Tables IV–VI. The highest accuracy
for each category is shown in bold. The classification accuracy of
the HSI classification methods based on deep learning are better

than the SVM algorithm on all datasets. For the classification
performance of the Pavia University dataset (Table IV), RESN
achieves the best results in the second category, because the
number of samples in the second category is obviously more
than other categories, and the integrated network of RESN can
fully extract information from unlabeled samples. The proposed
algorithm achieves second and close accuracy on the second cat-
egory. Overall, our proposed method achieves OA (98.57%), AA
(99.03%), and Kappa (0.9811), which is the best result among
all algorithms. Out of nine categories, the proposed FCSCL
algorithm achieves top results in five categories, including 100%
accuracy on one category. Compared with other algorithms on
this dataset, the proposed FCSCL algorithm improves at least
1.99%, 1.71%, and 0.026 on the OA, AA, and Kappa evaluation
metrics, respectively.

Table V reports the classification accuracy of various methods
for the WHU_Hi_HongHu dataset. Since this dataset has more
categories and many indistinguishable crop categories, the ac-
curacy obtained on this dataset is lower than that obtained on the
Pavia University dataset using the same algorithm. Among the
deep learning-based HSI classification approaches, the FCSCL
algorithm achieved the best results on OA, AA, and Kappa
evaluation metrics, which are 95.47%, 95.58%, and 0.9429,
respectively, significantly outperforming the patch-based deep
learning networks. Compared with FreeNet and SSFCN-CRF,
which are also FCN, the FCSCL algorithm can achieve better
classification performances since the contrastive learning mod-
ule is considered to better extract global features of images.
In addition, deep learning-based HSI classification methods
generally achieve high accuracy, but some deep learning models
may not perform well in terms of classification accuracy in
some categories, since they cannot be fully trained using limited
samples, such as the accuracies of category 19 and category 20
for the SSFCN-CRF model. As reported in Table VI, similar con-
clusions can be obtained for the WHU_Hi_HanChuan dataset.
Overall, the FCSCL method achieves comparable accuracies
on all three HSI classification datasets and has improved the
accuracy by an average of 2%, compared with the best result
(FreeNet) in the comparison algorithm.

To qualitatively analyze the experimental results, we visual-
ized the classification results of various approaches on three HSI
classification datasets, which is exhibited in Figs. 8–10. In all
three classification maps of SVM, there is lots of salt–pepper
classification noise because it only utilizes spectral features for
classification and may have the problem of insufficient feature
extraction. Compared with other algorithms, the DFFN algo-
rithm produces obvious oversmooth classification results due
to the weak feature discrimination ability of spatial patches,
especially on the Pavia University dataset, and also produces
a large number of boundary misclassifications in other two
datasets. Overall, the classification approaches based on FCN
(the proposed FCSCL algorithm and FreeNet) are closest to
the ground-truth maps in the three datasets, and the FCSCL
method has better classification results at the boundary, since it
constructs a tighter feature space through contrastive learning,
making the outline clearer and more continuous, which is closest
to the real boundary.
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TABLE IV
CLASSIFICATION RESULTS OF SVM, CVSSN, RESN, DFFN, SSFCN, FREENET, AND FCSCL ON THE PAVIA UNIVERSITY DATASET

TABLE V
CLASSIFICATION RESULTS OF SVM, CVSSN, RESN, DFFN, SSFCN, FREENET, AND FCSCL ON THE WHU_HI_HONGHU DATASET

TABLE VI
CLASSIFICATION RESULTS OF SVM, CVSSN, RESN, DFFN, SSFCN, FREENET, AND FCSCL ON THE WHU_HI_HANCHUAN DATASET
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Fig. 8. Classification maps of various algorithms for the Pavia University dataset. (a) Groundtruth. (b) SVM. (c) CVSSN. (d) RESN. (e) DFFN. (f) SSFCN.
(g) FreeNet. (h) FCSCL.

Fig. 9. Classification maps of various algorithms for the WHU_Hi_HongHu dataset. (a) Groundtruth. (b) SVM. (c) CVSSN. (d) RESN. (e) DFFN. (f) SSFCN.
(g) FreeNet. (h) FCSCL.

Fig. 10. Classification maps of various algorithms for the WHU_Hi_HanChuan dataset. (a) Groundtruth. (b) SVM. (c) CVSSN. (d) RESN. (e) DFFN. (f) SSFCN.
(g) FreeNet. (h) FCSCL.
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TABLE VII
EFFECTS OF ADAPTIVE FUSION MECHANISM (AF) AND CONTRASTIVE LEARNING MODULE (CL) ON THREE DATASETS

Fig. 11. Data distributions of the labeled samples of the Pavia University dataset in (a) the original spectral feature space and (b) the learned feature space.

Fig. 12. Sensitivity analysis of parameter λ on (a) Pavia University dataset, (b) WHU_Hi_HongHu dataset, and (c) WHU_Hi_HanChuan dataset.

D. Ablation Experiments

To fully validate the impact of our proposed adaptive fu-
sion mechanism and contrastive learning module on the overall
framework, we conduct ablation experiments on these three
datasets in this section. For the scene without contrastive learn-
ing module, the InfoNCE loss function is removed and only
the cross-entropy loss is used to optimize the model. For the
scene without adaptive fusion mechanism, the spectral branch
is removed from network to observe the results of experiments.

The results of the ablation experiments on the three HSI
classification datasets are shown in Table VII. For the effect
of adaptive fusion mechanism, the proposed FCSCL algorithm
extracts discriminative features from spectral and spatial di-
mensions for adaptive fusion, resulting in an average accuracy
improvement of about 1% on the three datasets. For the effect of
contrastive learning module, taking the Pavia University dataset
as an example, the proposed SCL module can improve OA by
2.35%, Kappa by 0.0307, and AA by 0.89%. This is because the
contrastive learning module using the InfoNCE loss function
constructs an efficient classification feature space to provide the

ability of intraclass compactness and interclass separability, and
the FCN using cross-entropy loss can find the optimal decision
boundary in this classification feature space. Using an FCN
alone may only focus on the decision boundary, but not on the
feature distribution in the classification space. To show the role
of contrastive learning more intuitively, the classification feature
space is visualized, as shown in Fig. 11. Each category has sig-
nificantly tighter feature distributions in the feature space using
the contrastive learning module. In the ablation experiments of
the remaining two datasets, the conclusions that are basically
consistent with the Pavia University dataset can be obtained.

E. Sensitivity Analysis

The parameter λ is used to balance the impact of FCN
classification and SCL in the loss function, which will di-
rectly affect the final classification performance. To explore
the effect of λ on the network performance, we use the grid
search method on the Pavia University, WHU_Hi_HongHu, and
WHU_Hi_HanChuan datasets to explore the optimal value of
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λ, λ ∈{ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 2.0}. The
experimental results are shown in Fig. 12.

As can be seen from Fig. 12, as the parameter λ increases,
the impact of SCL in the network will also become greater, so
the classification accuracy of three datasets (Pavia University,
WHU_Hi_HongHu, and WHU_Hi_HanChuan datasets) have
an increasing trend. However, when the parameter λ reaches a
certain value, the classification accuracy has an obvious down-
ward trend. This is mainly because it reduces the relative role of
cross-entropy loss in the network, which will affect the learning
of discriminative features. Therefore, the parameter λ was set
to 1 in the experiments to better balance the effects of semantic
segmentation and SCL.

IV. CONCLUSION

In this study, an FCSCL framework integrating FCN and con-
trastive learning is developed for HSI classification. To exploit
the spectral and spatial information of hyperspectral images,
the spectral–spatial fusion classification network is designed in
the FCSCL framework, which uses the spectral–spatial adaptive
fusion module to merge the spectral and spatial feature extraction
branches. Based on the shared spectral–spatial fusion classifi-
cation network, SCL head and a fully convolutional semantic
segmentation head are jointly applied in the framework, which
can complement each other to some extent. For SCL, an effective
sample pair construction strategy is developed by sampling hard
example pairs, and the contrastive loss is used to optimize the
similarity of these constructed positive and negative sample pairs
to improve intraclass compactness and interclass separability.
The fully convolutional semantic segmentation module expects
the network to learn discriminative features for classification.
Therefore, the SCL is integrated in fully convolutional semantic
segmentation to learn semantically meaningful and discrimi-
native feature representation for accurate hyperspectral image
classification. In the future, we will construct a hyperspectral
classification dataset with spatial separation of training data
and test data based on existing works [53], [54] to test the
generalization of the algorithm.
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