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Abstract—Building extraction from very high-resolution remote
sensing images is a fundamental task and is widely used in applica-
tions, such as change detection, disaster assessment, and real-time
update of geographic information databases. However, due to the
complexity of the geographical environment and the diversity of
target features, accurate automatic building extraction remains
very challenging. With the fast development of deep learning tech-
niques, convolutional neural networks (CNN) have been widely
used in remote sensing research and have achieved considerable
results. But for large urban area-based building detection tasks,
the CNN-based method usually gets into local optima and gener-
ates many false positive detections around building boundaries.
To avoid the local optima and be aware of nonlocal information,
this article proposes a hybrid feature extraction model based
on the combination of the CNN and Transformer to realize the
automatic building detection from very high-resolution remote
sensing images. Meanwhile, a multiconstraint weighting mecha-
nism is proposed to enhance the ability of the model to recognize
the regular geometric boundaries of buildings. Comprehensive
experiments are conducted on the three different datasets. The
proposed MC-TRANSU achieves the best F1-score and intersection
over union, compared with the state-of-the-art methods, such as
SegNet, TransUnet, and Swin-Unet, and the detection accuracy
improved around 5%. Quantitative and qualitative results verify
the superiority and effectiveness of our model.

Index Terms—Building extraction, multiconstraint, remote
sensing image, Transformer.

I. INTRODUCTION

UILDING detection is a fundamental and significant task
B that aims to locate all buildings in the remote sensing
image. It can be an upstream task in various applications, such
as urban planning [1], environment monitoring [2], and land re-
source utilization [3]. Inrecent years, with the rapid development
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of smart city construction, the need for updating city maps has
also increased, which requires faster and more accurate building
detection technology. Therefore, related research on this topic
is still indispensable.

Specific object detection technology has been discussed in
remote sensing studies for decades, which can be seen in [4]
and [5]. Traditional building detection methods are mainly based
on handcrafted features. Lin and Nevatia [6] described a method
based on shadow and the geometric shape of roofs to detect
buildings from monocular aerial images. Zhang [7] proposed a
hybrid method that utilizes both multispectral images and optical
images for building feature extraction and through the texture
filtering to determine the building detection; Li and Wu [8]
used an edge descriptor to detect buildings from LiDAR and
aerial images. With the fast development of machine learning
algorithms, the clustering and classification machine learning
methods, such as support vector machine [9], [10] and random
forests [11], [12], were proposed for building detection from
remote sensing images. However, the accuracy of these kinds of
methods is either highly dependent on the adaptation degree of
manually constructed features or on the fusion of multisource
data, and it is very sensitive to the shape and density changes
of the target. The stability and robustness of these methods are
poor and cannot meet the needs of large-scale applications.

In the past decades, deep learning-based methods have domi-
nated all kinds of benchmarks. Since LeCun et al. [13] proposed
LeNet, convolutional neural networks (CNN) have been widely
concerned by researchers for their excellent performance in the
task of classification, which led to the born of many effec-
tive image semantic segmentation models, such as FCN [14],
U-Net [15], SegNet [16], DeconvNet [17], and PSPNet [18].
Because of the good performance of these models on traditional
indoor and outdoor scene segmentation, researchers have also
applied them to remote sensing images-based urban mapping
and scene understanding [19], [20]. Zuo et al. [21] proposed
an HF-FCN that employs hierarchically fused FCN to achieve
building extraction. Shrestha and Vanneschi [22] added con-
ditional random fields into FCN. Abdollahi and Pradhan [23]
carried out a model named MultiRes-UNet that integrates se-
mantic edges with polygons. Compared with traditional machine
learning-based methods, these CNN-based methods provide
much higher detection accuracy and robustness to the shape
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and density variations of the building instance. However, the
CNN-based methods show limitations in building global con-
texts and long-range dependencies within images, especially
limiting the performance in delivering complete building bound-
aries in building detection tasks.

In 2017, a new kind of deep learning model architecture
containing an attention mechanism named Transformer was pro-
posed and started a new wave of enthusiasm in natural language
processing fields [24]. These successes encouraged researchers
also start applying Transformer models for image data analysis.
Vision Transformer (ViT) [25] was first proposed for image data
processing. After that, Swin Transformer [26] was proposed to
reduce the significant computational complexity of ViT. In order
to achieve fine-grained visual tasks, TransUnet [27] combined
UNet and ViT and got significant performance improvements
in medical image segmentation. After that, Swin-Unet [28] was
proposed as the first pure Transformer-based U-shaped model to
leverage the power of Transformer for 2-D image segmentation.
Encouraged by the progress achieved in medical image research,
some researchers also began applying Transformer to remote
sensing imagery segmentation. Wang et al. [29] applied ViT for
building extraction. Yuan Wei et al. [30] and Xin Chen [31]
tried to use Swin Transformer to realize building detection. Qiu
et al. [32] tried to use Transformers for cross-domain building
detection.

Although both CNN and Transformer have achieved good re-
sults in remote sensing image processing, the related research on
combining them to realize remote sensing image segmentation is
still very limited. Since multihead self-attention (MSA) calcu-
lation and convolution calculation exhibit opposite behaviors,
indicating that MSA aggregate feature maps but convolution
diversify them [33], a hybrid model that combines CNN and
Transformer can theoretically achieve better results. Especially
for large urban area with high building densities, only using
CNN-based feature extractor may cause the extracted features
into locally optimal, which may lead to false detections around
small buildings and building boundaries. On the other hand,
directly deploying the Transformer-based feature extractor into
large-size remote sensing images require very large computa-
tional resources. Therefore, we propose a model that contains
the advantages of both CNN and Transformer in this article.
The first part of the encoder in this model is a CNN module
with residual connections [34], which gives it the ability to
extract multiscale features and local dependencies. After that,
a Transformer module containing several MSA layers is added
to increase the capacity of extracting global relationships. The
decoder comprises CNN modules to help the model fuse mul-
tiscale features and resize the prediction to the original image
size, achieving end-to-end image segmentation. However, con-
sidering that building targets in remote sensing images usually
have more regular geometric contours, additional constraints
should be added to enhance the model’s ability to extract precise
boundary contours. Wu et al. [35] proposed the MCFCN model
for building detection and change detection [36], which came up
with a multiscale constraint mechanism and added it to the archi-
tecture of the traditional FCN model to improve its performance
in remote sensing image segmentation and outperform the state-
of-the-art U-net model at that time. Encouraged by this success,
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we tried to insert a multiscale constraint mechanism into our
CNN-Transformer-based model and proposed MC-TRANSU.
We applied this model to three different aerial imagery datasets
to do semantic segmentation and examined its performance.
Experimental results show that our proposed model outperforms
other models on all the datasets, achieving excellent results of
0.8309, 0.7212, 0.7593, and 0.8942 on F1 score, intersection
over union (IoU), Kappa coefficient, and accuracy, respectively,
on the Tokyo dataset, which covered the central part of Tokyo
city with all kinds of high-density buildings. Furthermore, it
shows that MC-TRANSU has a reliable performance in aerial
image segmentation, indicating that the multiscale constraint
mechanism is also effective in the CNN and Transformer hybrid-
architecture model. The main contributions of this article are
listed as follows.

1) We propose an MC-TRANSU model for automatic build-
ing extraction from very high-resolution remote sensing
images, which outperforms the commonly used models,
such as U-net, TRANSUNET, and SwinUnet in various
metrics.

2) We combine the CNN’s ability to extract locality depen-
dencies with Transformer’s characteristic of weak induc-
tive bias and capture of long-range dependencies, which
can make our model consider both local information and
global context information better.

3) We introduce the multiconstraint attention mechanism to
better take into account the internal relations between
multiscale features and improve the defect that the middle
layer of the traditional CNN model has a low semantic
contribution to the final result, which makes the extraction
results more complete and accurate.

The rest of this article is organized as follows. In Section II, the
architecture details of our proposed model are described. Section
IIT introduces the specific process of the experiment, showing
the comparison of metrics of each model and the comparison
of visual effects. Section IV presents the discussion. Finally,
Section V concludes this article and provides the content of
future research.

II. METHODOLOGY

The overall structure of our model is shown in Fig. 1. First the
input image will go through the convolutional layers for feature
extraction. This operation can get the locality information from
the image. Then, the generated multichannel feature map will
be fed into several Transformer blocks. After the MSA compu-
tation, the implicit global information within the image will be
aware. When this step is finished, the result will be combined
with the features generated by the encoder part through the skip
connection structure. This mechanism has already been proven
effective in UNet. Finally, The multiscale constraints mechanism
is applied between the output of each decoder block and the
corresponding ground truth images.

A. Encoder Part

Nowadays, most semantic segmentation models follow the
encoder—decoder structure. For the proposed method, the en-
coder is used to extract multiscale information from the original
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Fig. 1. Architecture of MC-TRANSU.

image, and its performance will directly affect the final predic-
tion result of the entire model. The convolution computation and
MSA computation can be seen as opposite behaviors, which
can provide complementary information to each other. Based
on this, we combine the convolution layers and transformer
blocks to form the encoder part of the proposed method. Let
X € REXH*Whe the input of our model, where C, H, and
W are the channel dimension, height, and width of the input
image, respectively. First, the input data will be processed by a
root block, containing a convolution layer that applied weight
standardization and a group normalization layer followed by a
ReLU activation layer. After that, three encoding blocks are con-
tinuously used to extract high-level feature representations with
different scales from the result. Each encoding block contains
3, 4, and 9 residual blocks, respectively. The details are shown
in Fig. 2.

The high-level feature representation produced by CNN has a
shape of 1024 x H' x W', where H' = 1%, W' = %.Then, the
embedding operation is conducted just like in ViT, the original
output is first reshaped to patch sequence {x; € RP 2'C/| i =
1,..., N} then projected to a latent D dimensional space, where
P is the size of each patch, N = HII;ZV/ is the number of patches,
and D is the constant latent vector size through all of the
Transformer layers later. In this process, position information
is also added into patches by conducting patch embedding as
follows:

ey

Zg = [le,E; xzz,E; . ;xéVE] + Epos

where E € R(P*)%D s the linear projection and Ep €
RN*P s the position embedding.
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Fig. 2. Details of residual block. (a) Illustration of Blocks 1, 2, 3, and the
shape of features generated. (b) Details of each unit.

Then, a Transformer encoder part that contains 12 Trans-
former blocks is used to obtain long-distance dependency from
the patch embeddings. The output can be represented as follows:

Z/g = MSA(LN(ngl)) +Zpq
Zy = MLP(LN(Z/g)) + Z,g

2
3)
where MISA represents the MSA computation, MILP repre-

sents the multilayer perceptron (MLP), and LN represents the
layer normalization (LN).
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Segmentation results of different models in small-scale regions. The green, red, blue, and black pixels represent the predictions of true positive, false

positive, false negative, and true negative samples, respectively. Tokyo, WHU, and Vai stands for Tokyo dataset, WHU building dataset, and Vaihingen dataset,

respectively.

B. Decoder Part

After the computation of Transformer layers, we can get
a vector sequence with shape of HI’JQV/ x D, containing both
the local and global information of the original image. In or-
der to achieve a pixelwise dense prediction task, this vector
sequence should be resized to the original size of the input
image. Thus, a decoder structure is needed. In the proposed
model, this vector sequence will be reshaped to a 3-D tensor
with a shape of 512 X 1% X % and then concatenated with the
feature representations generated by the encoder part through
a skip-connection structure. The output will be processed by
upsampling and repeating the concatenate operation. In addition
to the result generated by the last decoder block, which will be

processed by a segmentation head and output as the final result,
the outputs of the previous decoder blocks are also stored and
used for the calculation of the multiscale constraint loss. Each
decoder block has an upsampling layer and two convolution
layers, followed by a ReLU layer.

C. Multiconstraint Part

In a normal semantic segmentation model, the loss is com-
puted by comparing the predicted results with the ground truth.
Then the backpropagation algorithm is applied to update every
layer’s parameters and achieve the neural network training. But
this kind of training strategy is thought to have some inherent
drawbacks, given as follows.
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Fig. 4. Segmentation results of different models in large-scale regions. The green, red, blue, and black pixels represent the predictions of true positive, false
positive, false negative, and true negative samples, respectively.
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1) Parameters of all the layers are updated only depending
on the loss calculated using the result of the last layer.
When there are too many layers in the model, the farther
the intermediate layer is from the final result, the more its
parameter update will be delayed.

2) Backpropagation affects the time it takes to train the model
and limits the optimal results the model can achieve. The
parameters of all layers are very difficult to reach the best
value simultaneously only relying on the output of the last
layer and the best performance is restricted as a result.

Assume that a model has a total of ¢ layers without using

multiconstraint. The final loss is denoted as C, so the gradient
of the last layer can be denoted as Vy:C', where 6, represent
the parameter of layer ¢. The gradient of the parameters of the
penultimate layer can be computed as follows:

p T
VQZ—IC - <89“> VQZC (4)

whereas if we introduce the multiconstraint mechanism into the
£ — 1layer, the final loss C = aC; + SC,_1. Now, the gradient
of parameters in ¢ — 1 layer can be represented as follows:

VQL1 C= aVge 1Cy + BVW 1Cyq

00° \ '
=« (00“) VgeCyp+ BVige-1Cpy. &)

We can see that the update of parameters in £ — 1 layer can
be accelerated by the extra contribution of V.1 Cy_; and can
also converge to the degree closer to the optimal. In the proposed
model, we added four multiscale constraints by using the outputs
of the first three decoder blocks and the segmentation head to
compute the corresponding loss. The final loss is calculated by
distributing weight to each loss

C:axcl+ﬂXC2+’yng+5XC4 (6)

where a + 5+ v+ = 1. In our experiments, we used two
strategies to choose the weights combination, which will be
introduced in Section III.
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III. EXPERIMENT

A. Dataset Description

To verify the performance of our proposed MC-TRANSU
model in the task of building segmentation based on aerial
images, we conduct experiments using several aerial image
datasets, including Tokyo dataset, Vaihingen dataset, and WHU
Building dataset.

1) Tokyo Dataset: This dataset contains aerial images cov-
ering three districts of Tokyo with a ground sampling
distance (GSD) of 16 cm. The original size of each image
1512500 x 9375 pixels. We manually labeled four images
and used two images for training, one for validating the
optimal weights combination of MC-TRANSU, and one
for testing. In order to save memory of GPU, the original
images were cropped into patches with size of 256 x 256
pixels and input to model for training/testing.

2) Vaihingen Dataset: This dataset contains 33 orthophoto
aerial images with different size that were captured from
Vaihingen in Germany. The GSD is 9 cm. From the
16 images with ground truth label we selected 13 im-
ages for training, two for validating, and one for test-
ing. They were also cropped to 256 x 256 patches for
inputting.

3) WHU Building Dataset: This dataset contains original
aerial data comes from the New Zealand Land Informa-
tion Services website with an original GSD of 7.5 cm.
These original aerial data were downsampled by WHU
researchers to 0.3 m GSD and cropped into 8189 tiles
with 512 x 512 pixels. We cropped these tiles into smaller
patches with the same 256 x 256 size as the other two
datasets. We used 18 944 patches for training, 4144 for
validating, and 9664 for testing.

B. Comparison Baselines and Metrics

To evaluate the performance level of our model, we introduce
several other classical and commonly used semantic segmenta-
tion models here for comparison, including both pure CNN net-
works and some hybrid CNN and Transformer models. Models
we used are listed as follows.
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1) UNet: One of the most classical end-to-end semantic seg-
mentation networks, proposed the subsequent most used
U-shaped structure and skip connection.

2) ResUnet: A deep neural network constructed based on
UNet and the residual unit put forward by He, which goes
beyond vanilla UNet by a large margin.

3) SegNet: A semantic segmentation model with encoder—
decoder architecture uses poolingindices to perform up-
sampling instead of deconvolution, which helps to elim-
inate the number of parameters and achieve tradeoff in
memory and accuracy.

4) MC-FCN: The first model that proposed multiscale con-
straint and applied it to FCN for aerial image segmenta-
tion.

5) TransUNet: A hybrid model that inserts Transformer into
UNet and strengthens its ability to model long-range de-
pendency.

6) SwinUnet: The first pure Transformer-based U-shaped
model, which uses Swin Transformer to extract local-
global semantic features.

7) SDSCUnet [37]: The recent U-net-based building detec-
tion model, which outperforms other pure CNN-based
models.

8) BuildFormer [29]: The state-of-the-art transformer-based
building detection model, which outperforms other
transformer-based models.

In order to facilitate comparison and to realistically evaluate
the performance of our proposed model, we use the evaluation
metrics shown below.

1) Precision: This index shows what proportion of positive

identification was actually correct.

2) Recall: This index represents what proportion of actual
positives was identified correctly.

3) Accuracy: This index shows the fraction of predictions our
model got right.

4) F1I score: Since both of precision and recall cannot fully
describe the prediction performance of a model, the F1
score is proposed to combine precision and recall by
calculating their harmonic average.

5) IoU: This measurement is specially designed to check
the accuracy of object detection and segmentation, which
is calculated by dividing the number of pixels in the
overlapping area by the number of pixels in the union
area.

6) Hausdorff Distance (HD): A index that usually used to
measure the distance between two point sets, which is
defined as follows:

h(A,B):a&x{%G_bu} )
H(A,B) = max(h(A,B),h(B,A)) (8

where A and B are two point sets, || @ — b || can represent
any metric between these points, and we usually use
Euclidean distance for simplicity.

7) Average Symmetric Surface Distance (ASSD): Average
surface distance (ASD) is an unidirectional metric that
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used to compute the minimal distance for every point from
one object to the other, and ASSD is the arithmetic mean
of two ASDs. It is defined as follows:

. la—b]

acA
ASSD(A, B) - TASD(A. D) ;r ASD(B, 4)}

(10)

8) Kappa: This is a statistic that often used for interrater
reliability evaluation and can also be used to measure
classification accuracy.

The environment is Python 3.7 and Pytorch 1.7.0 with CUDA
10.1. We use the stochastic gradient descent optimization al-
gorithm with 0.9 momentum and a weight decay of le-4 in
this experiment to train our model. The base learning rate is
uniformly set to 0.005. All of the experiments were conducted
on a NVIDIA GeForce GTX 1080Ti 11-GB GPU. The batch
size is set to 16. In order to keep consistent with TransUNet, the
skeleton of this model, the strategy of gradually decreasing the
learning rate is also adopted in this experiment as follows:

Vi 0.9
Iry = Irpyge ¥ <M>

where the ¢ is the number of rounds of the current iteration, and
M is the maximum number of iterations.

We also adopt a pretraining strategy similar to TransUNet to
give full play to the performance of Transformer. Pretraining
parameters are used in the encoder part of the model, ResNet-
50 in the CNN part, and ViT-B in the Transformer. Both are
pretrained on the Imagenet21 K dataset.

(1)

C. Weights Combination Selection Strategy

Since different weights combination can have a significant
effect on the performance of MC-TRANSU, in our experiment
we used two strategies to select weight combination, including
random searching and dynamic minimizing.

1) Random Searching: Random searching is a strategy that
is often used in the hyperparameter optimization of ma-
chine learning models. Compared with grid searching,
random searching sacrificed a little precision but saved
a lot of time. In our experiment, we validated randomly
selected weights combination on an aerial image chosen
from Tokyo dataset. The results are shown in Table I. So
in the formal experiment on Tokyo dataset, the weights
combination of MC-TRANSU is set to be « = 0.4, 5 =
0.2,7v=0.2, and o0 = 0.2.

2) Dynamic Minimizing: Although random searching strat-
egy improves some efficiency, it is still time-consuming
when validating different weights combinations on a very
large dataset. So we used a dynamic minimizing method in
our experiments on WHU building dataset and Vaihingen
dataset. After getting four losses in each training iteration,
we traverse the value of «, 3,~, and o from 0.1 to 1 at
intervals of 0.1 and keep their sum equal to 1. The com-
bination that can minimize the final loss will be chosen.
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TABLE I
COMPARISON OF DIFFERENT WEIGHTS COMBINATION OF MC-TRANSU

F1 ToU HD  ASSD
a=05L8=05 07913  0.6767 57.9508  8.4451

a=1.0 0.7980  0.6808 56.8231  8.6470
a=0583=03~v=01,0=01 07981 06821 562202 7.5037
a=07,8=01,v=01,0=0.1 08001 06849 559500 7.4461
a=04,8=02,7=020=02 08017 06856 550517 7.2887
a=0.1,=03v=03,0=03 07945 06779 573361 7.7233
a=05~=05 0.8006 0.6844 56.3318  7.7656
a=050=05 07943  0.6771 58.0913 8.7194
a=02,3=02~=030=03 0790 06780 567535 7.7032
a=05p8=017y=020=02 07924 06757 583634 7.8230
a=06,7=020=0.2 07938  0.6760 57.3871  8.2468
a=03,7y=03y=020=02 07932 06765 576476 7.9561
a=04,8=02,7=01,0=03 07930 06755 57.9945 7.7480
a=04,8=02,7v=03,0=0.1 07938 06765 574798 7.8477

The bold entities means the best index value between the comparison methods

D. Results Analysis

The evaluation indexes of each baseline model and our pro-
posed model are calculated and shown in Table II. On the Tokyo
dataset and Vaihingen dataset, we can see that our proposed
MC-TRANSU has reached the optimal level in almost all in-
dexes except recall. Compared with the stat-of-the-art CNN and
transformer-based methods, our proposed methods show better
results on datasets containing different types of buildings, build-
former shows better results when the building roof is more regu-
lar, such as the WHU dataset. Although the original TransUNet
had already achieved quite good prediction results, our model
improved on this basis, which demonstrated the effectiveness of
the multiconstraint mechanism. On the WHU Building dataset,
almost all of the models have achieved excellent performance
due to the large amount of data. Our MC-TRANSU reached the
best level in five indexes among eight, which means it is still the
best-performing model compared with others.

To further explore the advantages of our proposed model
compared with other prediction models and visually compare
the differences, we compared their segmentation results with
label files in different scale experimental areas. Fig. 3 shows the
segmentation results of the model in patch size. It can be seen
from the figure that all models can extract the main body of the
building in the target area, but models based on pure CNN have a
significantly high false positive rate. For example, in Area 1, all
of the pure-CNN models identified the playground in the upper
left corner as a building, and the state-of-the-art methods, such as
SDSCUnet and buildformer are shown false positive around the
small building, and in Area 3 they also misclassified the road
in the upper-right corner as a building. However, TransUnet,
SDSCUnet, and MC-TRANSU, which are based on the hybrid
architecture of CNN and Transformer successfully distinguished
these parts correctly. SwinUnet and BuildFormer also misiden-
tified these parts and we thought the reason is the Tokyo dataset
is too small for SwinUnet to converge. Meanwhile, we can also
find that the prediction results of MC-TRANSU on Vaihingen
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are obviously better than others, meaning our model can perform
better on a small dataset with less ground truth data.

To evaluate the overall performance of each model within a
large-scale range, we spliced 512 output patches on the Tokyo
dataset and got a large-scale image with a size of 8192 x 4096.
Fig. 4 shows the visualization results. We can see that the
MC-TRANSU model we proposed has achieved significantly
better results than other models in a large-scale region when
performing building extraction, with a high true positive rate and
a low false positive rate. Most of the main parts of the buildings
are identified accurately. Although the stat-of-the-art methods
also basically achieved this, MC-TRANSU still reduced the false
positive rate on this basis and obtained more accurate results.

In addition to evaluating the segmentation accuracy from
the number of pixels or the area, the contour accuracy of the
segmentation results is also very important. Therefore, we ex-
tract the contour of the segmentation results of each model on
the Tokyo dataset and calculate its accuracy. From Table III,
our MC-TRANSU model still achieves the highest accuracy in
contour recognition. Fig. 5 shows the visual effect of contour
extraction. Compared with the messy contours proposed by
other models, the contour extracted by MC-TRANSU is more
regular and closer to the actual boundary of the building itself.
On the other hand, we have calculated the parameter and flops
of each method shown in Table III. Our proposed methods have
the same parameters and FLOPs as TransUnet, but we have the
best performance among all the compared methods. This is due
to the fact that we have used the structure of U-net combined
with transformer, which makes the network parameters larger,
but because of this feature extraction structure, the extracted
features are more effective. The detailed feature representation
map is shown in Fig. 6.

IV. DISCUSSION

This article proposes a combined CNN and transformer hy-
brid neural network for precision building detection from high-
resolution remote sensing images. Through the comprehensive
comparison experiments on three different-sized datasets with
different building types. We demonstrate that the proposed
hybrid CNN and transformer-based feature extraction model
can generate the most accurate building detection results. It
is surprising to find that the traditional CNN-based model
can achieve almost the same building detection accuracy as
the recent ViT-based methods. But the hybrid CNN and ViT
combined methods have greatly improved the quality of the
result, such as SDSCUnet and our proposed MC-TRANSU.
The building outline extraction experiments partially support
the conclusion of our work that combining utilizing CNN and
Transformer together may get much more complete detection
results in one object’s structures and boundaries. On the other
hand, the multiconstraint mechanism can further improve the
detailed feature extraction on small objects and around the object
boundaries.

We chose some test image patches from the Vaihingen
dataset and visualized the 128 x 128 medium feature maps
of CNN, TransUnet, and our MC-TRANSU for comparison.
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TABLE II
COMPARISON OF MC-TRANSU AND BASELINE MODEL

Dataset Model F1 ToU HD ASSD Kappa Precision Recall Accuracy
SegNet 0.7336  0.5963  75.5729 10.3254  0.5666 0.6611 0.8631 0.8011
MCFCN 0.7366  0.5989  72.5155 9.8506 0.5649 0.6571 0.8739 0.7997
TransUNet 0.8287  0.7188  51.5795 5.9489 0.7335 0.8370 0.8383 0.8881
Tokyo dataset SwinUnet 0.7483  0.6123  74.6395 10.2193  0.5729 0.6648 0.8941 0.8054
BuildFormer 0.8068  0.6890  42.7681 4.9973 0.6937 0.7923 0.8444 0.8683
SDSCUNet 0.8270  0.7179  37.3479 4.1291 0.7331 0.8323 0.8403 0.8878
MC-TRANSU 0.8309 0.7212  49.8731 5.7611 0.7593 0.8676 0.8452 0.8942
SegNet 0.8250 0.7312  42.6783 3.7490 0.7746 0.8401 0.8516 0.9335
MCFCN 0.8410  0.7627  36.7675 2.8377 0.7993 0.8630 0.8577 0.9439
TransUNet 0.8857 0.8176  25.8234 1.9097 0.8580 0.8951 0.9130 0.9627
Vaihingen dataset SwinUnet 0.7333  0.6372  56.3805 4.9894 0.6782 0.8089 0.7492 0.9128
BuildFormer 0.8937 0.8288  23.3868 1.8047 0.8646 0.9095 09112 0.9614
SDSCUNet 0.8907 0.8189  58.8126 2.2411 0.8590 0.9306 0.8816 0.9566
MC-TRANSU 0.8918 0.8248  25.4608 1.7975 0.8652 0.9022 0.9143 0.9639
SegNet 09172  0.8610  22.7258 1.0574 0.9012 0.9310 0.9180 0.9769
MCFCN 09171 0.8601  22.0424 1.0166 0.9019 0.9361 0.9103 0.9778
TransUNet 09170 0.8601  21.1159 0.9153 0.9018 0.9357 0.9124 0.9779
WHU dataset SwinUnet 0.8528 0.7681  28.7306 1.7332 0.8284 0.8785 0.8433 0.9639
BuildFormer 0.9325 0.8855 17.7492 0.7356 0.9204 0.9519 0.9271 0.9823
SDSCUNet 0.9316  0.8841 18.2484 0.7560 0.9193 0.9497 0.9268 0.9819
MC-TRANSU 0.9271 0.8723  20.5912 0.9082 0.9065 0.9421 0.9215 0.9801
The bold entities means the best index value between the comparison methods
TABLE IIT
COMPARISON OF OUTLINE EXTRACTION ACCURACY ON TOKYO DATASET
Image 1 Image 2 Image 3 Image 4

Accuracy FLOPs Param

SegNet 0.9493 10.77 G 5.63 M
MCFCN 0.9506 535G 341 M
TransUNet 0.9580 3855G 10532 M
SwinUnet 0.9358 8.09 G 27.18 M
BuildFormer 0.9558 2928 G 4052 M
SDSCUNet 0.9568 589 G 2131 M
MC-TRANSU 0.9587 3855G 10532 M

The bold entities means the best index value between the
comparison methods.

Fig. 6 shows that objects and backgrounds are more dis-
tinct in feature maps output by a hybrid model like Tran-
sUnet and MC-TRANSU compared with feature maps out-
put by pure CNN model. The results also demonstrated the
significance and completeness of the outlines in the feature
maps output by our MC-TRANSU compared with TransUnet,
which explained why our model performed better on outline
precision.

One of the limitations of this work is data selection and
data distribution. Although high-accurate data samples covering
Tokyo city and Vahingen City are some parts of New Zealand
utilized for training and validation, more data around the world
would be better for diversity. When more open-source and
high-accurate datasets are available, we will further testify to the
performance of the proposed hybrid feature extraction module
and multiconstraints mechanism.

V. CONCLUSION

In this article, we propose a novel MC-TRANSU model
architecture based on improving the efficiency of parameter
backpropagation in a deep neural network. By introducing the
multiscale constraint mechanism into the hybrid model of CNN

Original

CNN

TransUnet

Ours

Fig. 6. Visualization results of the 128 x 128 size feature maps generated by
CNN, TransUnet, and our MC-TRANSU, respectively.

and Transformer and designing two strategies to obtain the opti-
mal combination of weight parameters, we applied the model to a
building extraction task based on an aerial imagery dataset of the
Tokyo area and achieved good segmentation results, achieving
mean values of Fl-score, IoU, and Kappa coefficient at 0.8309,
0.7212, and 0.7593, respectively. Its performance exceeds many
classic pure CNN models and the current mainstream CNN and
Transformer hybrid models, which indicates that the multiscale
constraint mechanism is effective.
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In future research, more relevant experiments will be con-
ducted. By adding the proposed mechanism to different seg-
mentation and detection models and applying it to other data
types besides aerial images, the effectiveness and robustness
of the proposed mechanism can be fully verified. In addition,
the theoretical explanation of the specific action mechanism
of multiscale constraints is worth researching. We believe that
the multiscale constraint mechanism can further improve the
accuracy of existing segmentation networks.
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