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Abstract—Smart management of urban space is an important
way to achieve the goal of sustainable urban development. Un-
manned aerial vehicles (UAVs) have been widely used in urban
space management work and have greatly improved the level of
it. UAV technology assisting urban space management involves
many technical details and has generated a number of problems.
Therefore, a systematic review of the applications of UAVs in urban
spatial management work is very necessary and can provide a
comprehensive reference for relevant researchers. This is conducive
to the generation of more new insights, methods, and applications.
However, according to our research, there is a lack of relevant sys-
tematic investigation. We screened and researched a large number
of relevant literature works (about 230) with the help of search tools,
such as Web of Science and IEEE Xplore, and combined with our
own working experience to review and summarize the field in an
all-round way. Taking the definition, needs, and challenges of urban
spatial management as an entry point, this article systematically
summarizes the task flow, working paradigm, technical system, and
application direction of UAV-assisted urban spatial management. It
also takes our recently developed UAV urban management system
as an example to provide an introduction on how to integrate
advanced technologies such as UAV and artificial intelligence.
Finally, this article summarizes several concluding findings and
proposes several future research directions. The research in this
article shows that UAV technology has already played a great role
in urban spatial management work, but it is still far from realizing
automation and intelligence, and it needs to continue to make
efforts in terms of methods, systems, applications, and policies.
In order to achieve these goals, UAV technology can be further
integrated with advanced technologies such as deep learning, more
types of UAV industry applications can be carried out, a more
functional unmanned aircraft system can be developed, and better
management policies can be formulated.

Index Terms—Sustainable development, unmanned aerial
vehicle (UAV), urban management.
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NOMENCLATURE

UAVs Unmanned aerial vehicles.
SDGs Sustainable development goals.
ICT Information and communications technology.
IoT Internet of Things.
AI Artificial intelligence.
RGB Red–green–blue.
LiDAR Light detection and ranging.
GNSS Global navigation satellite system.
NDVI Normalized difference vegetation index.
reNDVI Red-edge normalized difference vegetation index.
HRS Hyperspectral remote sensing.
FoV Field of view.
TIR Thermal infrared.
FPGA Field-programmable gate array.
GPU Graphics processing unit.
ARM Advanced RISC machine.
DL Deep learning.
UTM Unmanned aircraft system traffic management.
RRT Rapidly-exploring random trees.
PRM Probabilistic roadmaps.
GA Genetic algorithm.
PSO Particle swarm optimization.
ACO Ant colony optimization.
DRL Deep reinforcement learning.
RL Reinforcement learning.
LoRa Long-range radio.
LWAN Low-power wide-area network.
NB-IoT Narrowband IoT.
QoS Quality of service.
WLANs Wireless local area networks.
FCS Flight control system.
SD Standard definition.
DSM Digital surface model.
SfM Structure from motion.
SLAM Simultaneous localization and mapping.
CNN Convolutional neural network.
RNN Recurrent neural network.
YOLO You only look once.
RCNN Region CNN.
UI Urban infrastructure.
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DEM Digital elevation model.
HD High definition.
BIM Building information model.
DTM Digital terrain model.

I. INTRODUCTION

G LOBAL urbanization is accelerating [1]. By 2030, the
urban population is expected to comprise more than 60%

of the global population, and the number of cities with more
than one million people worldwide will likely reach 662 [2].
While urbanization brings convenience to people’s lives, it also
raises many urban space problems, such as urban disasters, envi-
ronmental pollution, and human–land conflicts. These problems
have attracted a great deal of attention all over the world. The
United Nations General Assembly held a dialogue on urban
issues and included SDGs on cities in the 2030 Agenda, in
particular, SDG 11 (“to make cities and human settlements
inclusive, safe, resilient, and sustainable”) [3].

The continuous advancement of robotics and autonomous
systems has had a huge impact on the SDGs and is chang-
ing the way the SDGs are achieved [4], [5]. Among them,
consumer-grade small light UAVs, the most rapidly developing
autonomous systems of the last decade, are increasingly used
in urban space management work, such as UI monitoring [6],
[7], [8], [9], urban disaster emergency response [10], [11], urban
ecological monitoring [12], [13], etc., as shown in Fig. 1. To sum
up, the main advantages of UAVs lie in the following points.

1) In terms of data acquisition, UAVs equipped with sensors
can reach areas that are inaccessible to humans and can
capture large-scale remote sensing image data, detailed
gas concentration data, etc.

2) In terms of operation, consumer-grade UAVs are very
simple to operate and support functions such as automatic
spotting cruise, which greatly reduces operational diffi-
culties.

3) In terms of cost and work efficiency, consumer-grade
UAVs are cheaper and more efficient, which can help save
a great deal of manpower and financial resources.

However, there are also technical challenges when UAVs
are used for the intelligent management of urban space. For
example, there are many obstacles such as buildings in a city,
and the flight path of a UAV needs to be reasonably planned; the
use of UAVs for the inspection of designated targets relies too
much on manual visual inspection, and there is an urgent need
for automated and intelligent extraction.

How to use UAV technology scientifically and effectively to
manage urban space is an issue of great significance and has
attracted the attention of many researchers. However, to the best
of our knowledge, there is a lack of systematic summaries on this
topic. Although several review papers on UAV applications have
been published, they mainly focus on specific application areas
(e.g., urban flood management [14], urban building manage-
ment [15], [16], urban traffic management disaster [17], urban
ecological environment monitoring [18], etc.) without focusing
on the entire business process and technical system.

In order to systematically explain how UAV technology can
play a role in urban spatial management work, this article starts
with the entire business chain; divides it into the three aspects
of data acquisition, data transmission, and data processing; and
then systematically summarizes the hardware equipment, tech-
nical system, and methodological process of the relevant aspects.
It also describes the application direction of UAV technology
in urban management work from three aspects: UI monitor-
ing, urban disaster emergency response, and urban ecological
environment monitoring. Finally, the architecture, functions,
and features of the UAV urban management system are briefly
introduced, using our recent development work as an example.
In addition, future research directions for UAV-assisted urban
spatial management are summarized. The main contributions of
this article are as follows.

1) This article summarizes the definitions, needs, and
challenges of smart management of urban space and
highlights the advantages and the role that UAVs can
play.

2) This article summarizes and outlines the general process
of UAV-assisted urban spatial management work, i.e.,
data acquisition, data transmission, and data processing. It
also comprehensively organizes and introduces the tech-
nical details, hardware equipment, and methodological
processes of the above three aspects. To the best of our
knowledge, this is the first time to summarize the work-
ing paradigm of UAV-assisted urban spatial management
work.

3) This article summarizes the direction and current status
of UAV applications from three aspects: UI monitoring,
urban disaster emergency response, and urban ecological
environment monitoring. In addition, this article sum-
marizes several UAV application systems that have been
matured in the industry and introduces the UAV intelligent
city management system that we have recently developed.
We hope that these contents can provide new ideas and
insights for related researchers.

4) Finally, this article analyzes and summarizes several fu-
ture development directions of UAV-assisted urban spa-
tial management work, providing references for relevant
researchers.

The overall structure of this article is shown in Fig. 2. A
systematic and comprehensive survey article on UAV-assisted
urban spatial management is very important. However, accord-
ing to our research, there is a lack of systematic survey on
related aspects. This is not conducive to the further devel-
opment of the field. Therefore, taking the definition, needs,
and challenges of urban spatial management as an entry point,
this article systematically summarizes the task flows, technical
systems, and application directions of UAV-assisted urban spa-
tial management and introduces the UAV urban management
system we have recently developed as an example. A number
of concluding findings are then set out, and some important
research questions are discussed. In addition, this article also
summarizes several future research directions for UAV-assisted
urban spatial management. In this article, we have conducted
a comprehensive review and summary, rather than focusing
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Fig. 1. UAVs assist in the intelligent management of urban space.

only on a specific application area. To the best of our knowl-
edge, this is the first time to summarize the working paradigm
of UAV-assisted urban spatial management (data acquisition,
data transmission, and data processing). We believe that this
article can provide a comprehensive reference for related re-
searchers. We hope that this article will provide comprehensive
information and new insights to our readers and lead to the
further application and development of UAV technology in urban
management.

The rest of this article is organized as follows. Section II
describes the definition, needs, and challenges of smart man-
agement of urban space and briefly explains the advantages and
usage scenarios of UAV technology. Section III introduces data
collection, data transmission, and data processing in a holistic
manner. Sections IV–VI systematically summarize the technical
approaches in UAV urban spatial management work. Section VII
summarizes and describes the directions of UAV applications
in urban spatial management work. Section VIII introduces
some UAV application systems and describes our recent de-
velopment work. Section IX states several conclusive findings.

Section X summarizes several directions in the development
of UAV-assisted urban spatial management. Finally, Section XI
concludes this article.

II. INTELLIGENT MANAGEMENT OF URBAN SPACE

A. Definition, Needs, and Challenges

Urban space is the result of continuous human activities. Ur-
ban space consists of a series of elements, mainly UI, topography
and landscape, population activities, the ecological environment,
and other elements [19]. A large number of activities of people
in cities are constantly influencing urban space and its struc-
ture. With the increasing population in cities, urban problems
such as environmental pollution and traffic congestion arise
frequently, which seriously damage urban space and people’s
quality of life [20]. These conditions demand higher require-
ments regarding urban space management. In recent years, ICT,
including the IoT, “Big Data” applications, AI, and others,
has developed rapidly, providing new methods for urban space
management [21], [22], [23], [24]. The intelligent management
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Fig. 2. Structure of this article.

of urban space involves the collection and analysis of a large
amount of multimodal heterogeneous sensory data based on the
abovementioned advanced technical means to provide decision
support for relevant managers, thus improving urban governance
and people’s quality of life [22], [23], [25]. UI monitoring, urban
disaster emergency response, and urban ecological environment
monitoring are the three main and common components of urban
spatial governance [26], [27]. It is worth noting that urban spatial
governance is far from being limited to the above three elements.

In addition, the continuous expansion and high speed
of the modern city has placed higher demands and chal-
lenges on management. This is reflected in the following
four areas.

1) Real time: High-speed operation causes people, objects,
and their status in the city to change all the time, so there
is an urgent need to obtain their status data quickly for
analysis and rapid decision making.

2) Cost efficiency: Urban areas are often large and involve
many monitoring objects, traditional management meth-
ods are no longer applicable, and low-cost high-efficiency
technical means are urgently needed.

3) Intelligence: Big data and AI technology are used to
replace traditional manual methods and enhance the au-
tomation and intelligence of management.

4) Refinement: The high-quality development of cities de-
pends on the refined management of urban space, and more

rudimentary management cannot meet these development
requirements.

B. UAVs Assist in the Intelligent Management of Urban Space

1) Features and Benefits of UAVs: Recent years have seen
considerable development in UAV technology, providing new
technical means for urban space management. In brief, UAVs
have three main characteristics, namely high spatial and tem-
poral resolution, flexibility, and low cost [28]. High spatial and
temporal resolution is accomplished by UAVs carrying sensors,
which can quickly acquire high-resolution spatial data while fly-
ing close to the ground whenever they need to be deployed [29].
In contrast, traditional satellite remote sensing means can only
acquire low-spatial-resolution ground images according to a
fixed revisit cycle. This feature of UAVs can meet the highly
dynamic and changing scenarios in urban spatial management
work. Flexibility includes two main aspects [28]. The first is
flexibility in assembling sensors; in other words, different types
of sensors or even hybrid sensors can be assembled according
to specific mission requirements. The second is flexibility of
UAV flight operations; the industry applications of UAVs are
now highly automated and intelligent, and the operation method
is very simple, allowing for more flexibility. This flexibility
offers a wide range of possibilities for urban space management,
allowing UAVs to be used in multiple applications. Low cost is
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Fig. 3. Overall technical route.

another major feature of UAVs [30]. Compared to aerospace
remote sensing means, the operation and maintenance costs of
UAVs are extremely low. Highly automated UAVs also provide
managers with more freedom regarding their use and the data
gathered.

2) Role of UAVs and Application Scenarios: Researchers
are committed to defining a highly condensed urban manage-
ment framework to facilitate the development of smart urban
management [25]. However, urban spatial management work
involves many different business scenarios and has different
characteristics and needs. To be able to better illustrate the
role of UAVs in urban spatial management work, we draw
on the framework defined by Silva et al. [25] and elaborate
on it. They divided the urban management framework into a
perception layer, a transmission layer, a data management layer,
and an application layer. Correspondingly, in the perception
layer, UAVs can carry different kinds of sensors to acquire
multisource high-spatial and high-temporal resolution data on
the surface, providing a database for intelligent urban spatial
management. In addition, UAVs are able to access some areas
that are inaccessible to humans (e.g., disaster areas, remote areas,
etc.) to obtain sensing data, enhancing its accessibility [31]. In
terms of the transmission layer, UAVs are capable of supporting
existing sensing networks for data dissemination or enhancing
the connectivity of the network, in addition to transmitting data
acquired by themselves back to the ground [32]. For example,
UAV relay communication technology can enable the transmis-
sion of environmental monitoring data in remote areas where
there is no public network [33]. On the data management side,
UAV edge intelligence technology provides a new means for
data processing. It enables near real-time data processing and
can make intelligent decisions based on the processing results,
guiding the UAV to complete its work intelligently and auto-
matically [34]. At the application level, with many advantages,
UAVs can be used for many urban spatial management tasks,

such as UI monitoring [6], [7], [8], [9], urban disaster emer-
gency response [10], [11], and urban ecological environment
monitoring [12], [13], as shown in Fig. 1.

III. OVERALL TECHNOLOGY PROCESS

This section first introduces the basic technical process of
UAV urban space management work as a whole, including the
three aspects of data acquisition, data transmission, and data pro-
cessing. It is worth noting that UAV technology can be used for
many different purposes in urban spatial management, resulting
in a variety of technical approaches. However, the basic process
mostly follows the “acquisition-transmission-processing” vein.

The use of UAV technology for urban space management
work involves the following steps (as shown in Fig. 3).

1) Data acquisition: Data acquisition work mainly includes
two tasks: the selection of hardware equipment (UAV
flight platform, sensors, and onboard computing platform)
and UAV trajectory planning (offline and online) [28].
Data acquisition is the key to the subsequent work, and
its completion determines the level of management work.
The selection of hardware equipment and the development
of UAV flight paths should be carried out according to
specific work needs.

2) Data transmission: There are two primary methods of
data transmission: online and offline. The transmitted data
include two types. One type includes the flight command,
flight status, and other information of the UAV. The other
type is the business data of the UAV, in other words, the
data acquired by the sensors, the data that results from the
processing of the onboard computing platform, etc. Good
and stable data transmission is the “artery” of the entire
UAV application system [35].

3) Data processing: Data processing includes two forms:
onboard and ground-side. These two different forms need
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Fig. 4. Composition structure of a multirotor UAV.

to be selected according to specific business needs. In ad-
dition, there are many specific processing means involved
in data processing, which need to be selected as needed.

IV. DATA ACQUISITION

Data collection is the first step of the smart management of an
urban space. Traditional means of sensing and observation have
limitations. For example, satellite remote sensing technology
can acquire large-scale urban image data, but the spatial resolu-
tion and temporal resolution are low [29], [36]. It is very difficult
to deploy sensors in areas that are dangerous, remote, hard to
reach, etc. [37]. A UAV can mount different types of sensors
according to specific needs, which effectively complements the
existing means of sensing observation and further enhances
the level of sensing. Comprehensively describing the technical
details of UAV urban data collection work begins with hardware
selection and trajectory planning.

A. Hardware Selection

There are various types of small light civilian UAVs and
countless sensors that can be carried. It is crucial to select a
UAV flight platform and sensors according to the specific urban
management needs. Therefore, this section focuses specifically
on UAV flight platforms, sensors, and onboard computing plat-
forms and systematically summarizes the characteristics and
application scenarios of these different hardware devices.

1) UAV Flight Platform: A UAV platform is mainly com-
posed of a navigation and control system, energy and power
system, onboard sensors, and ground station, as shown in Fig. 4.
The navigation control system of the UAV is composed of the
following two subsystems. The navigation subsystem provides
real-time geographic coordinates, speed, and flight attitude to
the UAV and guides the UAV to fly safely, punctually, and
accurately along a designated route. The flight control subsystem
realizes full control and management of the UAV and controls
the UAV to complete the entire flight process, such as takeoff,
air flight, mission execution, and return to the user for recovery.
The energy and power system mainly includes batteries (or
engines) and multiple rotor blades (or fixed wings) to provide
power for the UAV flight. Onboard sensors need to be selected
according to specific tasks, and options include RGB cameras,

Fig. 5. UAV classification. From left to right are a fixed-wing UAV, multirotor
UAV, and hybrid fixed-wing multirotor UAV.

hyperspectral cameras, airborne LiDAR, TIR cameras, etc. [38].
They are responsible for acquiring specific information about the
observed area (object) and providing raw data for the next step
of analysis. The ground station mainly consists of the remote
control for sending control commands to the UAV and GNSS
ground station for enhancing the positioning accuracy of the
UAV. It is responsible for receiving various status informa-
tion of the UAV in real time and can send user commands
to the UAV [35]. The abovementioned components work to-
gether to guarantee the normal flight and data acquisition of the
UAV.

Currently, fixed-wing and multirotor UAVs are the
two common types used for aerial exploration [39]. Fixed-wing
UAVs rely on the air pressure difference created by the wing’s
airfoil surface during flight to gain lift [40]. Compared to mul-
tirotor UAVs, fixed-wing UAVs tend to be able to fly for longer
periods of time and, thus, cover a larger operational area [41].
However, fixed-wing UAVs are more demanding during take-
off and landing, requiring a larger site [40]. Multirotor UAVs
can be classified according to the number of rotors used, for
example, quad-rotor, six-rotor, and eight-rotor UAVs are com-
mon configurations. Multirotor UAVs rely on the air pressure
difference generated by several subrotors to obtain lift and have
the advantage of vertical takeoff and landing [42]. However,
the flight time and load capacity of multirotor UAVs are often
inferior to those of fixed-wing UAVs. In contrast, hybrid UAVs
integrate the advantages of the first two and can use multirotors
to complete vertical takeoff and landing operations, as well as its
fixed wing to complete long-distance operations [40]. In actual
operations, a suitable UAV flight platform should be selected
according to specific requirements. The technical parameters of
several commonly used UAVs are listed in Table I. Fig. 5 shows
several commonly used UAVs.

Urban space management work involves many aspects, and
different work contexts have different characteristics and needs.
Fixed-wing, multirotor, or hybrid-wing UAV flight platforms
should be reasonably selected according to specific needs. For
example, most small-scale urban 3-D modeling tasks use multi-
rotor UAVs as data collection platforms, while large-scale tasks
require the use of fixed-wing UAVs with longer endurance.

2) Onboard Sensors: Airborne earth observation sensors
are tools to obtain information related to the ground surface.
According to the needs of different work in urban spatial man-
agement, specific sensors should be selected to obtain the corre-
sponding information. This is a prerequisite for the subsequent
work. For example, an RGB camera is often chosen for urban fine
3-D modeling work [43], and a multispectral camera is usually
chosen for urban black fetid water monitoring [44]. Therefore,
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TABLE I
DETAILED INFORMATION ON RECENT UAV PLATFORMS

TABLE II
MODELS AND PARAMETERS OF SOME COMMONLY USED EARTH OBSERVATION SENSORS

this subsection briefly introduces several commonly used un-
manned airborne earth observation sensors and describes their
characteristics and applicable scenarios. Table II lists several
sensors commonly used in each category. The categories are as
follows.

1) RGB camera: Due to its lightweight, low cost, and wide
range of use, an RGB camera is one of the most commonly
used sensors for earth observation by UAVs [38]. Using
UAVs with RGB cameras can acquire detailed color and
texture information of the observed area (object) and can
be used in many fields, including photogrammetry 3-D
mapping [28], urban pipeline safety inspection [45], river
inspection [46], etc. RGB cameras need to be selected
according to different task requirements. Common pa-
rameters for selecting RGB cameras include focal length,
resolution, weight, etc. [38]. Taking photogrammetry as an
example, the Technical Regulations for Tilt Digital Aerial
Photography promulgated by the People’s Republic of
China makes specific provisions for the RGB aerial camera
used, such as the pixels of each subcamera should not be
less than 20 million, etc. [47]. Obviously, the better the
quality of the RGB camera used, the higher the quality
of the data obtained, and the more beneficial this will be
for the subsequent analysis. However, the load capacity of

the UAV flight platform, power supply capacity, external
interface situation, etc., should also be taken into consid-
eration.

2) Multispectral camera: Although RGB cameras are most
commonly used, they only provide spectral information
in the visible range for the surface of the observed area
(object). In contrast, multispectral cameras can capture
information in multiple bands from the visible to the
near-infrared range, especially in the red-edge and near-
infrared bands that are sensitive to vegetation monitor-
ing [48]. With a limited cost increase, this type of camera
can provide more useful information for remote sensing
information extraction. Based on the waveband informa-
tion captured by a multispectral camera, some commonly
used remote sensing indices can be accurately inverted,
such as the NDVI, reNDVI, and Nemerow comprehensive
pollution index [44], [48], [49]. Therefore, multispectral
cameras can be used in more fields, such as urban water
quality monitoring [44], urban vegetation monitoring [50],
etc.

3) Hyperspectral camera: Hyperspectral technology is a pas-
sive remote sensing technique that allows quantitative
characterization of the earth system [51], [52]. It is capable
of acquiring rich spectral information about the earth’s
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surface and provides a data basis for feature identifica-
tion and quantitative inversion [53]. Hyperspectral images
have a high spectral resolution and usually include hun-
dreds of bands of feature information. In recent years,
with the improvement of UAV load capacity and the
miniaturization of hyperspectral cameras, UAVs equipped
with light hyperspectral cameras have been widely used,
such as in water quality parameter inversion and vege-
tation index extraction [54], [55]. Compared with satel-
lite HRS technology, mini-UAV-borne HRS systems have
the advantages of high spatial resolution, high temporal
resolution, and low cost, which makes the observation
more flexible [56]. The hyperspectral instruments that can
be carried by UAVs can be divided into four categories.
In [53], four types of sensors are discussed in detail. Al-
though mini-UAV-borne HRS systems have been widely
used, there are still some shortcomings: 1) limited range
and width, making them impossible to use for large-scale
observation missions; and 2) reduced spatial resolution,
so the observation needs may require lowering the flight
altitude of the UAV at times.

4) Airborne LiDAR: LiDAR measures the distance from the
object to the sensor by transmitting and receiving laser
beams; in turn, a 3-D point cloud is generated with the
information of the scanned area (object) [54], [57]. It is
an active remote sensing technology and, thus, has the ad-
vantage of being independent of weather and light factors.
UAVs with LiDAR are widely used in forestry manage-
ment [58], [59], coastal zone terrain monitoring [60], [61],
the construction industry [62], etc. The main parameters
of LiDAR include detection range, point cloud density,
FoV, scan rate, weight, size, etc. In the detection of forest
areas, the laser beam emitted by airborne LiDAR has
a certain penetration ability with vegetation, which can
reduce the adverse effects caused by vegetation occlusion
in obtaining real 3-D terrain data. In addition, airborne
LiDAR can acquire not only distance information, but
also the reflection intensity, echo count, and other infor-
mation of surface objects. Different objects generally have
different surface properties. Therefore, this additional in-
formation can be used in areas such as surface object
detection.

5) TIR camera: A TIR camera is a passive remote sensing
technology that can be used to measure the temperature
and thermal emission from the surface of objects, such
as large-scale land surface temperature, ocean surface
temperature [63], small-scale pedestrians [64], etc. TIR
cameras can capture radiation information in the TIR band
(3.5–20 µm) and generate radiation images. There are two
main types of TIR cameras: cooled and uncooled [65].
Compared with traditional remote sensing platforms, UAV
platforms equipped with TIR cameras have the advan-
tages of high spatial and temporal resolution, flexible
operation, and low maintenance cost and have been used
for urban vegetation monitoring [66], [67], urban surface
temperature monitoring [68], [69], personnel and vehicle
detection [70], etc. However, compared with RGB images,

the radiometric images captured by a TIR camera lack
detailed information, such as color and texture.

6) Hybrid sensor: A hybrid sensor is a combination of several
of the abovementioned different types of sensors that
can acquire information about different attributes of the
observation area (object) at the same time. Many man-
ufacturers have developed lightweight and small hybrid
sensors for UAV flight platforms, such as RGB-TIR hybrid
sensors, RGB-LiDAR-TIR hybrid sensors [71], LiDAR-
TIR-hyperspectral hybrid sensors [72], etc. To sum up,
the main reasons for the emergence of hybrid sensors are
as follows. First, the continuous development of sensor
technology makes the weight and size of the sensors in-
creasingly smaller. Second, the load capacity of UAV flight
platforms has improved, but it is still difficult to mount
several different types of sensors at the same time. Third,
the information acquired by a single sensor has limitations,
and some specific remote sensing observation tasks have
raised the demand for the simultaneous acquisition of
multimodal data. UAVs carrying hybrid sensors have been
applied to many urban management fields, including all-
weather pedestrian detection [64], crowd detection [73],
and urban tree classification [74].

7) Gas sensor: Timely and effective atmospheric monitoring
and the detection of toxic gases in hazardous situations
place new demands on the measurement means. Typical
gas sensors can distinguish between gas species based on
the surface interaction between the gas molecules and the
sensor [75]. UAVs with gas sensors are a new technologi-
cal means to measure the concentration and distribution of
specified gases (e.g., nitrogen dioxide, flammable gases,
etc.) easily, safely, and in three dimensions [76], [77].

3) Airborne Computing Platform: In response to the real-
time needs of certain tasks in the intelligent management of
urban space, UAVs equipped with an airborne computing plat-
form can immediately analyze the data acquired by the sensors
and make the next decision in real time based on the analysis
results. As the “brain” of the UAV, the airborne computing
platform has the following functions. First, intelligent process-
ing algorithms can be embedded to collect and process the
sensory data from various sensors in real time. Second, the
computing platform can work closely with flight control to
assist the UAV in automatic decision making and control the
specific flight movements of the UAV. UAV airborne computing
platforms can be broadly classified into five major categories
according to the basis of their architecture: FPGA, GPU, ARM,
Atmel, and Intel [35]. With the development and application
of DL technology, GPU-based airborne computing platforms
have been widely used [81], [82], [83]. Table III lists several
GPU-based computing platforms that have been in common use
recently. Users can deploy corresponding DL algorithms on such
platforms to realize the real-time processing of data acquired
by airborne sensors and make corresponding decisions in real
time based on the processing results to make UAVs perform
tasks more intelligently and automatically. This mode of work
has been widely used, such as in the automatic inspection of
urban power lines [34], wide-area real-time target search [84],



8990 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE III
MODELS AND PARAMETERS OF SOME AIRBORNE COMPUTING PLATFORMS

traffic management [85], etc. However, this hardware device
is not necessary. While it provides the function of real-time
data processing and assisted decision making, it also consumes
a great deal of energy from UAVs, reducing their endurance.
Therefore, it should be reasonably chosen whether to assemble
it on the UAV according to the specific context needs.

B. UAV Flight

Urban airspace UAV flight mainly involves two functions:
airspace management and trajectory planning. The former serves
as the basis of the latter. The purpose of airspace management
is to enable UAVs to perform their tasks in an orderly man-
ner under supervision to avoid major safety accidents, such as
adversely affecting other aircraft flights. Trajectory planning is
the technology in airspace management to help UAVs find a
more suitable flight path so that they can safely and successfully
complete their guided missions.

1) Airspace Management: Their low price and wide applica-
tion have led to the emergence of an increasing number of light
and small UAVs in urban areas. While bringing convenience
to people’s lives, the rapid growth of their numbers has also
posed a serious challenge to urban low-altitude safety. This
issue has attracted great attention from countries around the
world. Many national and regional governments have developed
a series of measures to restrict the activities of urban UAVs. Xu
et al. [86] systematically summarize the technical means and
current policies for UAV management in urban areas, which in-
clude three main approaches: urban airspace restrictions, active
supervision, and UAV public routes. The first is urban airspace
restrictions, which include maximum flight altitude, geofencing,
and flight separation airspace. For safety reasons, many countries
and regions restrict the maximum flight altitude (expressed as
the above ground level) of UAVs, with slight variations. Ge-
ofencing is the use of virtual “fences” to enclose a geographic
area and prohibit UAVs from flying into it; this approach is
usually applied in sensitive areas, such as airports, military
zones, and government sites. In recent years, many countries
and regions have made great efforts to promote the construction
of geofencing [87], [88], [89]. Exclusive flight areas for UAVs
refer to airspace that is set aside and exclusive, allowing UAVs
to fly to meet various needs. In 2015, Amazon proposed the
idea of dividing airspace to be used for drone urban logistics
services [90]. Xu et al. [91] proposed building a public route
network for low-altitude UAVs and conducted field experiments

in a local area of Tianjin, China. Inspired by the urban metro
system, Wu et al. [92] proposed building an “AirMetro” system
to provide a new concept for future 3-D public air transportation.
The second main approach for UAV management in urban areas
is active supervision. This is primarily accomplished by building
an unmanned aircraft system traffic management (UTM) system
to realize the functions of UAV registration and management,
mission scheduling, and planning. At present, the related more
mature systems are UTM in the United States, UOM in China,
U-space in Europe, and uTM-UAS in Singapore [86]. Finally, the
third approach is the concept of “UAV public routes,” which was
pioneered by researchers in China and Singapore and has been
widely studied. Among them, Xu et al. [91] have established a
complete route construction process, which has been applied in
several regions of China.

2) Trajectory Planning: It is important to plan the trajectory
of UAVs in the context of urban airspace management. This is
mainly reflected in two respects. First, there are many obstacles
of different heights and shapes (e.g., high-rise buildings, various
antennas, elevated roadways, etc.) in urban areas and a large
number of UAVs, so there is an urgent need for reasonable and
orderly planning of their routes. Second, the energy supply of
UAVs is very limited, and a reasonable flight path can enable
them to accomplish their intended missions while using their
energy capability efficiently. Modeling the urban environment
is the first step of UAV trajectory planning, including envi-
ronment modeling and risk modeling [93], [94]. The purpose
of environment modeling is to map the realistic urban 3-D
environment into a mathematical space, which typically involves
the use of the cell decomposition and roadmap methods [95].
Fig. 6(a) shows an example of the cell decomposition method.
Fig. 6(b) shows an example of the roadmap method. In an urban
context, UAVs face many potential risks, such as those related
to people and vehicles on the ground, invasions of privacy,
power limitations, extreme weather, navigation signal strength,
etc. A risk map is an enabling tool to reflect the level of risk
in different areas. It divides the urban 3-D space into 2-D or
3-D grids and then calculates the risk values of the different
grid cells through mathematical models. Fig. 7 shows a 2-D
risk map. The darker the color of the grid, the higher the flight
risk. The planning of UAV flight trajectories based on urban
environment modeling has received a great deal of attention from
researchers. Trajectory planning generally consists of two parts:
path discovery and trajectory optimization [96]. Path discovery
is the first stage and is responsible for finding a collision-free
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Fig. 6. Two methods of environment modeling. (a) Cell decomposition
method. (b) Roadmap method.

Fig. 7. Two-dimensional risk map.

Fig. 8. Two processes of UAV path planning. (a) Path discovery. (b) Trajectory
optimization.

continuous low-cost flight path for UAVs in the 3-D space, as
shown in Fig. 8(a). Trajectory optimization is based on path
discovery to develop the best initial flight path on a higher-order
continuous trajectory that conforms to the UAV dynamics, as
shown in Fig. 8(b).

Path discovery methods can be classified according to their
characteristics; for example, there are node-based, sampling-
based, and AI-based path discovery algorithms to name just a
few. The Dijkstra [97] and A*[98] algorithms are representative
node-based path discovery methods. As the name implies, this
class of methods searches for an optimal path in an already
constructed graph based on a cost function defined in advance.
Among them, the A* algorithm is a modification of Dijkstra’s
algorithm. It enables a search to approach its endpoint as quickly
as possible by adding a heuristic function. The RRT [99] and
PRM [100] algorithms are two representative sampling-based
path discovery methods. The RRT algorithm was proposed by

LaValle in 1998. The basic idea of the algorithm is that an
extended tree is generated from the initial point by random
sampling, and a path from the starting point to the end point is
found when the extended tree reaches or is close to the end point.
RRT* [101] and informed RRT* [102] are improvements of the
original RRT algorithm. The former ensures that the best possi-
ble path is found by improving the way the nodes of the extended
tree are connected. The latter speeds up the convergence of the
algorithm by iteratively limiting the sampling space. Strictly
speaking, the PRM algorithm is a two-stage trajectory discovery
method. It first constructs a PRM by sampling and then searches
for the optimal path in the graph using the node-based method
described above. Inspired by the behavioral activities of humans
or animals, researchers have proposed many AI methods for
UAV path planning. These mainly include heuristic and neural
network methods. Heuristic methods include GAs [103], PSO
algorithms [104], ACO algorithms [105], etc. These algorithms
are evolutionary algorithms; in other words, the new generation
is made closer to the optimal path based on the old generation
through continuous iteration. Neural-network-based methods,
especially DRL-based methods, have become a research hotspot
in the field of UAV local path planning [106], [107], [108]. DRL
techniques combine DL techniques with RL techniques, making
full use of the powerful understanding and characterization
capabilities of DL and the environmental interaction capabilities
of RL. The UAV flight environment is highly dynamic, so
methods combining global and local trajectory planning have
been proposed [109]. For example, an initial collision-free path
is planned using global trajectory planning methods, and local
path planning is implemented during flight, using methods such
as DRL.

V. DATA TRANSMISSION

After hardware selection and trajectory planning, the UAV
is ready to perform aerial missions as designed. During the
flight, a UAV needs to maintain necessary communication with
the ground control station and transmit the data acquired by
the onboard sensors back to the ground station on demand. In
addition, in some special cases, a UAV can also serve as a relay
system to transmit data back to the data center. One example is
collecting environmental monitoring data in remote areas. This
section introduces several wireless communication protocols
and means for UAV data transmission and their characteristics
and applicability, so that users can make an informed decision on
how to choose a communication module in assembling a UAV.

A. Communication Protocol

Different communication protocols are suitable for different
functional requirements, and when deploying UAV communica-
tion modules, communication protocols and technologies should
be selected according to specific needs. For example, long-range
low-power LoRa can be used to wake up ground equipment,
and a short-range high-power protocol (Wi-Fi, 5G, etc,) can
then be used to quickly transmit the ground data. Some of the
communication protocols used are described in the following
subsections (specific parameters are presented in Table IV).
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TABLE IV
SPECIFIC INFORMATION ON SEVERAL COMMUNICATION PROTOCOLS

1) LoRa: LoRa is one of the LWAN technologies developed
by Semtech [35], [110]. The maximum coverage range of LoRa
is about 5–20 km, and the maximum data transmission rate is
50 kb/s. The lower transmission rate limits its application on
UAVs, although it can be used to send some command messages
with smaller data volume. For example, Zhang and Li [33] used
LoRa communication signals to wake up a 5G communication
module in the ground station.

2) Narrow Band IoT: NB-IoT, like LoRa, is a LWAN tech-
nology. It is a new network protocol of 3GPP LTE Release
13, which has the advantages of wide coverage and low power
consumption. LoRa and NB-IoT have similar characteristics.
Compared with LoRa, NB-IoT performs better in terms of
latency and can provide better QoS; however, its coverage area
is slightly smaller than LoRa [111].

3) Wi-Fi: Wi-Fi is a widely used short-range communica-
tion protocol for building WLANs mainly by the use of two
frequency bands: 2.4 and 5 GHz. It has the advantages of a high
data transmission rate and strong anti-interference capability,
but has a high power consumption and small coverage area.
In [112], a single UAV was converted into an airborne Wi-Fi
node to improve the ground network connectivity.

4) 5G: 5G is the next generation of cellular network after 4G,
with the advantages of low latency, high bandwidth, and wide
coverage. 5G communication technology and UAV technology
have been used by many researchers in combination to improve
the shortcomings of existing technologies. There are two main
research and application paradigms [113]. One is the use of 5G
technology by UAVs as airborne users. Specifically, 5G tech-
nology can be used to realize net-connected UAVs, supporting
the rapid transmission of flight commands and rapid upload
of flight information, further extending the working radius of
UAVs. Koumaras et al. [114] addressed the characteristics of
UAVs such as low power consumption and small load, offloaded
the UAV FCS to a computing device at the edge of the network,
and utilized 5G communication technology to achieve real-time
transmission of UAV control commands and flight data. Dami-
gos et al. [115] also hosted the UAV FCS on an edge server and
used 5G communication technology to transmit UAV flight data
and control commands, and carefully evaluated the performance.
Verma et al. [116] utilized 5G communication technology to as-
sist UAVs (swarms of UAVs) to communicate, thereby speeding
up the delivery process of vaccine delivery using UAVs. The
other is that UAVs can carry lightweight and small base stations

as airborne relay communication platforms, which are com-
plemented by space-based and ground-based communication
technologies to expand the communication range, thus aiding
communication [117]. This technology has been widely used
in urban space management [118], for example, to provide the
necessary communication services in urban areas after a disaster,
to improve the network communication capacity in dense urban
areas, and so on. In addition, 5G technology can further improve
the security of communication [119].

B. Communication Means

1) UAV Relay Communication: UAVs can act as communica-
tion relay nodes to establish links with sensor networks deployed
on the ground, collect their stored sensing data, and then carry
or forward them to data centers [33]. In addition, UAVs can
also serve as aerial base stations to enhance network service
performance. UAVs carrying communication base stations have
been used to deploy temporary networks over areas where
network services have been suspended due to disasters, thus
aiding communication and rescue efforts [120]. In addition, UAV
aerial base stations can enhance network capacity and coverage
in localized areas, such as sports stadiums, large outdoor events,
etc. [121]. In all three usage scenarios above, the transmission of
sensory data are assisted in designated areas and first-hand data
are provided for urban spatial management. Fig. 9(a) illustrates
the UAV as a relay node in acquiring field monitoring data.

2) UAV Satellite Communication: UAV satellite communi-
cations provide technical support for UAV operations over long
distances. UAVs usually need to receive control commands from
ground stations in order to react quickly. At the same time, UAVs
also need to transmit flight status (altitude, speed, direction,
etc.) and sensor data (real-time images, etc.) back to the ground
station in real time. However, the maximum communication
distance between the UAV and the ground station is often limited.
For example, the DJI M300 RTK UAV is an industry-grade UAV
recently launched by DJI with a maximum effective signal dis-
tance (assuming no interference or obstruction) of 15 km [122].
This can severely limit the operational radius of the UAV when
performing some large-scale urban management work. With the
development of satellite communication technology, UAVs can
be freed from the restrictions of ground stations and instead ob-
tain control commands from satellites transmitting UAV-related
data. However, the bandwidth of satellite communication is often
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Fig. 9. (a) UAV relay communication. (b) Satellite communication.

very low. Take China Tiantong Satellite One for example; its nar-
rowband data channel can only accommodate the transmission
of control commands, and its broadband data channel can only
allow the transmission of SD video [123]. Fig. 9(b) shows the
UAV satellite communication.

VI. DATA PROCESSING

After data acquisition and transmission, processing the data
acquired by the UAV is the next critical step. There are many
aspects involved in urban spatial management, and different
tasks have different data processing methods. This section briefly
introduces the data processing methods commonly used in urban
spatial management. First, we introduce remote sensing data
processing methods in three different areas: photogrammetry
and 3-D modeling, DL remote sensing image intelligent inter-
pretation, and remote sensing quantitative inversion of environ-
mental parameters. We then introduce the recently emerging
UAV edge intelligence technology. It is very important that in
the actual data processing work, the appropriate data processing
methods are selected according to the specific task requirements.

A. Photogrammetry and 3-D Modeling

Urban 3-D reconstruction is increasingly important for build-
ing smart cities and improving urban spatial management [29].
UAVs equipped with HD digital cameras and photogrammetry
processing technology provide a convenient means to generate
accurate DSMs for the 3-D modeling of urban areas. The main
workflow of UAV photogrammetry and 3-D modeling can be
divided into two parts: external data acquisition and internal

Fig. 10. Flowchart of UAV photogrammetry and 3-D modeling.

data processing. Among them, the degree of completion of the
external data acquisition directly determines the later results.
The external data acquisition work mainly includes the selection
of a flight platform and the route planning (which will not be
elaborated here). The internal data processing includes image
matching, aerial triangulation, intensive matching and modeling,
etc., as shown in Fig. 10. The purpose of image matching
is to find the correspondence between two or more images,
and the current mainstream method is the point-based local
feature-matching method [124]. UAV aerial triangulation mainly
includes the offline SfM method and online SLAM method; the
purpose is to recover the position and pose when the camera
is shooting. The purpose of dense matching, in contrast, is to
generate a large number of dense point clouds from the matched
oriented images to construct fine 3-D models.

B. DL Intelligent Interpretation of UAV Remote Sensing
Images

UAVs equipped with earth observation sensors are capable of
capturing a large number of ground images. The automated and
intelligent analysis of these images to extract useful information
relevant to urban spatial management has become a hot topic of
interest for researchers. Among them, DL has been widely used
in remote sensing image analysis and has become a common
technical tool [125]. Among them, CNNs have been more used
in the field of UAV remote sensing [126]. A CNN model is
constructed by stacking convolutional layers, pooling layers,
activation layers, and fully connected layers to achieve the ex-
traction of specific information, as shown in Fig. 11. In addition,
an RNN is also a supervised learning model and is mostly used
for sequence data analysis [125]. In the field of remote sensing,
RNN models have been used to handle time-series tasks.

Target detection, semantic/instance segmentation, and scene
classification are the three main tasks in the intelligent interpre-
tation of remote sensing images for DL [126]. The purpose of
scene classification is to predict a label category for each sliced
image [127]. CNN-based classification models have been the
subject of a great deal of research. A CNN model automatically
extract more useful discriminative features and, thus, improve
the accuracy of remote sensing image scene classification [128].
The commonly used CNN architectures include VGGNet [129],
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Fig. 11. Specific structure of CNN.

Fig. 12. Basic process of a target detection model.

GoogleNet [130], ResNet [131], etc. UAV high-resolution re-
mote sensing images contain rich contextual, spatial, and spec-
tral information and have been used to classify urban scenes, thus
assisting in urban spatial management [132]. Target detection
approaches can be mainly classified into one-stage and two-stage
methods, as shown in Fig. 12. A one-stage method directly
performs target localization and classification simultaneously,
which greatly simplifies the network complexity. A two-stage
approach first generates suggestions of regions that may contain

targets and then classifies and regresses the suggested regions to
determine categories to which the targets belong and refine the
target bounding boxes. The commonly used one-stage methods
mainly include the YOLO series [133], and the commonly used
two-stage methods include the fast RCNN series [134]. Target
detection has been widely used to automatically extract specified
targets from images acquired by UAVs in applications, such
as bike sharing, garbage dumping, sewage outfalls, and others
involving sensitive targets related to urban space management,
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Fig. 13. Some examples of detection targets. The first row shows outfalls taken at different times from different angles; the second row is from the VisDrone
dataset.

Fig. 14. Image semantic segmentation based on deep neural networks.

thus reducing the investment in urban management costs [46],
[135]. CNN-based target detection methods have achieved sat-
isfactory detection results on natural images [136]. However,
due to the uncertainty of the flight altitude and shooting angle
of UAVs, the images they acquire contain a large amount of
surface information. Specific targets to be detected also vary
greatly in scale, distribution, color, texture, etc. [137]. Some
examples are shown in Fig. 13. This poses a great challenge to
target detection. Techniques such as data augmentation, multi-
scale learning, contextual learning, and adversarial generative
learning have been used to improve the accuracy of weak

target detection [138], [139], [140], [141]. Various types of
segmentation can also be performed. However, the concepts of
semantic, instance, and panoramic segmentation can be very
easily confused. The purpose of semantic segmentation is to
assign a label class to each pixel in an image (i.e., pixel-level
classification). The effect of semantic segmentation is shown
in Fig. 14. Semantic segmentation faces two main problems
in the field of remote sensing image analysis: pixel-level ac-
curacy requirements and a lack of training instances. Improving
pixel-level accuracy relies on overcoming the detail loss problem
caused by convolution, which is currently addressed by three
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mainstream means: multiscale strategies, multimodal fusion,
and postprocessing techniques [142], [143], [144], [145]. A large
number of training examples are difficult to obtain in practice. To
overcome the problem of scarce training examples, researchers
have proposed corrective measures, such as synthetic images,
migration learning, and semisupervised learning, starting from
both training sets and training methods [146], [147], [148].
Instance segmentation is a combination of target detection and
semantic segmentation and requires predicting the location and
pixel mask of each target instance in the image, which is a very
challenging task [149]. Panoramic segmentation, in contrast,
is a combination of semantic segmentation and instance seg-
mentation and requires generating pixel masks with category
information for all targets in the image. CNN-based segmenta-
tion techniques have been used to obtain specified information
from UAV remote sensing images, such as in urban building
extraction, urban road extraction, urban change detection, etc.,
thus assisting management work such as urban pattern analysis
and urban expansion analysis [150], [151], [152].

C. Quantitative Remote Sensing Inversion of Environmental
Parameters

Compared with satellite remote sensing technology, UAVs
carrying observation sensors (e.g., multispectral and hyperspec-
tral cameras) can obtain more fine-grained ground sensing data.
Therefore, the quantitative inversion of environmental parame-
ters using the data acquired by UAVs will yield more accurate
inversion results with higher spatial resolution. The quantitative
inversion of environmental remote sensing involves many as-
pects, such as surface temperature inversion [153], water color
and quality inversion [154], vegetation index inversion [155],
and so on. Focusing on urban spatial management, the main
inversion tasks include water environment inversion, surface
temperature inversion, etc. to provide ecological and environ-
mental management of an urban space [44], [156]. The inversion
requires a combination of objective mechanisms and experimen-
tal observations. Inversion methods can be broadly classified
into empirical models, theoretical models, and semitheoreti-
cal/semiempirical models according to the degree of involve-
ment of both. In recent years, machine learning methods, includ-
ing DL, have been widely used for the quantitative inversion of
environmental parameters due to a good fitting effect [154].

D. UAV Edge Intelligence

Edge computing places computing tasks, such as data storage
and processing, closer to the end user at the edge of the network
and is an extension of cloud computing technology with fast
processing response times [157]. UAVs equipped with small
computing platforms can be used as edge nodes to assist in urban
data collection and processing, as shown in Fig. 15. McEnroe
et al. [158] have classified the application classes of UAV edge
intelligence based on the 6G white paper on edge intelligence,
which specifically includes seven categories. Currently, most
research work uses three approaches in this method: 1) the UAV
acquires visual information and transmits it back to the cloud
(ground-side) server for data processing; 2) the UAV processes

Fig. 15. UAV edge intelligence.

the acquired visual information directly on the airborne edge
device; and 3) the first step of processing is performed on the
airborne edge device, and the data are then transmitted back
to the cloud (ground-side) server for the second step of fine
processing. The second of these is most commonly used, where
the AI model is trained on the server and then deployed to
the UAV side. For example, Xu et al. [34] ported the power
line autonomous sensing and path planning algorithm, which
was developed on the ground-side server, into an embedded
computer on the UAV to achieve automatic tracking and inspec-
tion of high-altitude power lines. Meng et al. [45] developed
an UAV edge intelligence system for pipeline safety exclusion,
deploying target detection models on airborne edge devices and
processing UAV video streams in real time. However, UAV edge
intelligence also faces many challenges. For example, small light
UAVs have very limited load capacity and cruise capability to
carry large computing devices, which, in turn, limits the scale
of AI models that can be processed on board. Several possible
approaches to solve the above problems include: 1) developing
conceptually simpler AI models; 2) AI model compression and
pruning; 3) software and hardware codesign; and 4) federated
learning [158].

VII. APPLICATION DIRECTION

Urban spatial management involves all aspects of cities. This
section briefly describes the application directions, progress, and
challenges of UAVs from three aspects: UI monitoring, urban
disaster emergency response, and urban ecological environment
monitoring, as shown in Fig. 16. This helps provide a more
comprehensive reference for researchers in related fields.

A. UI Monitoring

While urbanization is increasing, it also brings many chal-
lenges [159]. Infrastructure is an important necessity for sustain-
able urban development. From an engineering point of view, UI
mainly includes engineering systems that provide water, energy,
transportation, electricity, information, and so on [160]. It is very
important to operate and maintain the UI, which is related to
the normal operation of a city. The rapid development of UAV
and sensor technology provides a powerful technical tool for UI
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Fig. 16. Direction of applications of UAV in urban space management.

management, which can greatly improve management efficiency
in certain work scenarios.

Recently, China’s Ministry of Natural Resources has com-
prehensively promoted the construction of 3-D real scene as a
new type of infrastructure [161]. One of the main tasks is to
construct DEMs, DSMs, and digital orthophotos covering the
entire country’s land surface, including major islands. Because
of the advantages of high timeliness, high flexibility, and high
spatial resolution of UAVs, they have become important plat-
forms for 3-D mapping [28]. UAVs equipped with HD RGB
cameras are used to acquire image data of urban areas, and
then image matching, offline/online aerial triangulation, dense
matching, and 3-D reconstruction steps are taken to obtain
3-D models of urban buildings [162], [163]. In addition, UAVs
equipped with LiDAR can acquire detailed and dense 3-D point
cloud information of urban areas, which can also be used to
produce 3-D models of urban buildings [164]. Researchers from
different countries around the world have also conducted a lot
of research on UAV photogrammetry and its applications, thus
advancing the field. Erenoglu et al. [165] performed 3-D model-
ing of urban areas in Turkey based on UAV photogrammetry
and analyzed the results. The results of the analysis proved
that this technique can replace the traditional GNSS surveying
technique. He [166] pointed out the problems exposed when
using UAVs for fine-grained data acquisition, such as the fixed
altitude of the flight path leading to large differences in image
resolution, the low efficiency of manually controlling the UAV
to get close to the target, and the expensive cost of professional
UAVs. In order to make better use of UAVs for data acquisition
and modeling of artificial object surfaces in cities (tall build-
ing surfaces, tall ancient buildings, etc.), the author proposes
a new UAV photogrammetry mode, namely, nap-of-the-object
photogrammetry. This technique takes the surface of the object
as the photographic object, uses a small UAV to get close to
the surface of the object to obtain ultra-high-resolution images,

and then finally processes them to obtain the fine structure of the
surface of the object. Li et al. [29] proposed the Optimized Views
photogrammetry technique. This is an evolutionary extension
of the nap-of-the-object photogrammetry technique. Optimized
Views photogrammetry utilizes a generalized model of the work
area as the planning basis, selects good viewpoints for UAV
photography, and generates UAV flight paths to ensure that
the UAV can complete the collection of urban building surface
data at a lower flight altitude and a closer flight distance. They
conducted a field validation of the technology in Qingdao,
China. Compared with the traditional oblique photogrammetry,
Optimized Views photogrammetry can significantly improve the
modeling quality. Especially in urban areas with dense buildings,
the modeling accuracy can be improved by three to five times.

Bridges and roads are the most important infrastructures with
regard to managing urban traffic, and they need regular inspec-
tion and maintenance. Traditional manual inspection methods
are labor intensive and cannot sustain a schedule of highly
frequent inspections. UAVs offer a new approach to bridge and
road inspections by acquiring their surface data with low-altitude
overhead observations and then extracting damaged areas from
the images in an automated or semiautomated manner. This
approach has the advantages of a large scale, high degree of
automation, and low cost of inspection. Cracks on the bridge
surface can be very harmful to the safety and life of the bridge.
They allow water and other materials on the bridge deck to pen-
etrate into the internal structure of the bridge, causing corrosion
and damage, which in turn affects the structural performance of
the bridge [167]. Therefore, regular inspection of bridge cracks
is needed. Lei et al. [6] proposed the crack central point method
for problems such as blurred UAV images. Their method can
quickly and accurately identify and extract the cracks on a bridge
surface. Ayele et al. [168] proposed a workflow for UAV-assisted
bridge crack detection, using UAVs with RGB cameras to collect
images of bridge surfaces and then extracting surface cracks
based on a DL semantic segmentation method. They conducted
an experimental validation on a 140 m-long concrete bridge in
eastern Norway. The experimental results show that the proposed
UAV-assisted bridge crack detection method can achieve up
to 90% identification accuracy while reducing sample labeling
costs. In addition, a smooth road surface is the basis for stable
and steady vehicle operation, so damaged areas on the road
surface also need to be identified. Leonardi et al. [7] used a UAV
equipped with an RGB camera to acquire DEM data of the road
surface to measure and obtain the dimensions of road surface
defects. They performed a field test of the proposed method in
the Reggio Calabria area, Italy. The measurement error of their
proposed method is less than 0.03 m compared to the field mea-
surements. Similarly, Biçici and Zeybek [169] used a UAV with
an RGB camera to obtain point cloud information of the road
area and used an algorithm to automatically extract the damaged
road area. The results of the field experiments conducted in the
city of Artvin, Turkey, showed that the root-mean-square error
values of the measurements of the proposed method ranged from
2.09 to 6.72 cm. Fan et al. [170] designed a real-time embedded
UAV stereo vision system to acquire stereo image pairs of the
road surface and process them in real time to obtain a disparity
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map, making the damaged areas more visible. They tested the
proposed method on NVIDIA Jetson TX2 development board
and achieved good real-time results. In addition, road markings
are important reference information in the field of autonomous
driving, and researchers have conducted related research [171].
Bu et al. [171] proposed a UAV-based road marking defect
detection method and tested it on three types of roads (highways,
ordinary urban roads, and urban roads lacking maintenance) in
Nanjing, China. The experimental results show that the detection
method is able to achieve more than 93% accuracy and recall
in the highway and ordinary urban road scenarios, and more
than 76% in the lack of maintenance urban road scenario; the
recognition accuracy of road marking defects is greater than
90% in all cases.

Over time, the exterior surfaces of high-rise buildings may
deteriorate, crack, and peel off, seriously affecting public safety.
Therefore, the regular inspection and maintenance of the exterior
surfaces of high-rise buildings are important. Since high-rise
buildings are often tens to hundreds of meters high, manual
visual inspection is highly subjective, inefficient, and risky.
UAVs equipped with RGB cameras can acquire images of
the exteriors of high-rise buildings at close range, providing
new technical means for inspection work. Carrio et al. [172]
proposed the UBRISTES (UAV-based Building Rehabilitation
with vISible and ThErmal infrared remote Sensing) system for
the detection of anomalies on the external surfaces of buildings.
They validated the designed system at the Technical University
of Madrid, Spain. The validation results show that the system
can assist in identifying anomalies on building surfaces. Grosso
et al. [173] addressed the current state of building inspections
in Italy, aiming to encourage those involved to use UAVs to
carry out regular inspections. The authors also used a case study
from Piedmont, Italy, to compare the difference in cost between
manual methods and the use of UAVs. Liu et al. [174] retrieved
useful information from the BIM of buildings to provide decision
support for UAV inspections and developed an AR prototype
system for building exterior inspections. The authors conducted
field tests using a DJI Phantom 4 UAV at the University of
Tennessee, Knoxville, TN, USA, to validate that the developed
AR system is effective in improving efficiency. Tan et al. [8],
[9] worked on two aspects of building exterior data collection:
defect detection and integration. First, they obtained detailed
3-D structural information of the building from the BIM, which
was used to guide the UAV flight path planning. Specifically,
the viewpoints for UAV image acquisition are first generated
based on the 3-D structural information of the building; then,
the optimal flight path of the UAV is solved using a GA, and
finally the flight parameters of the UAV are calculated. To test
the effectiveness of the proposed method, the authors conducted
a case study using a DJI Phantom 4 UAV on the campus
of Shenzhen University, China. The proposed method takes
nearly 50% less time than manual operation and provides 16%
higher coverage than manual collection. Second, they used DL
techniques to process the acquired image data to automatically
identify the exterior damage areas and mapped and integrated the
damage information into the BIM of the building to support the
dynamic management of the building health status. The authors

also validated the proposed new method at Shenzhen University,
China. The validation results show that the proposed method is
able to complete the data acquisition of one facade of a building
in about 60 s and accurately identify centimeter-level defects
using a DL approach and finally store the defect information
in BIM. Chen et al. [175] proposed a simplified GIS-based
management process for acquiring images by UAVs to support
the detection of abnormalities in building exterior damage. The
authors conducted a case study of the proposed methodology
at Virginia Polytechnic Institute and State University, USA,
to evaluate the execution efficiency and alignment accuracy.
Vasquez et al. [176] addressed the problem of trajectory planning
for UAVs in large building inspection work and proposed a
method to compute smooth trajectories for quadcopter UAVs
based on a 2.5-D model of the building. The authors performed
simulation experiments and did not carry out tests on real cases.

Electricity is an important necessity of life in modern society.
Therefore, it is necessary to conduct regular inspection and
maintenance of power lines to ensure an uninterrupted power
supply [177], [178]. The power line inspection consists of two
elements: the inspection of power line components and of objects
that may be around the power lines [178]. A UAV equipped
with an HD digital camera is a very convenient tool for power
line inspections, offering advantages such as high flexibility
and low cost. Fixed-wing UAVs have a long endurance and are
typically used for extensive rough inspections of power lines
and obstacle detection next to power lines; multirotor UAVs
can get close to power lines for inspection and can acquire
more detailed images of power lines by hovering and adjusting
camera shooting angles [179], [180]. Zhang et al. [179] used the
images acquired by a UAV to achieve automatic measurement
of the power line and the area below the line and automatically
identified obstacles by calculating the distance between them.
The authors conducted on-site measurements on a 220 kV high-
voltage line with a length of 3.9 km in Guizhou Province, China.
Their proposed method was able to effectively extract the power
line with an automatic extraction success rate of 93.2% and
effectively identified eight obstacle locations in the experimental
area, with a measurement error of less than 0.5 m in the distance
from the obstacle to the power line. Chen et al. [181], in contrast,
proposed an automatic distance anomaly detection algorithm
using LiDAR point cloud data collected by UAVs, which can
detect distance anomalies with decimeter-level accuracy. In re-
cent years, with the continuous development of computer vision
technology and robotics, researchers have begun to use emerging
technologies for power line inspection work, such as image
recognition based on DL, automatic control of UAVs, and so on.
Shuang et al. [182] constructed a specialized dataset called RSIn-
Dataset to address the lack of power line inspection datasets.
This dataset contains four different sizes of insulator targets,
totaling 3286. The authors tested several commonly used target
detection models on this dataset, including SSD [183], Faster
R-CNN [184], YOLO V3 [185], YOLO V4, etc., to provide
a benchmark for subsequent research work. Souza et al. [186]
proposed a method for power line insulator identification called
Hybrid-YOLO. The method combines the best model for insula-
tor detection with the best model for insulator classification and
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is able to achieve 99.262% mAP and 96.216% F1_score on the
test dataset. Autonomous UAV control is the key to automated
inspection technology. Pussente et al. [187] designed a novel
PID controller to solve the power line tracking problem and con-
ducted simulation experiments using the Gazebo simulator, but
no real-world testing was performed. In addition to developing
high-precision detection algorithms, some researchers have de-
veloped a number of UAV applications. Xu et al. [34] developed
a UAV power line inspection system based on a UAV, binocular
camera, and airborne computing platform; it can automatically
detect power lines in the FoV in real time and generate control
information based on the location of power lines to guide the
UAV to complete line inspection automatically. The unmanned
aircraft system (UAS) they developed is capable of tracking
transmission lines at a safe distance of 15 m and processing
current key frames in about 3 s. Li et al. [188] developed a UAV
system integrating core functions such as UAV path planning,
mission management, data collection and management, and
intelligent fault troubleshooting, in conjunction with the actual
needs of power line inspection projects. The authors conducted
an actual test at a high-voltage line in Xuzhou City, Jiangsu
Province, China. It is worth mentioning that they not only tested
the operation of a single UAV but also tested the operation of
multiple UAVs at the same time.

B. Urban Disaster Emergency Response

Urban disasters can be divided into two types: 1) natural
disasters, such as earthquakes, landslides, ground collapses,
floods, extreme weather, etc., and 2) man-made disasters, such
as stampede accidents, etc. [189]. When urban disasters occur,
UAVs, with their unique advantages, can reach areas that are
inaccessible to humans to investigate and assist in rescue mis-
sions [190], [191]. Lyu et al. [191] provided a comprehensive
overview of the role of UAVs in search and rescue efforts and
highlighted the advantages and contributions of UAVs.

Cities are often densely populated with many buildings. Once
a natural disaster occurs, the consequences can be unimaginable
and first-hand information about the disaster site needs to be
obtained in a timely manner. For example, flooding caused by
heavy rainfall has become the largest catastrophic natural disas-
ter, posing a serious threat to urban areas [192]. The monitoring
and assessment of urban floods using UAVs has become a hot
research topic. This consists of two main areas of work. One type
is the use of UAVs with sensors onboard to model urban areas
in three dimensions and then use flood models to simulate urban
inundation to achieve prior assessment of urban flood risk. Li
et al. [10] used UAV-mounted LiDAR to obtain high-precision
DEM data of urban areas, combined with a hydrodynamic model
to simulate the urban waterlogging process; they could then
extract and identify areas vulnerable to flooding. The authors
validated the measurements in two different environments: a
small mountainous area and a large urban area. Five hours and
two days were required to complete the work, respectively.
Similarly, Trepekli et al. [193] demonstrated that a fine DTM
obtained using airborne LiDAR technology can significantly
improve the accuracy of urban waterlogging simulation. The

authors acquired high-resolution (0.3 m) DTMs for three urban
areas in the city of Accra, Ghana, Africa. These data were used to
compensate for the 10-m-resolution satellite DTM data, thereby
greatly improving the level of refinement in the simulation
of urban waterlogging. At the same time, the authors pointed
out that the results are somewhat unrealistic when simulations
are performed using only low-resolution DTM data. Another
category is the intelligent and fast extraction of inundated areas
after urban flooding to assist in planning rescue operations or
assessing damage. Feng et al. [194] used the Random Forest al-
gorithm to extract flooded areas from digital images acquired by
UAVs and confirmed the gain of texture information. The authors
conducted a case study in Yuyao City, Zhejiang Province, China.
The random forest algorithm was able to accurately extract the
flooded areas with an overall accuracy of 87.3% and a Kappa
coefficient of 0.746; the classification accuracy was improved by
11.2% after adding texture features. The results show that the
proposed method can automatically and accurately extract urban
flooded areas. Gebrehiwot et al. [195], in contrast, evaluated
the performance of CNNs in urban flooded area extraction. The
authors selected three flood-prone areas in North Carolina, USA
as the study areas. The UAV image data were taken after the
hurricane. The authors tested the algorithms FCN-16s, FCN-8s,
FCN-32s, and SVM. The classification accuracies were 97.52%,
97.8%, 94.2%, and 89%, respectively. Rivas Casado et al. [196]
proposed a framework for damage assessment based on UAV
remote sensing for the accurate estimation of tangible residential
property damage caused by flooding. The authors collected data
and evaluated the proposed methodology over Cockermouth,
U.K. This area had been affected by Storm Desmond. The
results of the evaluation show that the accuracy of the damage
assessment of the proposed methodology is 84% (compared
to the field assessment methodology). Earthquakes are another
natural disaster that severely disrupts the normal functioning of
cities [197]. UAV flight platforms are able to reach areas that
are inaccessible to rescuers in the aftermath of a disaster with
limited access. As a result, many research efforts have been
conducted using UAVs, mainly for damage assessment, rescue,
and post-disaster reconstruction. Of these, disaster assessment
is the basis for the latter two efforts. Verykokou et al. [198]
used UAV 3-D reconstruction technology to model collapsed
buildings after a disaster, thus helping relief workers to grasp
the damage situation in time. They evaluated PhotoScan and
MicMac-MeshLab and established proven workflows. From the
perspective of computational efficiency, Duarte et al. [199] pro-
posed an efficient façade damage detection method that can be
effectively used for image data acquired by UAVs. The proposed
method first filters out irrelevant images and processes images
that are likely to contain damage. It was tested on a set of UAV
images acquired after the 2009 L’Aquiladi earthquake in Italy.
The results show that the proposed method is able to reduce the
area of processed images by a factor of 6, which greatly improves
the efficiency of damage detection. Wang et al. [200] proposed
a DL segmentation method based on geometric information for
segmenting building structural components after an earthquake.
The authors evaluated the proposed method on a synthetic
urban dataset. The evaluation results show that the proposed
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method can achieve 97.97% mIoU, which is 1.29% better than
the original UNet model. In addition to damage assessment,
timely post-earthquake relief is crucial. Strong earthquakes
can severely damage urban traffic infrastructure and lead to a
paralysis of logistics and transportation. UAVs (swarms) have
emerged as an effective alternative for post-disaster material
transportation [11]. Nedjati et al. [11] designed a cluster system
of UAVs for the timely distribution of urban post-earthquake
relief supplies, which can distribute large quantities of supplies
to various nodes of need in just a few hours. A case study
conducted by the authors shows that 460 UAVs could deliver
100 000 kg of supplies to 44 distribution points in 2.5 h. This
result is encouraging for post-earthquake relief efforts. In ad-
dition, UAVs are being used to guide urban post-earthquake
reconstruction [201].

The monitoring, modeling, and management of dense crowds
have been recognized as an important area of research [202].
If a high level of crowd gathering is not properly managed, it
may lead to serious stampede accidents. In addition, if a sudden
crowd gathering phenomenon occurs, it may mean that there
will be a conflict event. The recent global spread of COVID-19
has also placed new requirements on crowd management. UAVs
carrying HD cameras, shouters, lights, and other equipment
provide a new means of dense crowd management. Researchers
have also conducted related studies. In response to the high
concentration of crowds, such as the Hajj, which is prone to
accidents, Felemban et al. [203] developed a priority-based
routing framework for fast transmission of crowd image data
from a flying ad hoc network back to the control center. Husman
et al. [204] detailed the current state of research on the use of
UAVs for intensive crowd monitoring. In addition, urban crime
management becomes increasingly challenging as an urban pop-
ulation increases. To address this problem, Miyano et al. [205]
proposed a collaborative multidrone framework for predictive
crime deterrence and data acquisition based on UAV technology
and machine learning techniques to collect training data while
improving apprehension success rates, and validated it on a real
urban crime dataset.

C. Urban Environmental Pollution Monitoring

As urbanization continues to accelerate, urban environmental
pollution problems have become particularly prominent and can
be roughly classified as water pollution, air pollution, waste
dumping, etc.

Cities are typically closely located to natural and artificial
water bodies, such as rivers and lakes. The pollution of urban
water bodies will seriously affect the health and quality of life of
citizens [206]. In addition, nearby water bodies also play an im-
portant role in flood control, maintaining ecological balance, and
beautifying the urban landscape [44]. Traditional manual field
surveys and satellite remote sensing survey methods have some
drawbacks, such as low survey frequency and low survey accu-
racy. A UAV platform can carry multispectral and hyperspectral
sensors to obtain high-spatial-resolution image data of urban
water bodies and also has high temporal resolution, flexible
operation, and low cost. The obtained image data can be used to

invert the water quality parameters and, thus, indicate the specific
status of a water body. Wei et al. [12] inferred the integrated pol-
lution index of urban water bodies based on UAV hyperspectral
imagery and monitored pollution sources. The authors selected
two rivers in Wuhan City, Hubei Province, China, as the study
areas and evaluated six regression models, including GBDTR,
MLPR, RFR, SVR, OLSR, and KRR. The experimental results
show that GBDTR performs better in terms of inversion accuracy
and computation time and is able to complete the inversion of the
study area within a few minutes. Compared with the traditional
field measurements, the UAV-based method is able to obtain
large-scale and high-precision survey results in a short period
of time. Similarly, Wei et al. [207] used UAV hyperspectral
imagery to accurately invert the water transparency of narrow
urban rivers. The authors still chose two intraurban rivers in
Wuhan, Hubei Province, China, as the study areas. The XGBoost
algorithm they used performed well in both study areas with R2

greater than 0.97. Chen et al. [154] then used machine learning
techniques and UAV hyperspectral data to perform quantitative
inversions of five water quality parameters of urban rivers.
The authors tested the accuracy of six algorithms, including
GA-XGBoost, for inversion of water quality parameters (chloro-
phyll a, total phosphorus, total nitrogen, ammonia nitrogen, and
turbidity) on the Nanfang River in Hefei City, Anhui Province,
China. The test results shows that the GA-XGBoot algorithm
had the highest accuracy with a coefficient of determination of
0.855. Matsui et al. [208] also pointed out the drawbacks of
both satellite remote sensing and UAV remote sensing methods
used for water quality monitoring and proposed a method to
improve the resolution of satellite remote sensing data based on
high-spatial-resolution UAV remote sensing data. The method
is based on DL technology, which can significantly improve the
quality of remote sensing data and thus the accuracy of water
quality estimation. In addition, the sources of discharge (e.g.,
outfalls) can also be investigated, and thus, urban water pollution
can be monitored and controlled indirectly. Huang et al. [46]
used UAVs to investigate the distribution of urban outfalls on a
large scale, which improved the efficiency of urban water pol-
lution source identification. The authors proposed an improved
geographic information-based Faster RCNN (GDCNN-outfalls)
and conducted experiments in a typical area in Wuhu City,
Anhui Province, China. The experimental results show that the
proposed method has a recall of 79.3%, a precision of 48.4%, and
is ten times faster than manual visual interpretation. In one of our
previous works [209], we designed and tested a UAV inspection
system based on UAV remote sensing and edge computing
technologies for automated outfall inspection work. We installed
an outfall inspection model developed based on YOLO V5s in
an embedded computer (NVIDIA Jetson AGX Xavier), which
is capable of processing images acquired by sensors in real time.

The continuous increase of an urban population and its vehi-
cles will lead to significant air pollution, which will cause serious
health hazards for people [210]. Therefore, it is necessary to
study the air quality and its distribution in urban areas. The sur-
vey methods mainly include dynamic and static measurements.
Static measurements are conducted through static monitoring
stations to obtain air quality parameters at specified locations,
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TABLE V
SOME UAV APPLICATION SYSTEMS FOR URBAN MANAGEMENT

but they do not cover larger areas. Dynamic measurement
methods based on ground mobile platforms such as vehicles
can only obtain the ground pollutant distribution and cannot
obtain the vertical distribution. Multirotor UAVs support vertical
takeoff and landing and fixed-point cruising, and they can meet
the demand for 3-D monitoring of urban air pollution. For
example, Li et al. [13] designed a multirotor UAV atmospheric
monitoring system that can effectively monitor vehicle exhaust
with high spatial and high temporal resolution. The system is
highly maneuverable and flexible and supports functions such
as fixed-point hovering, which greatly improves the spatial and
temporal monitoring capability of traffic emissions. The authors
tested the system in Fengxian District, Shanghai, China. The
test results show that the system is able to monitor the changes
of air pollutants in both horizontal and vertical directions,
overcoming the drawbacks of fixed-point measurements. Zheng
et al. [211] used an UAV platform to monitor and summarize
the general spatial distribution of air pollutants next to urban
roads. They used a hexacopter UAV for spatial and temporal
monitoring of air pollutants (including particulate matter and
carbon monoxide) next to one of the main roads in Shanghai. The
general pattern summarized by the authors can be found in [211].
Similarly, Samad et al. [212] conducted a similar study with
field measurements at two locations, including next to roads. The
authors developed a 14 kg hexacopter UAS capable of measuring
particulate matter, ultrafine particles, black carbon and mete-
orological parameters. They conducted field tests, monitored
in both vertical and horizontal dimensions, and summarized
general patterns in the 3-D distribution of air pollutants. In
addition, the authors of [213] and [214] also used UAVs with gas
sensors to monitor air quality in urban areas in a 3-D manner.
Xin et al. [213] used a UAV to monitor the vertical distribution of
PM2.5 near the ground in Xi’an, Shaanxi Province, China. The
monitoring sites included water bodies, green areas, and urban
built-up areas. The monitoring results demonstrate the general
pattern of PM2.5 distribution, which can help urban planners
optimize urban spatial planning. Li et al. [214] monitored eight

sites in Shenyang City, Liaoning Province, China, for four days
using a sensor-carrying UAV. Atmospheric pollutants monitored
included SO2, NO2, PM1, PM2.5, and PM10. The monitoring
altitude was 120 m. The monitoring results reveal the distribution
pattern of atmospheric pollutants in Shenyang city.

VIII. UAV APPLICATION SYSTEM FOR URBAN MANAGEMENT

A. Development Status

Numerous researchers have developed a number of UAV
application systems for specific scenarios and have achieved
good results [190], [215], [216], [217], [218], [219], [220], [221],
[222], [223]. However, mature industry application systems rep-
resent the current accepted state of the art in terms of algorithms
and technologies. This section introduces several UAV applica-
tion systems that are already more mature in the industry. They
have different functions and mainly involve the management
and planning of UAVs (UAV swarms), their inspection, use for
photogrammetry, etc. Specific information on UAV application
systems is shown in Table V.

B. Case Study

This section introduces in detail our recently designed and
developed UAV smart city management system. This system is
an application platform for urban governance. It helps to improve
the efficiency of urban inspection and governance work through
the integrated use of advanced technologies, such as Big Data,
AI, and IoT.

1) Architecture and Functionality: The overall architecture
of the system is shown in Fig. 17. Among the layers, the bottom
is the hardware facility layer, consisting of multiple server nodes,
network switches, and so on. The system is based on an HDFS
distributed file system and Elasticsearch distributed full-text
retrieval engine to complete the storage of the data, as well as
to realize the functions of the UAV data input and feedback,
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Fig. 17. Systems architecture.

Fig. 18. Iterative update process of the target detection model repository.

management of flight tasks, and metadata management. The
main functions of the system include seven major components:

1) comprehensive management of law enforcement officers
and UAV equipment, mapping out the “family back-
ground” and achieving orderly management;

2) construction of a multiclass feature target detection al-
gorithm library with embedded target detection models
for roads under construction, sewage outfalls, etc., while
supporting users to upload customized target detection
models;

3) support for mission planning and dispatching and for users
to interactively specify UAV routes;

4) live multiway video streaming from UAVs;
5) UAV multichannel video stream near-real-time concur-

rent detection to achieve intelligent detection of typical
features;

6) support for the generation and download of work reports,
so that law enforcement work is based on evidence;

7) support for online distributed training of target detection
models to achieve model updates and upgrades.

It is worth mentioning that the system has a prebuilt internal
library of target detection algorithms, as shown in Fig. 18. The
system can flexibly call these algorithms to achieve the target

Fig. 19. Interface of the system at work.

detection functions. At the same time, the target detection model
can read the feature samples in the sample library for distributed
iterative training to update and upgrade the target detection
model and improve the detection accuracy.

2) Practical Application Cases: With the advanced technical
architecture, the system has been successfully used in the prac-
tical work of city management. Urban ecology is closely related
to natural or artificial water bodies such as rivers and lakes.
Real-time and intelligent investigation of sewage sources (e.g.,
outfalls), and thus indirectly monitoring and treating urban water
pollution, is a key issue that needs to be solved. In one of our
previous works [209], the system was used to detect outfalls on
the banks of urban waters with good results in both real time and
accuracy. To the best of our knowledge, this is the first real-time
UAS for detecting outfalls in urban waters. The interface of the
system at work is shown in Fig. 19. The main page on the left side
shows the result video of outfall detection. The function column
on the right side includes functions such as detection parame-
ter setting, video playback and download of detection results,
display of detection statistics, and display of detection target
list. The system better supports the detection work in terms of
uploading and management of detection models, real-time video
detection, historical video detection, and analysis of detection
results.

The system has also been used to detect other geotargets in the
city, such as shared bicycles, roads under construction, garbage
piles, and so on. The models used for detecting the abovemen-
tioned targets have been embedded in the system and support
the user to retrain and upload them as per the requirement.
The detection results of the models in the system are shown in
Fig. 20.

IX. DISCUSSION

Based on the extensive research and summaries mentioned
above, this section will summarize the current characteristics,
shortcomings, and opportunities of UAV-assisted urban spatial
management work from the following aspects and provide some
conclusive findings. We hope that the section will inspire rele-
vant researchers.

1) New technologies, represented by DL, empower UAV tech-
nology: Manually maneuvering a UAV to perform an
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Fig. 20. (a) and (b) Detection effects of some system-embedded detection
models (shared bicycles and garbage piles).

operation, or manually processing data acquired by a UAV,
is becoming less and less practical. This mode of working,
which relies heavily on manual labor, is being phased
out. With the continuous development of UAV technology,
more and different types of sensors and computing devices
can be carried on the body of the UAV, which provides an
opportunity to realize automated UAV operations. Based
on the above research and summary of existing works, re-
searchers from different countries and regions of the world
are using new technologies to empower UAV technology,
such as robotic swarm control, image interpretation based
on DL techniques, automatic UAV navigation and control
based on multimodal sensors, and so on. Although much
progress has been made, there is still a long way to go
before UAVs can operate fully autonomously.

2) Civilian UAVs have become the main driving force behind
the development of the UAV industry: UAV manufacturing
companies, represented by the Chinese company DJI,
are continuously developing new civilian UAV products.
From the above research and analysis, it can be found
that by virtue of their affordable price, simple operation,
and rich development interfaces, these civil UAVs have
been widely used by researchers, which has greatly con-
tributed to the good development of urban spatial manage-
ment work. However, with the continuous development of

urbanization in the world, urban spatial management will
face more difficulties. For example, the continuous expan-
sion of urban area leads to the fact that the range of the
existing UAVs cannot meet the operational requirements;
the high buildings in the city pose a challenge to the
existing UAV obstacle avoidance technology. Therefore,
UAV manufacturers should continue to make efforts in
developing UAVs with richer functions and better perfor-
mance.

3) UAV-related applications are becoming more and more
diverse: As can be seen from the above summary, the in-
dustry applications of UAVs are becoming more and more
diverse. In addition to the three applications mentioned
in Section VII, UAVs have great potential to be applied
in other fields. Therefore, it is of great significance to
explore new industry applications of UAVs in urban spatial
management.

4) Advanced UAV technology needs to be carried by mature
UASs: The development of mature UAS and embedding
the proposed methodology into the system is a major
trend in current research efforts. Advanced UAV-related
technologies must need to be carried by mature UASs.
Researchers have developed many mature UASs for urban
space management work. This is a strong impetus for
the practical implementation of UAV-related technologies
in urban management. With the increasing difficulty of
urban space management, UAS should be more robust
and applicable.

5) The management of UAV applications is relatively im-
perfect: As can be seen from Section IV, the current
management of UAV applications in cities is still very
insufficient, even at the stage of conceptual design and
pilot studies. In recent years, there have been numerous in-
cidents of unauthorized flights of UAVs over cities, which
have caused great disturbances to urban management and
threatened urban safety. Therefore, mature management
policies and management systems are urgently needed.

X. FUTURE RESEARCH DIRECTIONS

Although UAVs have played an important role in urban man-
agement, there are still some difficulties and challenges. Based
on the above summary and analysis, we have listed directions
worthy of in-depth research in the future organized by four
aspects for reference.

A. Data Acquisition

It is sometimes impossible to cover the entire urban area
using a single UAV. Cooperative observation of multiple UAVs
(UAV swarms) provides the technical means to address the
above problems. Among them, the task scheduling and path
planning problems of multiple UAVs should be focused on [94].
In addition, it has become a trend to use UAVs to acquire data of
multiple modalities in the same area at one time. The integration
of different types of sensors on demand according to specific
mission requirements is a technical issue that needs to be an
area of research focus.
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B. Data Transmission

Reliable data transmission is the key to everything that fol-
lows. In large-scale urban space management work, the radius
of activity of existing UAVs severely limits their efficiency.
Therefore, it is important to use advanced IoT satellite com-
munication technology to assist UAV communication and, thus,
expand the working radius of individual UAVs. In addition, UAV
relay communication technology can be a good aid to urban
management work and should be a research focus.

C. Data Processing

The data processing can be considered in several aspects.
First, the use of multisource data fusion processing may improve
the processing accuracy. However, in practical applications,
the focus should be on how to adequately and effectively fuse
data from different modalities and how to interpret the gain
that each modal data can play [234]. In addition, for some
applications, fast real-time processing of UAV data and assisted
decision making are critical. UAV edge intelligence technology,
in contrast, is an effective technical tool that can address these
issues to some extent [158].

D. Management Policy

There are two main aspects of management policy:
standardization and integration/demonstration. Regarding a
standardization example, different sensor manufacturers follow
their own standards in production, which creates difficulties
for subsequent data processing. In addition, corresponding
standards should be established for the data products created.
The second aspect is integration and demonstration. From the
current status of research in the application direction, it can
be seen that most of the applications are focused on a single
type of work in a local area, which can lead to very scattered
results overall. Reasonable work integration should be carried
out according to different management areas. For example, in
urban ecological environment monitoring, a highly integrated
work system should be established to avoid wasting resources
due to scattered work. In addition, relevant departments can
set up some typical working demonstration cases to guide the
orderly development of related industries.

XI. CONCLUSION

With the accelerated urbanization process, urban space man-
agement is facing unprecedented pressure and challenges. It
urgently needs to develop in the direction of intelligence and
automation. UAV technology is playing an important role in
urban spatial management work. UAV technology has been
used in all aspects of urban spatial management and involves
numerous technical details. Therefore, a systematic and com-
prehensive review of UAV applications in urban spatial man-
agement is necessary to provide a comprehensive reference for
relevant researchers and facilitate the generation of new insights,
methods and applications. However, according to our research,
there is a lack of systematic investigations on related aspects.
Therefore, we provide a comprehensive review and summary
of UAV-assisted urban spatial management through this article.

First, this article takes the definition, needs, and challenges of
urban space management as an entry point, clarifies the relevant
concepts of intelligent management work in urban space, and
summarizes the advantages and application scenarios of UAVs.
Then, based on a large number of references and previous work
experience, this article divides the workflow of UAV-assisted
urban spatial management into three aspects, i.e., data acqui-
sition, data transmission, and data processing. To the best of
our knowledge, this is the first time to summarize the work
paradigm of UAV-assisted urban spatial management. Among
them, data collection provides a database for urban spatial
management. Data transmission provides the data “artery” for
the city, realizing efficient and robust data transmission. Data
processing focuses on improving automation and intelligence to
enhance the efficiency of management. This article summarizes
the technical details of these three aspects to help researchers
understand the basics of the field and start working quickly.
Second, this article summarizes and describes the current sta-
tus of the applications of UAVs in urban spatial management
from three aspects: UI monitoring, urban disaster emergency
response, and urban ecological environment monitoring. We
hope that this part can provide references for related researchers
and help them generate new ideas. This article also describes
several different types of UAV application systems and presents
our recently developed UAV smart city management system.
The purpose of presenting our recent development work is to
elaborate on how UAV technology can be highly coupled with
DL technology, IoT technology, and big data technology to serve
urban spatial management. Finally, this article summarizes and
analyzes the existing problems in terms of data collection, data
transmission, data processing, and management policies and
looks forward to future research directions. We hope that this
part of the article can provide references for related researchers,
thus prompting research in these areas. We believe that future
research will inevitably be carried out in terms of methods,
systems, applications, and policies to contribute to the building
of livable cities. In order to realize the above goals, research can
continue in the following aspects. In terms of methodology, UAV
technology should be further combined with advanced technol-
ogy represented by DL to enhance the automation, intelligence,
and clustering level of UAV technology; in terms of application,
the application potential of UAVs should be explored to continue
to carry out a wide variety of UAV industry applications; in
terms of system, research and development of high-reliability
and high-performance UAV systems should be continued; and
in terms of policy, the management department should take the
initiative in planning and formulate reasonable and effective
management policies to ensure the orderly operation of UAVs
in cities.
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