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Dual-Attention Cross Fusion Context Network
for Remote Sensing Change Detection

Yu Shangguan , Jinjiang Li , and Liang Chang

Abstract—Detecting changes in two remote sensing images of
the same region but at different times is of great significance in
applications, such as land management and urban planning, which
also prompts the continuous development and progress of change
detection (CD) technology. The current deep learning-based meth-
ods make full use of the excellent feature learning ability of deep
convolution to show excellent detection performance. However,
advances in remote sensing technology also mean that detected
objects have higher resolution and more complex content, which
is more challenging for CD techniques. Strengthening the model’s
ability to learn the context of the detected remote sensing image
can effectively improve the model’s ability to distinguish between
changing features and nonchanging features, thereby achieving
higher-precision detection results. In order to explore and utilize
the contextual information of different levels of features as much
as possible, we design a dual-attention cross fusion module in our
method to realize the cross-learning of contextual information of
different scales during the decoding process. It will be able to
complementarily fuse feature content of different granularities.
We also propose an Atrous Pyramid Difference Module (APDM)
to efficiently capture the difference information of two refined
features by exploiting receptive fields of different sizes. In addition,
in order to further improve the context modeling ability of the
model, we introduce a context transformer block (Cot). Different
from other transformer-based self-attention methods, Cot dynam-
ically guides the learning of the attention matrix by the contextual
information of the input keys. Our method achieves F1-scores of
91.08%/91.93%/79.80% on the LEVIR-CD/WHU-CD/DSIFN-CD
datasets, respectively. Extensive qualitative and quantitative exper-
iments on these datasets validate the effectiveness of our method.

Index Terms—Atrous pyramid difference module (APDM),
change detection (CD), context transformer block, dual-attention
cross fusion module (DCFM), high-resolution remote sensing
image, siamese network.
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I. INTRODUCTION

CHANGE detection (CD) technology in the field of remote
sensing compares and analyzes a pair of high-resolution

remote sensing satellite images reflecting the same area at
different times to obtain the changes of the environment and
ground objects in this area during this period of time [1]. In
practical applications, accurate prediction of these changes can
effectively guide some land planning and management work, in-
cluding urban planning, environmental monitoring, and disaster
assessment [2], [3], [4]. As shown in Fig. 1, the detection results
for these changes are usually described by a binary mask. It uses
positive labels to denote pixels that have changed, appearing as
white, and negative labels to denote pixels that have not changed,
appearing black.

Table I summarizes the characteristics of CD in the field of
current remote sensing images, including data types, detesc-
tion methods, feature extraction methods, application scenarios,
and existing challenges. In the early years of CD technology,
manual visual analysis relying on professional knowledge and
experience was the main way to distinguish the differences in
image changes, which was time consuming and labor-intensive
and difficult to handle large-scale geographical detection [5].
In addition, some commonly used algebra-based processing
methods such as image regression, image difference, and change
vector analysis [6] also have problems of low efficiency and
strong scene limitations. In order to reduce labor and time costs
and effectively deal with higher resolution dual-temporal remote
sensing satellite images, artificial intelligence methods have
been widely tried in CD tasks and initially demonstrated their
advantages. The method based on machine learning has been
actively applied to the CD of remote sensing images and has
effectively improved the accuracy of CD due to its powerful
adaptive and automatic capabilities [7], [8], [9], [10], [11]. The
representative methods mainly include: naive Bayesian [12],
[13], support vector machine [14], [15], random forest [16],
[17], and decision tree [18], but they still have the characteristics
of low computational efficiency. Currently, methods based on
deep convolutional neural networks (CNNs) combine multilayer
operations to explore feature representations at the abstract level,
which have achieved satisfactory results in many computer
vision (CV) tasks including remote sensing image CDs [2],
[19], [20], [21], [22], [23], [24], [25], [26], [27]. It thanks to
CNNs’ superior feature extraction ability, and the proposal of
ResNet [28] and UNet [29] structures has made CNNs more
widely and more effectively applied. However, general CNNs
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Fig. 1. (a) Image before change. (b) Image after change. (c) Ground truth. (d) Results of our method.

TABLE I
CHARACTERISTICS OF THE FIELD OF CD IN REMOTE SENSING IMAGES

still have some insurmountable problems: shallow CNNs can
effectively extract low-level features, such as edges and shapes,
but cannot capture broader contextual information, which affects
the model’s ability to perceive the real world. The deep network
implemented by using skip connections proposed by ResNet can
obtain more effective features and enhance the global explo-
ration performance of the model, but it usually contains a large
number of parameters and requires more computing resources. It
is also difficult for CNNs to balance the combination of low-level
features and high-level features. In the CD task of remote sens-
ing images, in order to identify and segment changing targets
more accurately, it is necessary to distinguish the objects and
backgrounds in the images. Effective exploration of contextual
information can help the model understand the contextual re-
lationship of the target in the surrounding environment, so as
to achieve a reasonable distinction between the environment
and the target. Therefore, the context modeling capability of
the model becomes particularly critical. The use of various
attention mechanisms, such as channel attention [22], [23], [30],
[31], spatial attention [22], [23], [30], cross-attention [26], [32],
[33], and self-attention [2], [19] can directionally strengthen the

context understanding ability of the model at different levels.
They also play an important role in the work of efficient CDs.
However, simply redistributing the weights of a single-level
feature map in the spatial or channel dimension is not enough to
fully capture rich contextual information, because it is limited
to a single granularity of feature information.

In order to fully exploit the spatial context information of
remote sensing images and the long-range connections between
changing objects and backgrounds to achieve high-precision de-
tection, we propose a dual-attention cross fusion context network
(DCFCNet). A dual-attention cross fusion module (DCFM) is
designed to explore the complementary relationship between
adjacent-level features based on multiscale work. In this process,
spatial attention is used to preserve the spatial information of
low-granularity features, whereas channel attention is used to
preserve the channel information of high-granularity features.
These complementary relations can effectively guide learning
an efficient fusion of these features to reasonably and com-
prehensively explore the contextual information of the input
image. We also consider the effectiveness of the fusion method
of bitemporal features and propose an atrous pyramid difference
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module (APDM) to enhance the model’s difference computation
performance. After obtaining the change feature containing dif-
ference information, we additionally use a context transformer
block (Cot) modified based on the transformer’s self-attention
module to optimize the change feature according to its spatial
context information. Cot uses the connection of adjacent keys
to match the query and aggregates with the value to explore the
dynamic and static context of the obtained change feature.

The rest of this article is organized as follows. We next
introduce the deep learning-based CD technique together with
the attention mechanism in the relevant part of Section II. In
Section III, methods we detail the implementation principles
and reasons for using each module of our network. In the exper-
imental part of Section IV, we introduce the used datasets, eval-
uation metrics, experimental implementation details and show
our experimental results including comparison experiments with
advanced methods and ablation experiments.Finally, Section V
concludes this article.

II. RELATED WORK

A. Deep Learning-Based CD Techniques

In the past period of time, deep learning-based CD technology
has recently become a mainstream approach to solve CD in high-
resolution remote sensing images due to its outstanding per-
formance and convenient automation capabilities. The method
based on deep learning can automatically extract multilayer rich
feature information from the input target image and use them to
efficiently model the relationship between feature objects and
the real world, which can help detect change information more
effectively. Deep learning-based methods can be divided into
the following three categories according to the availability of
labeled data during the training phase.

1) Unsupervised methods.
2) Semisupervised methods.
3) Supervised methods [34].
It is expensive to produce ground truth that reflects real

change information for paired high-resolution remote sensing
images, which makes unsupervised methods practically applied
in CD tasks in the field of remote sensing [35]. Unsupervised
deep learning methods can autonomously mine and explore
the inherent structure and regularity of datasets, which can
be more flexibly applied to unlabeled data samples. Zhange
et al.[36] designed an unsupervised network for the CD task
on multispectral images. It first converts the spectral channel of
the image into an abstract feature space through the deep belief
network to distinguish the changed area from the nonchanged
area to obtain effective features, and then uses the feature change
analysis to analyze and obtain different types of changes. Correa
et al.[37] used the linear change features based on tasseled
caps and orthogonal equations to uniformly represent the image
information acquired by multiple sensors when processing the
CD task of multitemporal very high spatial resolution (VHR)
images obtained by different spectral sensors. This process
makes these input images comparable in time for efficient CD in
urban areas. Li et al. [38] proposed an end-to-end unsupervised
CD method applied to hyperspectral images (HSI). This method

uses the existing FCN framework to learn image features and
uses noise reduction modeling to enhance the robustness of the
model during training.

The semisupervised deep learning method has the character-
istics of both supervised learning and unsupervised learning,
which is reflected in the fact that the dataset objects it processes
contain a small amount of labeled data and a large amount
of unlabeled data. While semisupervised methods make full
use of unlabeled data to improve the generalization ability of
the model, they can also be extended with labeled datasets to
improve the diversity and anti-interference performance of the
dataset. Gao et al. [39] proposed a semisupervised network based
on convolutional-wavelet neural networks (CWNNs), which
detects sea ice changes in synthetic aperture radar (SAR) images
based on the change type of pixels. In this method, they applied
the dual-tree complex wavelet transform to the CNN to eliminate
the influence of speckle noise in SAR images. On the other hand,
the strategy of CWNNs virtual sample generation can solve the
problem of limited samples to strengthen the training process.
Saha et al. [40] proposed a semisupervised network based on
graph convolution, which encodes the input multitemporal im-
age into a graph structure through multiscale parcel segmenta-
tion and uses graph convolutional neural network [41] to further
model the relationship between them. This method propagates
information from labeled nodes to unlabeled nodes through an
iterative training process to improve CD performance.

Compared with unsupervised and semisupervised deep learn-
ing methods, supervised methods rely on more labeled data to
correlate the matching degree of accuracy between the output
obtained by the input and the expectation, thereby helping the
model to learn useful information in a directional manner. This
has more general applicability in the background of increasingly
abundant remote sensing image technology and data sets. Since
the idea of residual in ResNet [28] was proposed, the CNN-based
network can achieve a deeper structure and obtain multilevel
feature information and thus achieve a significant effect im-
provement. Early methods based on supervised deep learning
also achieved superior performance by frequently relying on
pure CNN architectures [42], [43]. The UNet structure [29]
realizes the discovery of global and local information of input
image features through the structure of encoding and decoding,
and it has also been proved that it can effectively handle other CV
tasks including CD to achieve scalable applications. Peng et al.
[44] proposed an improved UNet++ network based on UNet to
achieve effective detection of changes in remote sensing images.
It uses dense skip connections to combine multiple scale fea-
ture information to comprehensively obtain change information.
Moustafa et al. [45] designed a CD workflow architecture for
CD in hyperspectral data. This workflow evaluates four variants
based on the UNet structure, including residual UNet, resid-
ual recurrent UNet, attentional residual UNet, and attentional
residual recurrent UNet. It proves that deep neural networks can
combine complex features to enhance CD performance on HSI
data.

In this article, we hope to effectively combine different levels
of useful features to improve the model’s perception of com-
plex changes before computing the difference information of
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bitemporal features. However, it is not enough to simply use
concatenation or addition operations to aggregate features as
in previous CD work based on the UNet structure. There is
an inevitable internal connection between these mutually de-
rived features, so we use the idea of complementary learning
to design a dual-attention intersection module to strengthen
feature learning. On the other hand, in order to highlight the
feature representation that reflects the changing content of two
input images at different times, we utilize multiscale receptive
fields for difference calculation and a contextual self-attention
module to strengthen the self-learning of single changing
features.

B. Attention Mechanism

The attention model first proposed by Bahdanau et al. [46] in
machine translation tasks led to the concept of attention learning
and is currently a research hotspot within the scope of deep
neural networks [47]. From the perspective of human biological
systems, attention is a complex cognitive ability that can quickly
and effectively help us capture interesting and valuable informa-
tion and filter out unimportant content accordingly. Similarly,
attention-based methods can dynamically guide the model to
filter high-value information and weaken the influence of unim-
portant information. It is widely used and improved because of
its superior performance in natural language processing (NLP)
and CV tasks. Jaderberg et al. [48] pioneered the design of a spa-
tial transformer network (STN) considering the computational
inefficiency of ordinary convolutional networks. This network
can spatially transform deep convolutional features to focus on
the most relevant spatial regions of input objects and task goals.
STN can be flexibly inserted into convolutional models and has
shown impressive performance in multiple tasks. In the CD task
of remote sensing images, attention-based methods also show
excellent performance. For example, Liu et al. [22] proposed
a Siamese dual-task-constrained convolutional CD network,
which additionally introduces a dual-attention module (DAM).
DAM combines spatial attention and channel attention to explore
the interdependence of features in both channel and spatial
dimensions. Zheng et al. [6] proposed a high-frequency attention
siamese network to achieve CD for architectural objects. In this
method, a high-frequency attention block is applied to amplify
the high-frequency information of buildings to optimize the
edge detection of objects. In addition, when ordinary attention
methods deal with large high-resolution images, the correlation
between pixels far away in the image tends to weaken and is only
limited to a single image information association, which will
also lead to the loss of important contextual information. Huang
et al. [49] improved the general global attention and proposed
criss-cross network for image semantic segmentation tasks.
The network enhances the ability of global context aggregation
for images and has more efficient computational performance
by learning the context information on each pixel cross path.
Song et al. [33] proposed an axial cross-attention to model the
global representation in different position dimensions by axial
attention and cross-attention. It is designed for semantic segmen-
tation and remote sensing image CD tasks and achieves decent

performance. The self-attention-based transformer [50], which
was originally applied to NLP, has good context learning ability.
It has also been proven to be capable of many CV tasks [51], [52],
[53], [54], [55], [56], [57] and has become one of the hottest arti-
ficial intelligence technologies at the moment. The vision trans-
former proposed by Dosovitskiy et al. [58] applied the trans-
former to the image classification task for the first time. He di-
vides the input image into nonoverlapping image patches and en-
codes them positionally, and then captures and models the global
information among these image patches through multihead self-
attention. Chen et al. [59] utilize a transformer-based approach
to acquire semantic tokens in input images and use them to
model contextual information. These tokens are finally fed back
into the pixel space to refine the feature representation. Liu
et al. [60] combined CNN and transformer to propose a network
applied to farmland CD. After using CNN to extract features, it
uses the transformer module to perform context aggregation on
multiscale features to obtain effective CD effects. Li et al. [61]
proposed a Cot module based on transformer self-attention.
Cot contains two learning branches including static context and
dynamic context feature learning, which no longer only rely
on isolated queries and the relationship between key pairs, but
further explore the context information of adjacent keys. Cot is
flexible and can replace ordinary convolutional layers, so we de-
ploy it in the second half of the network to strengthen the context
learning of single changing features to highlight the changing
parts.

III. METHODOLOGY

In this section, we elaborate our network framework and
introduce the main modules contained in our method one by
one: DCFM, dilated pyramid difference module and context
transformer block. We illustrate how these modules are designed
and what they do. In addition, we introduce the loss function
used by the model and summarize our method in algorithmic
form.

A. Overall Framework of the Network

The UNet structure exhibits its excellent performance in CV
tasks, which can effectively combine multiscale information
of features. Inspired by it and considering the potential of the
connection relationship between adjacent scales, the backbone
of the network we designed adopts a Siamese structure similar to
UNet to further explore multiscale information. It shares weights
for bitemporal inputs. We use a simple residual convolution
block for different levels of feature extraction without using the
backbone of the currently popular ResNet series, which allows
our network to restart training and effectively reduce training
parameters. For the obtained features at different levels, in order
to effectively retain the context information of different scales
contained in them and explore the relationship between different
granularity information, we give up directly using splicing or
element-level addition operations to fuse features. Instead, we
utilize a DCFM during decoding to strengthen the connection
of multiscale information. For the difference calculation of
bitemporal features, we also consider using a multilevel strategy
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Fig. 2. Description of the overall architecture of DCFCNet. Two input images at different times are fed into a Siamese backbone and use different residual blocks
to obtain multi-scale features. DCFM is then used to pairwise and reciprocally learn adjacent size feature information and fuse them. We leverage an atrous pyramid
difference block to enhance the difference computation and a Cot to enrich the contextual relevance of changing features.

Fig. 3. Description of the DCFM.

and propose a APDM to strengthen and obtain more effective
change information. After that, we introduce the context trans-
former block to further explore the context information of the
changing features before obtaining the prediction results. A skip
connection between two context transformer blocks is used to
implement residual learning. The overall architecture of our
network is shown in Fig. 2.

The procedure of our method can be illustrated by Algo-
rithm 1.

B. Dual-Attention Cross Fusion Module

Low-level features contain more detailed content but lack
rich global semantic information. As the features are further

down-sampled and new features are learned through convolution
operations, higher-level features also pay more attention to the
high-level semantics of the image and lose low-grained features.
However, for CD tasks, low-level feature information, such as
edges and shapes, are also important factors to achieve high-
precision segmentation. In order to better balance the informa-
tion of different resolutions of adjacent-level features and retain
meaningful information more effectively, we design a DCFM
to replace ordinary concatenation and addition operations in the
backbone to achieve more efficient integration. This module is
shown in Fig. 3. For two input feature maps of different levels,
DCFM first implements unified preprocessing to ensure that they
have the same size and number of channels. Then, to learn rich
information in the channel dimension of higher level features, we
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Algorithm 1: Implementation Steps of DCFCNet.

Input: I1, I2(A pair of satellite remote sensing
images at different times)

Output: Out
// step1 : Obtaining features through multi−
level residual blocks

for i in {1, 2} do
for j in {1, 2, 3, 4} do

fi,j = ConvBlock(Ii)
end

// step2 : Use DCFM to achieve efficient fusion
of adjacent level features

F′
i = Fi,4

for k in {3, 2, 1} do
F′

i = DCFM(F′
i,Fi,k)

end
end
// step3 : Use APDM to get the change feature
Fd = APDM(F′

1,F
′
2)

// step4 : Use Cot to enhance contextual learning
Fc = Cot(Fd)
F′

c = Fc + Cot(Fc)
// step5 : Use convolution to get the final result
Out = Conv(F′

c)

employ a channel attention module to generate a channel weight
that reweights the dimensionally expanded low-level features.
A spatial attention module is used to directionally discover
useful spatial information of low-level features, which also gen-
erates a spatial weight and reweights the upsampled high-level
features. After cross-exchanging feature information, finally we
fuse the two reattended features and restore the channel through
convolution operation.

Specifically, given two inputs Flow ∈ RC×H×W and Fhigh ∈
RC ′×H/r×W/r, where H and W represent height and width,
respectively, C and C ′ represent the number of channels of the
two input features, and r represents the downsampling multiple.
We first use a bilinear operation to upsample Fhigh to the same
size as Flow and use a 1 × 1 convolutional layer to change the
number of channels of Flow from C to C ′. This process can be
described by the following formula:

F ′
high = Upsample (Fhigh)

F ′
low = Conv1×1 (Flow) . (1)

An average pooling operation is used to perform a Squeeze
operation on F ′

high with a dimension of RC ′×H×W and obtain

a feature with a dimension of RC ′×1×1, followed by two 1 ×
1 convolution operations to realize the excitation operation of
the compressed feature. In this process, the number of channels
of the feature is changed from C ′ to C ′/s, and then changed
from C ′/s to C ′ to reduce the amount of calculation, where the
value of s is set to four. After this, a sigmoid function is used to
generate weights α that model the correlation between feature

channels. We formulate it as

Fse = AvgPool2d(F ′
high)

Fex = B((R(B(FhighW1)))W2)

α = Fex (2)

where W1 and W2, respectively, represent the parameters
learned by two 1 × 1 convolution layers, B(.) represents Batch-
Normal, and R represents the activation function ReLu. We
multiply the obtained weight α and F ′

low element-wise to let
the low-level features learn the semantic responses contained in
different channels and use a convolutional layer to compress the
channel dimension. Next, we use mean and max operations along
the channel dimension to obtain two features with dimension
R1×H×W and concatenate them. A 3 × 3 convolutional layer is
used to compress the channel dimension from 2 to 1 and to model
local spatial relationships. Likewise, we use a sigmoid function
to generate a spatial weight that learns channel correlations. This
process can be described as the expression

Fl2 = Conv1×1(F
′
low ∗ α)

Fl3 = Concat(Meandim=1(Fl2),Maxdim=1(Fl2))

β = Sigmoid(Conv3×3(Fl3)) . (3)

We alternately use weights α and β to reweight F ′
low and F ′

high
and perform element-wise summation. Finally, we obtain the
fusion result after a layer of 3 × 3 convolution operation. We
use the following expressions to describe:

F ′′
low = F ′

low ∗ α
F ′′

high = F ′
high ∗ β

Ffus = R(B(Conv3×3(F
′′
low + F ′′

high))). (4)

C. Atrous Pyramid Difference Module

After obtaining the two paired bitemporal features, it is neces-
sary to further calculate the difference information between them
to obtain the changing state of the two remote sensing images
at different times. Previous work on CD simply uses pixel-level
subtraction or summation operations to obtain change features,
which cannot fully combine the global spatial relationship to cal-
culate more effective change information, which affects the final
detection accuracy. In order to effectively extract the contextual
difference content between bitemporal images, we consider us-
ing multiple convolutional layers with different dilation rates to
enhance the model’s perception of changing objects to improve
the performance of difference detection. We thus propose an
APDM to extract the variation features of the refined bitemporal
features. This module obtains difference information under dif-
ferent receptive fields from multiple levels and finally fuses these
information to obtain rich context and effective change features.
As shown in Fig. 4, APDM contains four parallel branches.
Specifically, we perform the same convolution operation on the
two features Fpre and Fpost obtained in the backbone network
to obtain their local spatial connections statically. We set the
kernel size of the convolutional layers of the first three parallel
branches to three, and set their dilation rates to [1, 6, 12]. These
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Fig. 4. Illustration for the APDM.

Fig. 5. Description of the Cot, which combines dynamic context and static context to enhance self-attention learning.

atrous convolutions are used to ensure as much as possible the
integrity of the captured changing objects. In addition, in order
to combine the global spatial information, we additionally use
an average pooling branch to compress the spatial content of
the bitemporal features. After that, we perform element-level
subtraction and absolute value operations on the multibranch
dual features to obtain multilevel difference information. Finally,
an element-wise addition operation and a 3 × 3 convolutional
layer are used to obtain the final changed features. This process
can be expressed by the following formula:

Fd1 = abs(Conv3×3(Fpost)− Conv3×3(Fpre))

Fd2 = abs(Conva=6
3×3 (Fpost)− Conva=6

3×3 (Fpre))

Fd3 = abs(Conva=12
3×3 (Fpost)− Conva=12

3×3 (Fpre))

Fd4 = abs(μ(ρ(Fpost)))− μ(ρ(Fpre)))

Fd = Conv3×3(Fd1 + Fd2 + Fd3 + Fd4) (5)

where abs(.) represents the absolute value operation, ρ(.) rep-
resents average pooling operation, μ(.) represents upsampling
operation, Conv3×3represents the 3× 3 convolution with Batch-
Normal and ReLu, and a is the atrous rate.

D. Context Transformer Block

In order to further contextually explore feature representations
of changing information, we introduce a Cot before obtain-
ing prediction results. It is adapted from the self-attention in
transformer, as shown in Fig. 5. Unlike the traditional trans-
former’s self-attention, which relies on independent query-key
pair relationships, Cot utilizes the relationship between adjacent
keys of the feature map to explore the contextual information
of the feature for more effective dynamic self-attention learn-
ing. Specifically, for the input X ∈ RC×H×W , the acquisition
method of key, query, and value is described by the following
expressions:

K = XWk
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Q = X

V = XWv. (6)

Among them, K ∈ RC×H×W represents key map, Q ∈
RC×H×W represents queries and V ∈ RC×H×W represents
value map. Embedding matrixWk andWv are learned through a
k × k group convolutional layer (k is set to 3) and a 1 × 1 convo-
lutional layer, respectively. Cot uses k×k convolution to obtain a
context key map, It reflects the local contextual relations between
adjacent keys within a k × k spatial grid and is represented as
a static context. Key map and queries are then concatenated
and passed through two 1 × 1 convolution operations to obtain
a dynamic self-attention matrix. This process is expressed as
follows:

Akq = (Concat(K,Q)Wψ)Wτ (7)

where Wψ and Wτ represent two consecutive 1 × 1 convo-
lutional parameter matrices with ReLU activation functions.
Akq ∈ RH×W×(k×k×h) (h indicates the number of heads, we
set it to 8) represents the multihead self-attention matrix. The
local attention matrix (size: k × k) of each head for each
spatial position of Akq is obtained through query feature and
key map learning including feature context. Compared with the
traditional self-attention method based on isolated query-key
pairs, this additionally strengthens the context mining ability of
features. After that, Cot uses local matrix multiplication just like
typical self-attention [61], [62] to aggregate Akq and the value
map, which matrix-multiplies h local attention matrices of shape
k × k at each spatial location of Akq and all values in the value
map with a k × k grid, respectively

Xqkv = δ(Akq, V ) (8)

where Xqkv ∈ RC×H×W indicates the attended feature map
and δ(.) indicates local matrix multiplication. Note that the
local attention matrix corresponding to each head is only used
to aggregate the value maps that are evenly partitioned along
the channel dimension, and Xqkv is the concatenation of the
aggregated feature maps of all heads.Xqkv is represented as a dy-
namic context because it dynamically learns self-relationships of
features based on key and query. Cot concatenates the dynamic
context representation Xqkv with the static context representa-
tion K and utilizes a channel attention to efficiently obtain the
final result. This process is described as follows:

Xcat = Sumdim=2(Concat(K,Xqkv))

X ′
cat = η(θ(Meandim=2,3(Xcat)))

Xcot = σ(X ′
cat) ∗Xcat (9)

where θ and η represent 1 × 1 convolutional layers with ReLU
activation function,σ represents a Softmax operation andXcot ∈
RC×H×W represents the final output of the context transformer
block.

E. Loss Function

We use the minimized cross-entropy loss to optimize the
model during the training phase, which is formally defined as

follows:

L =
1

H0 ×W0

H,W∑

h=1,w=1

l (Phw, Yhw) (10)

where H0 and W0 represent the height and width of the origi-
nal image, respectively, l(Phw, y) = − log (Phwy) is the cross-
entropy loss, and Yhw is the label of the pixel at (h,w) position.

IV. EXPERIMENTS

The content of this part will introduce the remote sensing
image datasets used, details of experimental implementation,
evaluation indicators, comparative experiments with advanced
methods, and ablation experiments of different modules.

A. Datasets

In this article, we use three public high-resolution datasets for
comparison experiments and ablation experiments, including
LEVR-CD [2], WHU-CD [63], and DSIFN [23]. With these
datasets, we will present qualitative and quantitative experimen-
tal results to illustrate the effectiveness of our method.

LEVIR-CD [2] is a large-scale data set obtained from Google
Earth and applied to remote sensing CD, which contains 637
pairs of remote sensing satellite images with high spatial res-
olution (0.5 m/pixel) at different times, and the size of these
images is 1024× 1024. The dataset records changes in various
regions and scene types between 2002 and 2018 and mainly
reflects the growth and disappearance of urban buildings. We
cropped the original dataset into 7120 images of 256 × 256
without overlap and divided them according to the ratio of 7:2:1
for model training/testing/validation.

WHU-CD [63] contains two aerial images with a size of
32 507 × 15 354 and a spatial resolution of 0.075 m, which
were taken in 2012 and 2016, respectively. This dataset records
changes in 16 077 buildings covering 20.5 km2. We also ob-
tained 6096/762/762 pairs of subimages with a resolution of
256 × 256 by random cropping and image enhancement for
training/validation/testing.

DSIFN-CD [23] is a public data set (2 m/pixel) obtained from
Google Maps. It covers six different cities in China including
Beijing, Chengdu, Chongqing, Shenzhen, Xi’an, and Wuhan.
The paired bitemporal images in this dataset mainly describe
the changing conditions of land cover, such as roads, farmland,
and buildings. We first cropped and enhanced images of cities
other than Xi’an to obtain 3940 pairs of 512 × 512 resolution
subimages for training and validation sets. We crop the Xi’an
image into 48 subimage pairs for the test set.

B. Implementation Details and Evaluation Metrics

Implementation details: We build our models on PyTorch
version 1.7 and train our models on NVIDIA RTX TITAN GPUs
with 24 GB memory. To improve the generalization ability of
the model to data, we perform data augmentation on the input
image including random flipping, Gaussian blurring, random
color dithering, random rescaling, and random cropping. We use
AdamW as the optimizer and set its weight decay to 0.01 with
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a beta of (0.9, 0.999). The training epochs is 200, the batchsize
is set to 12, and the learning rate is initially set to 0.0001, which
decays to 0 through linear decay as the training progresses.

Evaluation metrics: In comparison with other advanced meth-
ods, we chose F1-score and Intersection over Union (IoU) of the
change category as the primary evaluation metrics. In addition,
we also used precision, recall, and overall accuracy (OA) as
additional evaluation metrics. The definitions of these metrics
are as follows:

F1 = 2
Precision · Recall

Precision + Recall

Precision =
TP

TP + FP

Recall =
TP

TP + FN

IoU =
TP

TP + FN + FP

OA =
TP + PN

TP + TN + FN + FP
(11)

where TP indicates the number of true positives, TN indicates
the number of true negatives, FN indicates the number of false
negatives, and FP indicates the number of false positives.

C. Comparison With State-of-the-Art Methods

State-of-the-art methods: We conduct qualitative and quanti-
tative comparisons with ten state-of-the-art methods to verify the
effectiveness of our method, including four methods based on
CNN and attention: FC-EF [64], DTCDSCN [22], IFNet [23]
and SNUNet [65]. Six transformer-based methods: Bit [59],
Changeformer [66], CropLand [60], PaFormer [67], ICIF [68]
and ACABF [33].

1) FC-EF [64]: A network based on FCN and UNet struc-
tures. It first concatenates two input images and then uses
a single branch of convolution processing to get the final
result.

2) DTCDSCN [22]: A method based on dual attention and
FCN, which adds spatial attention and channel attention
to Siamese FCN structure to obtain more salient discrim-
inative features.

3) IFNet [23]: A multiscale feature fusion method based on
attention and FCN, which utilizes the attention module
to effectively fuse the differential features of bitemporal
images and achieves deep supervision by introducing a
CD loss.

4) SNUNet [65]: It is a network based on the Neste-
dUNet [69] structure, which uses dense connections to
fuse multilevel features and uses channel attention for
deep supervision.

5) Bit [59]: A transformer-based approach that abstracts
the input image into semantic tags containing high-level
concepts of regions of interest and leverages transformers
to model context.

TABLE II
QUANTITATIVE COMPARISON OF OUR PROPOSED METHOD WITH OTHER

STATE-OF-THE-ART METHODS ON THE LEVIR-CD DATASET(%)

6) Changeformer [66]: Transformer-based multiscale fea-
ture connection method, which also combines a multi-
layer perception decoder.

7) CropLand [60]: A CNN- and transformer-based ap-
proach that aggregates context information of multiscale
features through three token encoders and token decoders
built on the transformer structure.

8) PaFormer [67]: A transformer-based end-to-end method
for building CD. It combines prior extraction and context
fusion by learning prior-aware transformers

9) ICIF [68]: An intrascale cross-interaction and interscale
feature fusion network based on transformer and CNN,
which can fully exploit the potential of CNN and trans-
former integration.

10) ACABF [33]: A method combining CNN and trans-
former, which utilizes them to effectively combine global
and local information. An axial cross-attention module is
used to fuse global feature information along the height
and width dimensions of the image.

Results of comparative experiments: We compared LEVIR-
CD, WHU-CD, and DSIFN-CD with advanced methods, in-
cluding quantitative evaluation index comparisons as given in
Tables I– III and qualitative visual comparisons as shown in
Figs. 6–8.

According to the results in Table II, in the LEVIR-CD dataset,
DCFCNet achieves the best performance compared with other
methods except precision. Among these indicators, specifically,
the F1/IoU/OA of our method obtained 91.08%/83.62%/99.11%
respectively, compared with the second-ranked ICIF, which
increased by 0.27%/0.31%/0.03%. In comparison with bit in
Recall, our method achieves 89.51%, which is 0.14% higher
than BIT. In addition, in the visualization results shown in
Fig. 6, DCFCNet achieves a higher accuracy, which is reflected
in having fewer false positive parts (red) and false negative
parts (green). Take (f) of Fig. 6 as an example. Affected by
lighting conditions and environmental factors, it is difficult to
distinguish the building targets above and below that will be
demolished in image A, which leads to the loss of the building
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Fig. 6. Visualization of the results of our method compared with other methods on LEVIR-CD. For easier visualization, different colors are used to explain the
variation, where white indicates true positives, black indicates true negatives, red indicates false positives, and green indicates false negatives.
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TABLE III
QUANTITATIVE COMPARATIVE EXPERIMENTS BETWEEN OUR PROPOSED

METHOD AND OTHER STATE-OF-THE-ART METHODS ON THE WHU-CD
DATASET(%)

targets in image A in the results of other methods. Our method
can accurately preserve these targets. On the other hand, it can
be observed from Fig. 6(d) that other methods mistakenly judge
the nonbuilding above the image B as the detection target. Some
methods also ignore nearby building objects resulting in too
many false positive and false negative regions. Our method
can significantly alleviate these situations and achieve more
complete detection and segmentation. These results demonstrate
that our method outperforms state-of-the-art methods on CD
on the LEVIR-CD dataset, probably because DCFCNet can
comprehensively and effectively capture context information of
images. At the same time, the edge details of the resulting mask
can be improved because we complementarily learn information
of different granularities from features of different resolutions.

Table III gives the quantitative comparison between DCFC-
Net and other methods in the WHU-CD dataset. Compared
with other methods, DCFCNet has achieved a significant im-
provement. In the comparison of F1/IoU indicators, our method
obtains 91.93%/85.06%, which is 1.16%/1.97% higher than the
second best ICIF, respectively. As for OA and Recall, DCFC-
Net got the first ranking of 99.11% and 90.20% respectively.
Fig. 7 shows qualitative visualization results on WHU-CD. Since
WHU-CD mainly includes the growth and disappearance of
buildings, in order to more fully demonstrate the CD capability
of our method, we select some images containing objects of
different sizes and styles for comparison. Fig. 7(a)–(f) shows
that DCFCNet has an advantage in yOA and has better details.
Fig. 7(a) shows that our method has better localization ability
and can accurately detect the positions of two white rectangular
buildings. In Fig. 7(b)–(f), our method shows more complete
and accurate results than other methods when facing irregular
objects. These results show that DCFCNet can achieve better
performance than other methods on the WHU-CD dataset.

The quantitative comparison results on DSIFN-CD are given
in Table IV, and DCFCNet performs best except for Precision
and OA. In the comparison with F1/IoU indicators, DCFC-
Net achieved 79.80%/68.39%, which is 1.74%/1.89% higher
than the second-ranked one. As for Recall, DCFCNet obtained

TABLE IV
QUANTITATIVE COMPARATIVE EXPERIMENTS BETWEEN OUR PROPOSED

METHOD AND OTHER STATE-OF-THE-ART METHODS ON THE DSIFN-CD
DATASET(%)

80.67%, which is 1.16% higher than the second-ranked ICIF.
Fig. 8 shows the visualization results of our method and other
comparative methods on the DSIFN-CD dataset. We also se-
lected some images with different structures in the test set of
DSIFN-CD with lower spatial resolution for comparison. As
can be seen from Fig. 8(a)–(f), DCFCNet can achieve effective
detection for both simple and complex objects and can suppress
the appearance of false positive regions.

Fig. 9 presents the details of the visualization results of the
qualitative experiments on the three datasets. From these results,
it can be seen that our method has better edge details and can min-
imize the misjudgment of objects.In addition, through the test
quantitative results obtained in different data sets, it can be found
that compared with other methods, our method has achieved sig-
nificant improvements in IoU and F1-score. However, like other
state-of-the-art methods, our method ignores some subtle object
changes on the DISFN-CD dataset with low spatial resolution,
as shown in Fig. 8(a), (b), and (d). This may be mainly because
DSIFN-CD’s division is based on the entire building area as tar-
get, which makes it difficult to detect small changing objects with
indistinct characteristics in complex scenes. On the other hand,
LEVIR-CD and WHU-CD are aimed at different architectural
targets and have more significant image details. According to
Figs. 6 and 7, we can find that our method shows more excellent
results for higher resolution LEVIR-CD and WHU-CD, and our
method will also be applicable to the high resolution dataset of
advanced remote sensing technology in the future.

D. Ablation Experiments

Our proposed method aims to enhance the contextual explo-
ration of bitemporal images and the cross-learning of features at
adjacent scales. We conduct ablation experiments on the three
modules included in DCFCNet to demonstrate their effective-
ness. Table V gives the quantitative ablation experimental results
for DCFM, APDM, and Cot, where the baseline (NO.1) uses an
addition-based fusion module and a subtraction-based difference
module to replace DCFM and APDM.
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Fig. 7. Visualization of the results of our method compared with other methods on WHU-CD. For easier visualization, different colors are used to explain the
variation, where white indicates true positives, black indicates true negatives, red indicates false positives, and green indicates false negatives.
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Fig. 8. Visualization of the comparison results of our method and other methods on DSIFN-CD. For easier visualization, different colors are used to explain the
variation, where white indicates true positives, black indicates true negatives, red indicates false positives, and green indicates false negatives.



8956 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 9. Detail presentation of visualization images of different methods on three datasets. (a) Detail image on LEVIR-CD, which corresponds to (b),(d), and (f)
in Fig. 6. (b) Detail image on WHU-CD, which corresponds to (c),(d), and (e) of Fig. 7. (c) Detail image on DSIFN-CD, which corresponds to (b),(c), and (f) of
Fig. 8.

Ablation on DCFM: DCFM is used to fuse and decode fea-
tures of two adjacent resolutions to complement each other in
terms of channel and spatial dimensions. We replace DCFM with
a simple fusion module based on addition operations to achieve
its ablation. In this alternative fusion process, the input low-level
features with larger size are expanded by a 1 × 1 convolution
with ReLU activation function to expand the number of channels
and the high-level features are upsampled to the same size as the
low-level features by a bilinear interpolation operation. After

that, an element-wise addition operation and a 3 × 3 convolu-
tional layer are used to combine and adjust the two processed
features. NO.5 in Table V gives the results of DCFCNet on three
data sets after removing DCFM alone. Compared with the com-
plete DCFCNet (NO.8), the F1-score of DCFCNet is reduced
by 1.16%/3.84%/5.33% on LEVIR-CD/WHU-CD/DSIFN-CD
when using common fusion modules, and the IoU is reduced
by 3.27%/4.73%/6.12%, respectively. In addition, NO.2 in
Table V gives the results of adding DCFM alone on the baseline
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TABLE V
ABLATION EXPERIMENTS (%) OF DIFFERENT MODULES ON DIFFERENT DATA SETS IN OUR METHOD REPORT THE RESULTS OF F1-SCORE AND IOU

TABLE VI
ABLATION EXPERIMENT OF APDM

TABLE VII
ABLATION EXPERIMENTS (%) OF COT IN ENCODER (EC) AND DECODER (DC)

(NO.1). F1-score and IoU increased by 2.06%/5.50%/3.92%
and 1.86%/4.69%/4.29% respectively. These results show that
DCFM can effectively improve the CD capability of the model.

Ablation on APDM: APDM uses multibranch atrous convo-
lution and pooling operations to mine the difference features
of dual-time features under different sizes of receptive fields,
which is conducive to enhancing the difference calculation per-
formance of the model. To verify the effectiveness of APDM, we
replace it with a subtraction-based difference module to obtain
variation features. This module uses element-wise subtraction
and absolute value operations to compute differences and utilizes
stacked convolution operations to enhance the representation of
changing features. NO.7 in Table V gives the performance of our
method on three datasets when ablating APDM alone. Compared
with NO.8, when the model removes APDM, F1-score, and IoU

are reduced by 0.93%/1.55%/3.58% and 1.63%/1.92%/3.93%,
respectively, on the three data sets. On the other hand, when
adding APDM alone on the baseline (NO.3), F1-score and IoU
increased by 2.15%/3.98%/4.79% and 1.07%/4.20%/4.29%, re-
spectively. In addition, we also conducted experiments on dif-
ferent configurations of the dilation rate of the parallel hollow
convolution branch in APDM on different data sets, aiming to
select the most suitable configuration parameters. As given in
Table VI, we experimented with different dilation intervals,
including 0, 2, 4, 6, 12, and 24. According to the results in
Table VI, when the dilation rate is 6, the model achieves the
best results on the three data sets, so we choose it as the final
parameter configuration of APDM.

Ablation on Cot: Cot performs further contextual self-
attention learning on the obtained change features to highlight
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the difference, which strengthens the dynamic context learning
ability of the model. We verified its effectiveness by removing
and adding Cot separately as given in NO.4 and NO.6 of Table V.
When we remove Cot from DCFCNet, the F1-score and IoU
are reduced by 2.26%/3.26%/6.62% and 4.05%/3.13%/6.8%
on the three datasets, respectively. When Cot is added on the
baseline alone (NO.4), F1-score and IoU are improved by
2.99%/6.75%/8.85% and 2.94%/8.03%/12.48% on the three
datasets, respectively. In addition, we, respectively, use Cot in
the encoder and decoder to perform ablation experiments on its
location as shown in Table VII. This verifies that our strategy
for using Cot is reasonable. These results indicate that Cot plays
an important role for DCFCNet.

V. CONCLUSION

In this article, we propose a DCFCNet called DCFCNet
applied to the task of CD in high-resolution remote sensing
satellite images. In this network, we propose a novel DCFM
to make up for the information loss brought by the extraction
of multiscale features. DCFM complementarily helps adjacent-
level features learn their respective advantages in spatial and
channel dimensions, which helps to fully explore and preserve
contextual information of multiscale images to enhance feature
representation. To obtain the difference information of paired
images to a greater extent, we also propose a novel APDM. This
module realizes the feature difference calculation of different
sizes of receptive fields through different dilation ratios to obtain
a change feature containing multi-scale context information. A
Cot is used to combine static and dynamic context informa-
tion in the change feature to further enrich the discovery of
contextual content of the change feature. We conduct extensive
experiments on different datasets for qualitative and quantitative
comparison with state-of-the-art methods. We also verify the
effect of each module individually using ablation experiments.
These experimental results demonstrate the effectiveness of our
method.
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