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Vector Mapping Method for Buildings in
Remote Sensing Images Based on Joint

Semantic-Geometric Learning
Jichong Yin , Fang Wu , and Yuyang Qi

Abstract—An important high-precision building vector mapping
method automatically delineates building polygons from high-
resolution remote sensing images. Deep learning methods have
greatly improved the accuracy of automatic building segmentation
in remote sensing images. However, building polygons in vector
forms have a compact and regular structured expression effect,
which corresponds more with the application requirements of car-
tography and geographic information systems (GIS). We propose
a vector mapping method for buildings in remote sensing images
with joint semantic-geometric learning to generate building poly-
gon vectors in remote sensing images automatically. The method,
aiming to provide cartography and GIS data sources, consists of
three modules: multi-task segmentation, contour regularization,
and polygon optimization. To reduce missing extractions and mis-
extractions and obtain a complete building segmentation mask, the
multitask segmentation module performs joint semantic-geometric
learning on three related tasks: building instance detection, pixel-
wise contour segmentation, and edge extraction. The regularization
module normalizes the segmentation mask expression using geo-
metric constraints and image information, whereas the polygon
optimization module combines geometric constraints with deep
learning methods to ensure vectorization quality. The experimental
results show that the proposed method adapts well to building
vector extraction tasks under different scenarios and can generate
building vector polygons that match the ground truth labels. This
method offers significant advantages in solving problems, such as
building polygon irregularity and vertex offset.

Index Terms—Contour regularization, joint semantic-geometric
learning, multitask segmentation, polygon optimization, remote
sensing images.

I. INTRODUCTION

BUILDINGS are the main cartographic element; there-
fore, accurate building outlines and shapes are critical for

cartography andgeographic information system (GIS) applica-
tions because they can provide important reference values for
applications such as urban planning, three-dimensional (3-D)
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modeling, change detection, and disaster assessment [1], [2].
High-resolution remote sensing images have become a primary
data source for the vector mapping of building polygons as
remote sensing and earth observation technology have advanced
[3]. Automatic building outline extraction from high-resolution
remote sensing images is an important method for improving
vector mapping efficiency [4], [5] and has been both the focus
and challenge of remote sensing applications and cartographic
research [6], [7], [8].

In recent years, deep learning-based building segmentation
methods have vastly improved the accuracy of building outline
extraction from remote sensing images [6], [9]. However, build-
ing segmentation masks derived from this pixel-wise segmenta-
tion method often suffer from two major issues.

1) Building segmentation masks have blurred boundaries,
redundant points, and weak right-angled features.

2) In practical applications, raster building segmentation
masks are not ideal formats for cartographic and GIS ap-
plications, necessitating post-processing to convert them
to ideal building vector polygons.

Therefore, increasing research is being conducted on regular
building polygon extraction from remote sensing images. Jung
et al. [10] used the minimum description length technique [11]
to regularize the building roof shapes based on airborne LiDAR
data. In addition, Zhao et al. [8] improved the minimum de-
scription length on this basis, making it suitable for the image
domain and using it to regularize the building segmentation
mask generated by Mask R-CNN [12]. Wei et al. [13] used
the main direction concept to perform fine regularization us-
ing the improved Douglas–Peucker algorithm [14], whereas
[15] polygonized building segmentation masks using polygon
partition refinement. The methods described above effectively
address the boundary irregularity of building segmentation
masks; however, geometric boundary optimization methods are
highly contingent on design features and rules and require a
greater degree of manual intervention. Several studies have used
deep learning methods to solve the problem of regularizing
building outlines. Girard and Tarabalka [16] introduced the
polygon boundary loss into the convolutional neural network
architecture to attain the regular expression of rectangular build-
ings. Zorzi and Fraundorfer [17] used generative adversarial
networks to regularize building segmentation masks, thereby
optimizing their boundaries. Although these methods achieved
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decent regularization results, their output results remain in
raster form, making them unsuitable for practical applications.
The regularization effect is also dependent on segmentation
mask quality.

Another class of methods learns vector representations of
building polygons from remote sensing images. Polygon-RNN
[18] and Polygon-RNN++ [19] are semiautomatic polygon
labeling methods that use recurrent neural networks to extract
polygons by their vertices. PolyMapper [20] builds on this
foundation and uses it to extract buildings and roads. Zhao et al.
[1] upgraded feature extraction by introducing global context
and boundary refinement modules based on PolyMapper, added
a channel and spatial attention module to improve the detection
module’s effectiveness, and obtained building vector representa-
tions by learning to predict the locations of key building vertices
and connecting them sequentially. The PolygonCNN proposed
by [3] first performs segmentation to extract initial building out-
lines. Then, it utilizes a modified PointNet [21] to learn the shape
prior and predict polygon vertices to generate precise building
vector results by encoding the vertices of building polygons and
merging image features extracted from the segmentation step.
Girard et al. [22] proposed a building contour method based on
frame field learning to extract regular building footprints directly
from remote sensing images as vector polygons. Li et al. [6] de-
signed a multitask learning network for joint semantic-geometric
learning with pixel-level building segmentation, multiclass ver-
tex and edge direction prediction and used the vertex generation
module to convert segmented contours into high-quality polygon
vertices and the polygon refinement network to adjust polygon
vertices to more accurate positions automatically. The above
methods can obtain vector representations of building polygons
but continue to face some limitations. For example, vertex re-
dundancy occurs when dealing with simple shapes, insufficient
vertices or self-intersection may occur when extracting complex
buildings, and building polygons are irregular or deviate from
the ground truth.

To address the aforementioned issues, a joint semantic-
geometric learning method for building vector mapping in re-
mote sensing images (JSGLNet) is proposed in this article. The
main contributions of this article are described as follows.

1) JSGLNet strives to solve a series of problems in building
extraction from remote sensing images, including incom-
plete segmentation, missing extractions, mis-extractions,
blurred edges, irregular boundaries, and nonvector output
results. Compared with existing advanced building extrac-
tion methods, JSGLNet achieves satisfactory results on
two public datasets.

2) To generate building outlines with regular boundaries
without losing their geometric details, a contour regu-
larization module is designed, and the rich semantic in-
formation provided by the remote sensing image input
and the geometric constraint knowledge of the boundaries
provided by the segmentation mark is used to solve the
blurred building edges problem effectively.

3) We propose a polygon optimization module combining
geometry and deep learning, which is used to convert
the segmentation mask into a set of valid vertices that

Fig. 1. Overall building vector mapping framework.

represent building instances and predict the offset of each
vertex to generate more accurate polygon vertices.

II. METHODS

A. Overall Structure

Fig. 1 shows the overall JSGLNet framework, including three
main parts.

1) Multitask Building Segmentation Module (MBS): The
multitask segmentation module takes remote sensing im-
ages as input with multiple building instances for joint
semantic-geometric learning of three tasks: building in-
stance detection; pixel-wise contour segmentation; and
edge extraction. This module improves building segmen-
tation performance by learning shared information across
multiple related tasks, resulting in a more accurate build-
ing segmentation mask.

2) Building Contour Regularization Module (BCR): Given
that polygon reduction techniques applied to irregular
boundaries produce inaccurate vector polygons, a contour
regularization module for generating normalized building
representations is proposed in this article. The contour
regularization module normalizes building mask repre-
sentations by effectively utilizing image information and
geometric constraint knowledge of the boundary from the
remote sensing image input.

3) Building Polygon Optimization Module (BPO): The poly-
gon optimization module converts the regularized mask
into a valid set of vertices that represent building instances
and predicts the offset of each vertex to generate more
accurate polygon vertices.

The framework takes high-resolution remote sensing images
as input and employs a multitask segmentation module to
generate an initial building segmentation mask. The contour
regularization module is then used to generate a regularized
building mask. Finally, the polygon optimization module gener-
ates polygon vectors with more accurate vertices, providing data
sources for mapping. The multitask segmentation and contour
regularization modules are used to generate a complete and
standardized initial polygon for each building instance. The
polygon optimization module is used to refine the obtained
initial polygon so that the initial polygon can better capture the
building instance shape and generate a vector polygon that is
more suitable for the building contour.
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Fig. 2. Overall framework of the building contour regularization module.

B. Multi-Task Building Segmentation Module

Building segmentation detects and extracts building instances
from high-resolution remote sensing images. This is analogous
to a semantic segmentation or instance segmentation task in
computer vision [7], [23], which many deep learning networks
can solve. This paper used MultiBuildNet [24] to obtain a
complete building segmentation mask. The model employs a
multitask learning strategy to complete the building detection,
contour segmentation, and edge extraction tasks simultaneously.
It achieves significant performance advantages on many open-
source building datasets and large-scale high-resolution remote
sensing images by using shared information between multiple
tasks.

C. Building Contour Regularization Module

Using a multitask segmentation module can ensure high build-
ing segmentation accuracy, vastly improving common issues
of mis-extractions, missing extractions, and incomplete build-
ing extractions from high-resolution remote sensing images.
However, such pixel-based building methods cannot effectively
resolve the irregular contours and unclear boundaries issues in
building segmentation masks, which frequently have rounded
corners and irregular edges [25], [26]. Accurate building poly-
gon vector extraction from the initial building segmentation
mask is challenging and may result in incorrect building vertices.
As a result, a contour regularization module is used to achieve
the normalized expression of the building segmentation mask,
which is then used to generate building outlines with regular
boundaries. This article designs a contour regularization module
based on the generative adversarial network [27], with the overall
framework shown in Fig. 2.

The contour regularization module comprises a generator
network and a discriminator network, with the former attempting
to generate ideal building labels and the latter adversarially
trained to distinguish generated masks from ideal labels, thereby
encouraging the generation of more realistic and reliable build-
ing masks. Unlike the standard generation countermeasure net-
work, our contour regularization module consists of a dual-path
boundary constraint generator network and a relativistic average
discriminator network; its detailed structure is shown in Fig. 3.

In the generator network, we adopt a dual-path design, in-
cluding two paths: the generating path and the reconstructing
path. First, we use two subnets to extract the features of the
input remote sensing image, the building noise segmentation

Fig. 3. Detailed structure of the generator and discriminator networks.

mask and the real building label. Both subnetworks comprise
two continuous convolution layers, followed by a leaky rec-
tified linear unit (leaky ReLU) and a down-sampling layer.
After passing through two subnetworks, the feature map is first
connected and then fused by the subsequent convolution layer.
Next, a network structure similar to a decoder consisting of
two transposed convolution layers and three tiled convolution
layers is used to generate regular building masks or reconstruct
real building masks. Inspired by U-Net, we also adjust the
generator network by adding jump connections. Finally, because
the high-frequency details of the generated regularized building
mask include positive and negative pixels, we use ReLU as the
activation function to ensure no negative pixels in the output
results.

Based on the input of the building noise segmentation mask,
the generating path adds the remote sensing image as the input
to obtain the low-level features and spatial detail information
in the remote sensing image to overcome the vertex offset error
caused by the inaccurate segmentation mask in the regularization
process. The real building label is also used as the input to the
reconstruction path to learn the missing advanced features and
building semantic-geometric information in the generation path.
The boundary loss is used to design the boundary constraint on
the generated label. To ensure the model can use the building
boundary information in remote sensing images to improve the
building regularization effect further, we design the boundary
loss to calculate the boundary difference between the generated
mask and the ideal label. We used a linear combination of
Potts loss Lpotts [28] and a normalized cut loss Lncut [29] as
the boundary loss, which can be expressed as:

Ledge = αLpotts + βLncut (1)
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Lpotts =
∑
k

V k′
W (1− V k) (2)

Lncut =
∑
k

V k′
W (1− V k)

d′V k
(3)

where k represents a certain label and V k represents a binary
indicator vector denoting a split sample with labelk. d represents
the identity matrix. All the elements on its main diagonal are 1,
and all the other elements are 0.W represents the affinity matrix,
which reflects the similarity between two samples (generated
mask and ideal mask). For any two samples Ti and T̃j , we can
define an affinity matrix W = [Wij ], and the elements in the
matrix are denoted as Wij . We use a Gaussian kernel as the
kernel function. Given the bandwidth σ, there are as follows:

Wij =

{
exp

(
−||Ti−T̃j ||22

2σ2

)
, T̃j ≈ Ti

0, otherwise
. (4)

The dual-path generator network can obtain not only the
low-level and detailed features in remote sensing images, but
also the high-level and semantic-geometric features in real labels
to achieve the effect of boundary constraints; however, it can also
prevent the generated tag and the real tag from being easily rec-
ognized by the discriminator due to different codes. By including
a reconstruction path, the ideal labels are encoded and decoded
as the generator network’s input, allowing for the reconstruction
mask of the desired labels to be obtained. The reconstruction loss
is used to calculate the difference in information before and after
the label input goes through the generator network to ensure that
the model can generate building labels similar to the generated
mask. This paper used the binary cross-entropy loss function to
calculate the reconstruction loss Lrec of the model, which can be
expressed as follows:

Lrec = −
n∑
i

Si · logG(Si, Ii)−
n∑
i

Ti · logR(Ti) (5)

where n represents the total number of training samples, i
represents a training sample, and Ii, Si and Ti represent the
remote sensing image, segmentation mask and ideal label, re-
spectively, corresponding to a training sample. G(·) represents
the generation path for regularized masks as similar as possible
to that for the ideal labels; R(·) represents the reconstruction
path for encoding and reconstructing ideal labels.

In the discriminator network, we use the relativistic average
discriminator network. Instead of simply outputting the binary
classification result of 0 or 1, we obtain the probability that the
real label is more real on average than the generated label, and
the value range is between 0 and 1. The discriminator network
structure consists of five continuous convolutions with a kernel
of 3× 3, and the number of filters is doubled. Except for the
last layer, each convolution layer is followed by a Leaky ReLU
activation function. The last convolution layer is followed by
a sigmoid activation function, which is used to evaluate the
probability of each input image as a regular building mask or
a reconstructed real building mask generated by the generator
network. Adversarial loss is used to learn the mapping function

Fig. 4. Building polygon optimization process.

between the training domain and the target domain and “cheat”
the discriminator network by measuring the probability that the
real building label is more real than the generated building
mask to prompt the generator network to generate building
labels similar to the target domain samples. This process can be
realized by symmetrically minimizing the discrimination loss of
the discriminator LD and the adversarial loss of the generator
LG, which is defined as follows:

Ladv = LD + LG (6)

LG = −ES,I [log(1−D(G(S, I)))]−ES,I [log(D(G(S, I)))]
(7)

LD = −ES,I [log(D(G(S, I)))]−ES,I [log(1−D(G(S, I)))]
(8)

where E[·] represents the average operation of a specific small
batch of images and Ladv represents the total adversarial loss.
G(·) represents the generator network, which generates regu-
lar building masks. D(·) represents the discriminator network,
which aims to distinguish generated masks and reconstructed
ideal labels to make the generated building mask as close as
possible to the ground truth label.

The total loss of the contour regularization module is the
weighted sum of boundary loss, reconstruction loss, and ad-
versarial loss; it can be expressed as follows:

Lreg = αLpotts + βLncut + γLrec + ηLadv (9)

where α, β, γ, and η are weighting factors.

D. Building Polygon Optimization Module

GIS and cartographic applications often require vector poly-
gons instead of building masks in raster format generated
by multitask segmentation or contour regularization modules.
Therefore, a polygon optimization module is designed to con-
vert building masks into vector polygons. The polygon opti-
mization module effectively combines geometric methods with
deep learning. The process is shown in Fig. 4 and includes the
following steps.

1) Border Following: For the regularized building mask, the
border following algorithm [30] is adopted to extract the
building outlines and obtain the initial polygons.

2) Vertex Evaluation: Based on the initial polygons, an initial
set of vertices is obtained by placing a vertex every 20
pixels along the contour line. Furthermore, this paper
introduced an orientation difference threshold [6] to serve
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as a vertex evaluation criterion for selecting valid vertices
from the initial set of vertices. For the vertex evaluation
criterion, the absolute difference in orientation angles
between two adjacent vertices for each initial vertex candi-
date is calculated, and vertices whose absolute difference
exceed the orientation difference threshold are chosen as
valid vertices.

3) Feature Extraction: The feature pyramid network (FPN)
[31] is utilized to learn multiscalar features in remote sens-
ing images to capture the boundary features of complex
buildings, which can further improve the results.

4) Vertex Embedding: In this article, the vertex representation
is based on the feature map extracted from the FPN, and the
CoordConv layer is used to introduce coordinate features
to provide the network with a concept of location.

5) Vertex Offset: The deep snake model [32] is used in this
paper to learn the offset of each vertex, in other words, the
relative displacement between the predicted valid vertices
and the real vertices of their corresponding building poly-
gons. When a polygon vertex moves, so do the two edges
that connect to it. To avoid overlapping and the instability
caused by the movement process, the attention mechanism
[33] is utilized to transmit positional information between
vertices and improve predicted vertex offsets. After re-
trieving the vertex offsets, they are fed back to the original
polygons to update their respective shapes. This allows for
polygon vector creation with more precise positions.

Our proposed polygon optimization module combines the se-
mantic segmentation method of deep learning with the polygon
simplification method based on geometry, a novel deep learning
framework. The deep learning semantic segmentation method is
good at extracting various features from remote sensing images,
while the polygon simplification method based on geometry can
obtain polygons with regular boundaries. By combining the two
methods, we make full use of the advantages of their respective
methods, better capture the geometric shape of building exam-
ples, and generate high-quality building polygons in various
challenging scenes.

During training, the vertex offset loss and polygon update loss
are used to learn and update the weights.

The vertex offset loss is used to prevent unstable offsets of
vertices, and the standard deviation loss is used to define the
edge length between vertices, which is expressed as follows:

Lcor =

√∑∥∥bi − b̄
∥∥
2

n
(10)

where bi represents the length of the side between two vertices,
and b̄ represents the average length of the side.

The polygon update loss is used to restrict deviations in shape
between the predicted and ground truth polygons; it is expressed
using the Chamfer distance loss [34], [35] and calculated as
follows:

Ltra =

∑
i min
p∈P

‖p̃i − p‖2∣∣∣P̃ ∣∣∣ +

∑
j min ‖p̃− pj‖2

p̃∈P̃
|P | (11)

where p̃ and p are the rasterized boundary pixels of the predicted
polygon and ground truth polygon, respectively.

III. DATASETS AND EXPERIMENTAL DETAILS

A. Description of Datasets

Two challenging benchmark datasets of high-resolution re-
mote sensing building images were used in this paper to test the
method’s performance and generalizability: the AIcrowd map-
ping challenge dataset (AIcrowd) [36] and the WHU building
dataset (WHU) [23], [37]. Both datasets cover different regions
(the United States of America and New Zealand) and have dif-
ferent image sources (satellite and aerial images). Furthermore,
the spatial resolution of the images and scene complexity vary.

1) AIcrowd Mapping Challenge Dataset: The AIcrowd
Mapping Challenge dataset is a large-scale dataset of satellite
images with a spatial resolution of 0.3 m and a sample size of
300 × 300. The training set consists of 280 741 images and
2 400 000 annotated building instances, with the validation set
containing 60 317 images and 515 000 building instances and
the test set containing 60 697 images.

2) WHU Building Dataset: The WHU building dataset pri-
marily comprises an aerial dataset and a satellite dataset, with
aerial images of the WHU building dataset used in the experi-
ment. The WHU building dataset aerial images contain a greater
number of building instances with varying styles, scales, uses,
and colors. They can be used for large-scale building extraction
from high-resolution remote sensing images. The images in this
dataset have an original spatial resolution of up to 0.075 m, and
the sample resolution was down-sampled to 0.3 m, with a sample
size of 512 × 512. The dataset’s coverage area includes 220 000
building instances, with a training set, a validation set, and a test
set containing 4736, 1036, and 2416 images, respectively.

B. Experimental Details

1) Experimental Setup: The proposed framework for build-
ing vector mapping was deployed and tested with PyTorch
1.7.1 on a 64-bit Ubuntu system equipped with an NVIDIA
Corporation UTTU102GL [Quadro RTX 6000/8000] GPU. To
ensure the objectivity of the test results, all test networks were
optimized using the Adam algorithm, with the initial learning
rate and number of batches set to 0.00004 and 4, respectively.
All experimental networks iterated over the dataset 150 times
from zero during training.

2) Evaluation Indicators: Based on the three building vector
mapping modules, the performance of the proposed method was
evaluated at the pixel, object and vector levels.

At the pixel level, intersection over union (IoU), recall and pre-
cision were used to evaluate the overall building segmentation
performance [38], [39], [40]. IoU represents the ratio of the in-
tersection over the union of predicted building and real building
pixels. Recall represents the ratio of correctly predicted building
pixels to real building pixels. Precision represents the proportion
of correctly predicted building pixels among predicted building
pixels.
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At the object level, curvature error (Ecur) was introduced
to evaluate the accuracy of the building boundary representa-
tions [41], [42]. For a regularized object on the generated label
T̂ and a reference object Bi(i = 1, 2, 3, . . . , n) on the ground
truth label T, the curvature error (Ecur) can be used to measure
the difference in boundaries between the regularized building
and ground truth building by using

Ecur(Bi,Mi) = ‖fc(Mi)− fc(Bi)‖ (12)

for calculation, where fc represents the curvature function of the
contour. fc(Bi) is usually small when Bi is manually annotated.
If Ecur(Bi,Mi) is very large, it indicates that the building
boundaries in the generated labels are very uneven.

At the vector level, considering the vectorization performance
of the generated vector buildings, the shape error (Eshp) [42],
[43] and vertex offset error (Ever) [3] were calculated to evaluate
the similarity in shape between the generated polygons and
ground truth polygons and the vertex accuracy of the generated
polygons. The shape error (Eshp) was used to evaluate the
difference in the building shapes, with a calculation formula
of

Eshp(Bi,Mi) = ‖fs(Mi)− fs(Bi)‖ (13)

fs(Mi) =
4π |Mi|
p2Mi

(14)

where pMi
represents the perimeter of Mi. The value of fs(Mi)

is 1 for circles and π
4 for rectangles. In practical cartographic

applications, structured and simplified representations are re-
quired for building polygon vectors. Therefore, using vertices for
evaluation can better reflect the performance of generated results
in practical engineering applications. The Hausdorff distance
[44] was used to calculate the vertex offset error of building
polygons. The Hausdorff distance reflects the vertex accuracy
of the generated building polygons by taking the largest of
the smallest distances measured between each vertex of the
generated building and ground truth building polygon vectors.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

To verify the effectiveness of the proposed method, it was
tested on two large-scale building datasets and compared with
other advanced building extraction methods, including pixel-
wise segmentation methods (AFL-Net [45] and the mask-based
boundary segmentation and regularization method [BSR] [13])
as well as polygon extraction methods (based on frame field
learning [FFL] [22] and PolygonCNN [3]). Furthermore, a
corresponding ablation study was conducted to investigate the
contribution of each module to the proposed method.

A. Results of the Aicrowd Mapping Challenge Dataset

Table I compares the results of the proposed method to four
other advanced methods on the AIcrowd mapping challenge
dataset. Our method achieved the best results and had the
smallest shape and vertex offset errors on the AIcrowd mapping
challenge dataset. This indicates that compared to other meth-
ods, the proposed method had the lowest missed detection rate,

TABLE I
ACCURACY EVALUATION RESULTS OF THE AICROWD MAPPING CHALLENGE

DATASET

the highest shape similarity with the ground truth labels, and
the highest positional accuracy. As our method regularized the
segmentation mask and optimized the polygons while generating
building polygon vectors, the building expression effect was
more simplified, which also reduced the IoU of the buildings
to a certain extent. While AFL-NET produced the best IoU
result, it is a pixel-wise segmentation method that produces
many irregular building outlines, resulting in a higher curvature,
shape, and vertex offset errors. Postprocessing was used in the
mask-based boundary segmentation and regularization method
to regularize building outlines and eliminate jagged edges. While
this reduced curvature error, it increased shape error.

Fig. 5 gives the results of a visual comparison of the proposed
method with four other advanced methods tested on the AIcrowd
mapping challenge dataset. The other four methods produced
more compact and regularized representations than AFL-Net.
While the mask-based boundary segmentation and regulariza-
tion method generated correct regularized representations for
simple buildings, simplification errors were common when deal-
ing with complex buildings, resulting in large shape errors. The
method based on FFL generated more regular representations,
but the generated polygons differed from ground truth labels,
and processing building vertices was not sufficiently smooth.
Although both PolygonCNN and our method produced com-
pact and regular representations, PolygonCNN was error-prone
when dealing with buildings with ‘holes’. Furthermore, our
method better processed the building polygon details, generating
building polygons highly consistent with ground truth labels.
In summary, according to visual interpretation, it is evident
that our method can adapt well to different building vector
extraction task scenarios for the AIcrowd Mapping Challenge
dataset. It can improve irregular boundaries and excessive sharp
corners in building extraction to some extent and generate results
consistent with the shape of ground truth labels, thereby being
more advantageous than other comparison methods.

B. Results of the WHU Building Dataset

Fig. 6 shows the visual comparison results of the proposed
method r and four other advanced methods tested on the WHU
building dataset. As illustrated in the figure, the proposed method
can accurately describe buildings of various sizes and shapes
in complex scenes compared with other methods. Furthermore,
it can provide precise geometric details and vertex positions,
allowing ground truth labels to maintain highly consistent shapes
with building polygons.
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Fig. 5. Experimental results of various methods on the AIcrowd mapping
challenge dataset.

TABLE II
ACCURACY EVALUATION RESULTS OF THE WHU BUILDING DATASET

Table II reports the quantitative comparison results between
the proposed method and four other advanced methods on the
WHU building dataset. Our method outperformed others on the
WHU building dataset, with good results in the three evaluation
indicators based on pixels, objects, and vectors. The method
presented in this paper achieved the best results in IoU, precision,
shape error, and vertex offset error and is only second to the
mask-based boundary segmentation and regularization method
in recall and curvature error. While the mask-based boundary
segmentation and regularization method achieved the smallest
curvature error, the shape error increased due to the excessive
pursuit of simplified representation, such that its results were
too different from ground truth labels. Our method attained

Fig. 6. Experimental results of various methods on the WHU building dataset.

TABLE III
QUANTITATIVE EVALUATION RESULTS OF EACH MODULE ON THE AICROWD

DATASET

the lowest shape and vertex offset errors while ensuring a low
curvature error, effectively maintaining an equilibrium between
simplified representation and shape preservation.

C. Ablation Study

As the proposed building vector mapping framework operates
in a pipeline, with the three modules, MBS, BCR, and BPO,
independent of each other, we conducted a combined test on
these three modules to further evaluate the effect of each module.
Tables III and IV report the quantitative evaluation results of the
accuracy of each module on the AIcrowd and WHU datasets,
respectively. Fig. 7 shows the comparison results of the ablation
experiment accuracy. Fig. 8 shows the visual comparison results
of the ablation experiment.
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF EACH MODULE ON THE WHU

DATASET

Fig. 7. Accuracy comparison results of the ablation experiment.

Fig. 8. Visual comparison results of the ablation experiment.

As Tables III and IV and Fig. 7 show, the BCR module
effectively reduced the curvature and shape errors of the building
segmentation mask, while the BPO module effectively reduced
the vertex offset error of the building segmentation mask. This
indicates that the contour regularization module helped to elim-
inate the jagged edges and sharp corners of the segmentation
mask to obtain smooth and regular buildings. The polygon op-
timization module was robust at adjusting the building polygon
vertices to more accurate positions to ensure excellent positional
accuracy.

From Fig. 8, the multitask segmentation module obtained
relatively accurate segmentation masks even under different
scenes, such as occluded buildings, large differences in build-
ing sizes in the image, and complex building shapes. This

TABLE V
COMPARISON RESULTS OF THE COMPLEXITY OF EACH MODEL

demonstrates that the multitask segmentation module ensured
complete and accurate segmentation results while resolving mis-
extractions, missing extractions, and incomplete segmentation.
The contour regularization module eliminated the segmentation
mask’s jagged edges and solved the problems of blurred edges
and an excessive number of sharp corners. The polygon opti-
mization module further improved the positional accuracy of
building polygon vertices, which effectively solved the prob-
lems of redundant points in building polygons and insufficient
vertex accuracy. This allowed for more compact and regular
vector representations to be obtained. To achieve automatic
building vector extraction from remote sensing images, the
building vector mapping framework relied on three modules:
multitask segmentation; contour regularization; and polygon
optimization.

D. Complexity Comparison

Complexity is a critical factor that affects the practical appli-
cation of a model. In building extraction tasks based on deep
learning methods, lower numbers of parameters and floating-
point operations (FLOPs) often result in faster training and
inference speeds. A model with lower complexity is more
convenient for practical applications. To objectively evaluate
the complexity of each model, the number of parameters, the
number of FLOPs, the training speed and the inference speed are
calculated separately for each model. On an NVIDIA RTX 3090
GPU, the training speed is expressed as the number of frames
per second (FPS) required for training an input image of size 3×
512 × 512, and the inference speed is expressed as the number
of FPS required for inferring an input image of size 3 × 512 ×
512. Because our method relies on three independent modules
for building vector mapping, we compared the complexity of
the three modules in JSGLNet with other building extraction
models based on deep learning. The results of the quantita-
tive comparison of the complexity of each model are given in
Table V.

In Table V, we can easily find that the polygon opti-
mization module (BPO) obviously achieved the fastest train-
ing speed and reasoning speed with few parameters and
FLOPs. The multitask segmentation module (MBS) and the
contour regularization module (BCR) were not as efficient
as AFL-Net in training and inferring. However, they still
achieved faster training and inference speeds than FFL and
PolygonCNN.
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Fig. 9. Examples of errors in builder vector mapping.

V. DISCUSSION

According to the performance comparison of our method on
the AIcrowd and WHU datasets, it is obvious that when the
remote sensing image quality is good, we can obtain a high
level of automation and a high-quality building vector polygon.
In contrast, when the quality of the remote sensing image is
poor and it is difficult to obtain a complete or correct building
segmentation mask due to occlusion or shadow, our method
cannot correctly generate the building vector polygon, as shown
in Fig. 9. In Fig. 9, we can easily find that when the segmentation
effect is good, our method can eliminate the jagged edges and
sharp corners of the segmentation mask, obtain a smooth and
regular building, and move the vertices of the building polygon
to a more accurate position. However, the subsequent con-
tour regularization module and polygon optimization module
cannot deal with the false extraction, missing extraction and
incomplete segmentation problems in the segmentation results.
This requires an MBS module to ensure complete and correct
building segmentation results. Therefore, our method can ensure
a high-quality building vector drawing effect on the basis of
obtaining a complete building segmentation mask. Once there is
a problem with the segmentation quality, the subsequent contour
regularization module and polygon optimization module will
continue this error and accumulate errors, leading to incorrect
building vector mapping results.

In addition, our method relies on three independent modules
for building vector mapping, which requires many training and
inference steps. Although the training and inference speed of a
single module can meet the practical application requirements,
repeated training and inferring are cumbersome. Therefore, in
the future, we hope to develop an end-to-end method from
remote sensing images directly to vector maps to integrate
segmentation and vectors.

VI. CONCLUSION

This article proposed a joint semantic-geometric learning
method for building vector mapping in remote sensing images
to extract building polygon vectors from high-resolution remote
sensing images automatically. The method relies on three mod-
ules, multitask segmentation, contour regularization, and poly-
gon optimization, to accurately extract building polygon vectors.
Additionally, this method provides data sources for cartography
and GIS. The multitask segmentation module performs joint

semantic-geometric learning on three related tasks, building in-
stance detection, pixel-wise contour segmentation, and edge ex-
traction, to obtain accurate and complete building segmentation
masks. The regularization module uses boundary, reconstruction
and adversarial losses to effectively fuse image information with
geometric constraints to attain the regular expression of building
segmentation masks. Finally, the polygon optimization module
effectively combines geometric constraints with deep learning
methods to solve redundant building polygon vertices and posi-
tional offsets problems, thereby obtaining vector representations
that conform to the ground truth. Experiments on open-source
building datasets and ablation tests show that compared to other
building extraction methods, the proposed method has signifi-
cant performance advantages because it can better adapt to the
building vector mapping task under various scenarios. The pro-
posed method effectively solves the incomplete segmentation,
irregular edges, and non-compact results problems in building
extraction, and it is a good first step toward automatically
generating building vector maps from remote sensing images.
However, for vector mapping, our method depends on three in-
dependent modules. While these are simple to combine and mi-
grate, the research paradigm of such pipeline modes accumulates
errors during the extraction process, lowering polygon qual-
ity. Furthermore, segmentation mask quality is critical in this
paradigm, with our method relying on the entire segmentation
mask to ensure vectorization quality. Therefore, future research
will focus on developing an end-to-end research paradigm for di-
rectly extracting building vector polygons from remote sensing
images.
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