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Abstract—Maritime surveillance is extensively concerned by
worldwide authorities, in which ship recognition in synthetic aper-
ture radar (SAR) images is a significant and fundamental compo-
nent. Though some development has been achieved in the SAR
ship recognition task, two areas remain inadequately explored,
which are the comprehensive utilization of multiscale features and
the deployment of the prior knowledge of the ship shape. In this
article, a novel ship augmented attention network (SA2Net) for
ship recognition is proposed, which comprehensively utilizes the
multiscale features and integrates the ship shape prior to the end-
to-end network. On one hand, due to the unequal effects of different
scales, a scale attention module is proposed to adaptively select
and assign weights to desired feature scales while disregarding
irrelevant scales. Moreover, a feature weaving module (FWM) is
constructed to merge semantic and detailed features produced
by the high-to-low backbone, enriching representations across all
scales of ship targets. On the other hand, in order to incorporate the
priory knowledge of the ship shape into the network, we develop
a feature augmentation module (FAM) to further boost the ship
recognition accuracy. This module can provide rectangular recep-
tive fields that align with the shape of ships, wherein a limitation
encountered with traditional square convolutions. Comprehensive
experiments on representative three- and six-category OpenSAR-
Ship tasks and seven-category FUSAR-Ship tasks show that our
SA2Net demonstrates superior performance when compared to the
current state-of-the-art methods.

Index Terms—Synthetic aperture radar (SAR), ship recognition,
convolutional neural networks (CNNs), shape priory knowledge,
feature augmented module, scale attention module (SAM).

I. INTRODUCTION

NOWADAYS, maritime surveillance is extensively con-
cerned by worldwide authorities. As the basis of
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maritime surveillance tasks, ship monitoring plays a key role
in both military and civil activities, such as trade management,
marine traffic, transportation monitoring, and national maritime
safeguarding [1], etc. Automatic identification system (AIS) and
vessel traffic service are conventional techniques for ship moni-
toring. However, neither of these techniques is enough to achieve
general purpose vessel monitoring with the demanded indepen-
dence, temporal coverage, and spatial coverage [2]. Synthetic
aperture radar (SAR), with all-day monitoring capability, can
monitor large areas independently of meteorological conditions
[3], which stands out as an effective substitution and has been
extensively studied for ship recognition in recent decades.

In the past few decades, many hand-crafted feature methods
have been introduced for SAR ship recognition, such as
scattering statistics features, texture features, geometric
features, moment features, scale-invariant features [4], and
HOG features [5]. To increase the recognition accuracy, some
machine learning methods are jointly used, including K-nearest
neighbor (KNN) [6], support vector machine (SVM) [7], and
random forest (RF) [8].

Although these traditional recognition algorithms have pro-
duced good results, they are always based on hand-crafted
features. These features may be suitable for specific data but
lack adaptability. In contrast, deep learning diverges from con-
ventional approaches as it leverages neural networks to au-
tonomously extract features through end-to-end learning. This
data-driven paradigm has achieved remarkable success across
various domains, particularly in the realm of image recog-
nition [9]. In recent years, the convolutional neural network
(CNN)-based methods tend to be the mainstream for SAR ship
recognition [10], [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25]. To improve recognition
accuracy, many studies have been put forward and achieved
good SAR ship performance in various aspects. To solve the
issue of class imbalance, Li et al. [12] proposed a dense residual
network (DRNet) combining upsampling data augmentation and
ratio batching. Shao et al. [13] proposed a balanced batch-based
sampling method to avoid learning imbalance during training.
Zhang et al. [14] presented a method for training CNN that
integrates deep metric learning (DML) with progressively bal-
anced sampling. Raj et al. [15] proposed a one-shot learning-
based deep learning model. To address the problem of small
training dataset due to few available data, Lu et al. [16] es-
tablished a CNN with data augmentation. Yuanyuan et al. [17]
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conducted some small sample SAR ship recognition research
based on transfer learning. To tackle with the challenge of large
intraclass variation and small interclass separation of ships,
Xu and Lang [18] and He et al. [19] used a DML scheme to
expand the distance between different classes. To resolve the
weak robustness of individual models in high risk scenarios,
Zheng et al. [10] introduced an automated approach for ensem-
ble modeling of heterogeneous deep convolutional neural net-
works (DCNNs), employing a two-stage filtration process. This
self-configuring algorithm dynamically determines the optimal
combination of base classifiers by automatically identifying the
suitable types and quantities.

Although these approaches have achieved notable success,
the majority of the aforementioned works tend to focus on
iterative modifications of network structures, training trick op-
timizations, loss function adjustments, and so on, rather than
design a task-specific network from the characteristics of SAR
image and empirical knowledge of the ship. In recent years, an
expanding body of scholars has taken notice of this phenomenon.
Huang introduced a new Deep SAR-Net [20] that considers
complex-valued SAR images to learn the spatial texture infor-
mation and backscattering patterns of ships. Zhang et al. [21]
fused HOG features into CNNs and proposed four mechanisms
to ensure superior recognition accuracy. Zeng et al. [22] designed
a hybrid channel feature loss that jointly utilizes the information
contained in the polarized channels (VV and VH). He et al.
[23] established a group bilinear pooling and a MPFL loss to
fully exploit the dual-polarized SAR images for promising fine-
grained ship recognition. Xiong et al. [24] developed a miniature
hourglass region extraction network dedicated to dual-channel
feature fusion. Zhang and Zhang [25] designed a SE-LPN-DPFF
to perform dual-polarization feature fusion and balance each
polarization feature’s contribution. Although the above methods
achieve good results, leaving room for further improvement in
the performance of the network. First of all, the comprehensive
utilization of multiscale features holds paramount importance
in enhancing SAR ship recognition, an area that remains inad-
equately investigated. Ships usually appear with diverse sizes,
which is challenging to achieve state-of-the-art (SOTA) recog-
nition result by using a single scale features of CNN [26]. This is
why maximizing the use of multiscale features is crucial. Xu [27]
and Zhang [21] have made some preliminary explorations to deal
with this issue. However, they simply flattened the multiscale
features without fusing them, which resulted in a failure to pro-
vide sufficient features at all scales. In addition, these previous
works aggregated multiscale features of CNN to recognize ships
using unified weights, e.g., a simple summation, which ignores
the different importance of different scales. Second, the ship
class in SAR imagery has special shape prior characteristics. To
the best of our knowledge, no work has yet integrated the ship
shape prior into an end-to-end network to perform SAR ship
recognition.

Based on the analysis above, we propose a task-specific ship
augmented attention network (SA2Net) for comprehensively
utilizing the multiscale features and integrating the ship shape
prior into an end-to-end network. Among SA2Net, the feature
weaving module (FWM) is designed to generate rich and reliable
representations at all scales. The scale attention module (SAM)

has been constructed to select and assign weights to relevant
feature scales while disregarding irrelevant scales. The feature
augmentation module (FAM) has been designed to enhance ship
features, which incorporate the priory knowledge of the ship
shape. Comprehensive experiments demonstrate the superiority
of our SA2Net compared with several SOTA methods. In con-
trast to previous works, the novelties and contributions can be
summarized as follows:

1) We proposed a SA2Net that jointly applies SAM and FWM
to fully exploit the multiscale features of ship targets. The
shallow scale features contain more detailed information
while deep scale features contained more semantic in-
formation, which is unequally effective for recognition.
Instead of simply combining different-scale features, the
proposed SAM is developed to control information flow
of different scales using a leaned weight vector, and then
adaptively selects and assigns weights to desired feature
scales while disregarding irrelevant scales. The proposed
FWM aggregates semantic and detailed features of dif-
ferent scales by integrating high-level semantic informa-
tion and low-level detailed information through a similar
weaving process, resulting in rich representations at all
scales.

2) FAM is first proposed in this article to leverage empiri-
cal knowledge regarding ships, which commonly exhibit
elongated and narrow characteristics. In contrast to prior
approaches that employ square convolution kernels for
ship feature extraction, the FAM introduces rectangular
convolutions. This design can provide rectangular recep-
tive fields that align with the shape of ships, a limitation
encountered with traditional square convolutions.

3) We conduct extensive experiments on benchmark Open-
SARShip [28] and FUSAR-Ship [29]. The results show
that SA2Net exceeds existing methods, including tradi-
tional feature-based methods, classic object recognition
CNNs, and novel task-specific SAR ship recognition
CNNs. The experimental results demonstrate the effec-
tiveness of our method.

The rest of this article is organized as follows. In Section II,
we present the details of our proposed SA2Net. In Section III,
implementation details are reported, and extensive experimental
results are provided. Section IV presents the conclusion.

II. METHODOLOGY

A. Network Structure

The overall framework of our ship augmented attention net-
work (SA2Net) for SAR ship recognition is illustrated in Fig. 1.
To achieve ship recognition with diverse sizes, we propose SAM
and FWM, which comprehensively utilize multi-scale features.
Besides, FAM is designed to enhance ship features by incorpo-
rating the priory knowledge of the ship shape. In SA2Net, the
pretrained ResNet-50 [30] has been leveraged as the backbone
for its enormous performance in feature extraction. Given a SAR
ship image, the FWM integrates high-level semantic information
and low-level detailed information through repeatedly fusing
the representations produced by the high-to-low backbone to
obtain better representations at all scales. Besides, in view of
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Fig. 1. Overall architecture of ship augmented attention network (SA2Net). The architecture consists of a backbone for feature extraction and three modules to
refine the extracted features for final precise recognition. ResNet-50 is adopted as the backbone due to its impressive performance. The three modules are FWM,
FAM, and SAM, respectively.

the distinctive prior characteristics pertaining to the shape of
ship class, FAM has been devised to augment ship features by
integrating the prior knowledge of ship shape. At last, to select
the effective feature scales for the final recognition, SAM utilizes
the relevance scores to select and assign weights to relevant
feature scales while disregarding irrelevant scales. This network
guarantees more accurate recognition for SAR ship to squeeze

Algorithm 1: SA2Net for SAR Ship Recognition.

Given: A gray SAR ship image X ∈ R224×224×1;
Output: Recognition result OutSA2Net ∈ Rnclass×1.
1: Image X loading, do preprocessing on X to get

X ∈ R224×224×3, hyperparamaters setting;
2: Extract hierarchical feature maps C3,C4,C5 with

backbone ResNet-50, build enhanced feature maps
M3,M4,M5 with C3,C4,C5.

3: Stage1 :
4: Input Ml with l as {3, 4, 5}, obtain Mlh, Mlv,

Mll,
Mlr, Mls by five parallel branches with distinct
convolution kernels;

5: Concatenate Mlh, Mlv, Mll, Mlr, Mls to get M′
l;

6: Perform composite function comp(·) on M′
l to get

output Al.
7: Stage2 :
8: Generate feature vector of each scale fi with Al by

GAP;
9: Concatenate fi and obtain the learned scale

relevance
scores w with FC and Softmax function;

10: Gain final enhanced features f̃ with fi and w;
11: Predict the SAR ship recognition scores

OutSA2Net = softmax(FC(f̃)).

out the benefits of the multiscale features and integrated the ship
shape prior. Details are provided in the Algorithm flow below.

B. Feature Weaving Module

Accomplishing robust SAR ship recognition across diverse
sizes proves challenging when using a single-scale feature
representation from CNN. To address this issue effectively,
leveraging the multiscale features obtained from intermediate
layers of the CNN presents a viable solution. In CNN, the
receptive field of layers become larger as the layer becomes
deeper. The feature maps obtained from the lower layer focus
on detailed information while the feature maps obtained from the
deeper layer focus on semantic information. Inspired by HRNet
[31], with a focus on sufficiently making use of multiscale
features to obtain rich representations at all scales, FWM is
proposed.

As shown in Fig. 2, FWM fully mines and combines the
feature maps of different scales through a feature fusion mecha-
nism called feature weaving. It generates reliable rich feature
representations through repeatedly fusing the representations
produced by the high-to-low backbone convolutional layers. The
details of FWM are presented as follows.

ResNet-50 is utilized as the backbone. The output of the
last layer of different residual blocks in Conv3, Conv4, and
Conv5 levels of ResNet-50 is indicated as Ci(i = 3, 4, 5). The
specific pattern of generating each Mi layer corresponding to
Ci layer is shown in Fig. 2(a), with i ∈ {3, 4, 5}. For higher
level, same level and lower level features, the features are pro-
cessed by bilinear interpolation upsampling, 1× 1 convolution,
and convolution layer downsampling, respectively. In this step,
the channel dimension is uniformly adjusted to 256. Finally,
different layers are consolidated with elementwise summation.
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Fig. 2. (a) Overall depiction of FWM is presented. Subsequently, (b)–(d)
elaborate on the specific details of generating M3, M4, and M5, respectively.
Moreover, it is worth noting that the pathway represented by the blue square
signifies upsampling utilizing bilinear interpolation, the pathway indicated by
the green square signifies downsampling using one or two 3 × 3 convolutions,
and the pathway denoted by the red circle signifies aligning channel dimensions
through 1 × 1 convolutions.

The operations of FWM are computed as follows:

⎧⎨
⎩
M3 = ConvU(C5) + ConvU(C4) + Conv(C3)
M4 = ConvU(C5) + Conv(C4) + ConvD(C3)
M5 = Conv(C5) + ConvD(C4) + ConvD(C3)

(1)

where Conv(·) denotes 1 × 1 convolution to align the channel
dimensions, ConvU(·) is the bilinear interpolation upsampling,
and ConvD(·) indicates 3 × 3 convolution with stride 2 down-
sampling.

C. Feature Augmentation Module

As shown in Fig. 4, the ship class in SAR images exhibits
a prominent geometric characteristic, a large aspect ratio. In
addition, in contrast to natural images captured from a horizontal
view, SAR images are acquired from a top-down perspective.
This leads to objects appearing at arbitrary orientations. Tradi-
tional convolution operations commonly employ square kernels
such as 3 × 3, 5 × 5, as they are well-suited for capturing
block-like structures like vehicles and buildings. However, the
unique shape characteristics of the ship class, which exhibits
a strip-like structure and arbitrary orientations of ships pose
challenges for effective extraction using traditional convolu-
tion kernels. Therefore, rectangular convolutions with differ-
ent directions are introduced, which can provide rectangular
receptive fields to match the shape and arbitrary orientations
of ships. We develop the FAM to replace the traditional square
convolution with a combination of a square convolution and
four rectangular convolutions implemented through separate
branches. The original features are preserved by the square
convolution branch, while horizontal convolution, vertical con-
volution, left diagonal convolution, and right diagonal con-
volution refine the details by providing rectangular receptive
fields.

Fig. 3 demonstrates the structure of FAM. The parallel or-
ganization of five branches with different kernel sizes are con-
structed. Assuming the convolutional layers take a C-channel
feature map as input. As illustrated in Fig. 3, FAM incor-
porates rectangular convolutions in four distinct orientations:
horizontal, vertical, left diagonal, and right diagonal. Concretely,
for the replacement of a 3 × 3 square kernel S ∈ R3×3×C ,
FAM comprises five parallel branches including four rectangular
convolution kernels and a square convolution kernel. The hori-
zontal kernel S1 ∈ R1×3×C , vertical kernel S2 ∈ R3×1×C , left
diagonal kernel S3 ∈ R[leftdiag ]×C , and right diagonal kernel
S4 ∈ R[rightdiag ]×C are rectangular kernels that align with the
shape of ships. Let Ml ∈ RH×W×C be the input of FAM, with
l as {3, 4, 5}. X is fed into five juxtaposed paths. Then, five
output feature maps Mlh, Mlv , Mll, Mlr, Mls ∈ RH×W×C are
obtained. Then, the concatenate operator of five feature maps
is performed to obtain M ′

l ∈ RH×W×5C . This progress can be
described as

M ′
l = cat(Mlh,Mlv,Mll,Mlr,Mls)

= cat(Ml ∗ S1,Ml ∗ S2,Ml ∗ S3,Ml ∗ S4,Ml ∗ S) (2)

where ∗ indicates the convolution operation, and cat is the
concatenate operator.

We define comp(·) as a composite function to get the final
output of FAM. comp(·) is consist of three consecutive opera-
tions: batch normalization (BN), a rectified linear unit (ReLU),
and a 3× 3 convolution (conv). As for Ml, the corresponding
output of FAM can be denoted as

Al = comp(M ′
l) (3)

The reason why we employ cat(·) operator and comp(·)
function, rather than simply summation of the output of five
branches is motivated by DenseNet [32]. First of all, when Mlh,
Mlv , Mll, Mlr, Mls are combined by summation, which may
impede the information flow in the network [32], leading to ship
feature extraction insufficiency. Second, the statistical charac-
teristics of the five juxtaposed branches differ from each other,
e.g., there may be large differences in the mean and variance
of the pixels in each branch. So it is important to perform the
batch normalization (BN) [33] layer after concatenation, rather
than before. This is the ingenuity of comp(·) function. Applying
the BN layer before the concatenation operator may result in
an internal covariate shift in new feature maps, reducing the
generalization capability of the network. Finally, the outputs
A3, A4, A5 are fed into SAM for the next step.

D. Scale Attention Module

Most previous works aggregate multiscale features of CNN to
recognize ships using unified weights, e.g., a simple summation,
which ignore the unequal effectiveness of different scales. To
address this problem, we propose SAM, as shown in Fig. 5. This
module weights desired feature scales according to the relevance
scores between each scale and final recognition probabilities,
selecting the effective feature scales while excluding irrelevant
scales.
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Fig. 3. Illustration of the FAM. In this figure, the FAM contains five parallel layers with kernel sizes.

Fig. 4. SAR ships with four directions. (a) Right diagonal. (b) Left diagonal.
(c) Horizontal. (d) Vertical.

Fig. 5. Illustration of the SAM. It adaptively selects and assigns weights
to desired feature scales while disregarding irrelevant scales. C denotes the
concatenate operator. ⊗ is channelwise product and ⊕ is elementwise sum.

Denote A3, A4, A5 as a set of multiscales feature maps. We
embed the three feature maps of each scale into a vector fi ∈ Rd

respectively for global information by global average pooling
(GAP), where d = 256, and cascade these feature vectors by the
following process:

f = cat(f1, f2, f3)

= cat(GAP (A3), GAP (A4), GAP (A5)) (4)

where f ∈ R3d is the feature vector after concating.
To make the module automatically select the desired feature

scales to obtain preferable recognition scores, the designed SAM
can generate a learned scale relevance scores. The weight p =
[w1, w2, w3] ∈ R3 of selecting feature scales for each specific
recognition score can be described as

wi = Softmax
(
wa

T f
)

(5)

where wa ∈ R3d×3 is the attention weight, which combines fea-
tures of distinct scales into a weight vector with three dimension.
Based on the above weight predictor valueswi, the feature scales
fi can be weighted and summed to gain the final enhanced
features f̃ ∈ Rd for preferable SAR ship recognition results:

f̃ = (w1 ⊗ f1)⊕ (w2 ⊗ f2)⊕ (w3 ⊗ f3). (6)

Subsequently, a fully connected (FC) layer and a softmax
function are needed for achieving the final recognition.

III. EXPERIMENTS AND RESULTS

In this section, we will perform extensive experiments to
verify the effectiveness of the proposed method on benchmark
dataset OpenSARShip and FUSAR-Ship. First, we describe the
dataset and give the dataset settings. Then, we present the im-
plementation details, including image preprocessing, parameter
settings, evaluation metrics, loss function, and backbone. Next,
the experimental results are demonstrated for OpenSARShip
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Fig. 6. SAR ship samples in OpenSARShip. (a) Bulk carrier. (b) Cargo.
(c) Container ship. (d) Fishing. (e) General cargo. (f) Tanker.

TABLE I
TRAINING-TESTING DIVISION OF THE THREE-CATEGORY DATASET IN

OPENSARSHIP

under a three-category recognition task, a six-category recog-
nition task, and a FUSAR-Ship under seven-category task. In
addition, we perform a comprehensive comparison between
the proposed method and some SOTA methods, encompassing
traditional classifiers, classic CNN methods, and modern CNN
methods designed for SAR ship recognition. Ablation studies
and discussion are conducted at last.

A. Dataset

1) OpenSARShip: In our study, we utilize OpenSARShip,
a benchmark dataset that comes from the Sentinel-1 satel-
lite. OpenSARShip possesses five critical properties, namely
specificity, large-scale coverage, diversity, reliability, and pub-
lic availability, which collectively contribute to its significant
value in practical applications. The ship labels in the Open-
SARShip dataset are expertly assigned through a semiauto-
mated process, with support from AIS, ensuring their accu-
racy. The dataset utilized in our experiment is ground range
detected (GRD) products captured by the Sentinel-1 IW mode.
It possesses a resolution of 20 m × 22 m and a pixel size of
10.0 m × 10.0 m in both the azimuth and range directions
[28]. Based on OpenSARShip, two recognition datasets are con-
ducted. Fig. 6 shows some SAR ship samples in OpenSARShip.

a) Three-Category: Container ships, tankers, and bulk carriers
are chosen to establish the representative dataset. These three
classes of ships are the most common and representative ships
occupying 80% of the international shipping market [28]. The
number of each class of ship is uneven in OpenSARShip. To
avoid the effect of class imbalance, the number of training
samples in each class is equal. Table I shows the training-testing
sets of the three-category dataset.

TABLE II
TRAINING-TESTING DIVISION OF THE SIX-CATEGORY DATASET IN

OPENSARSHIP

TABLE III
TRAINING-TEST DIVISION OF THE FUSAR-SHIP

b) Six-Category: On the basis of the three category, another
three classes, cargo ship, fishing, and general cargo are selected
to organize one more challenging six-category recognition ex-
periment. Based on the detailed ship classes provided by the
Maritime Traffic AIS information, six ship classes are specifi-
cally selected for analysis as their sample numbers exceed 200.
Furthermore, categories with insufficient samples in the raw
OpenSARShip dataset are excluded to ensure a more reasonable
experimental setup. Table II shows the training-testing sets of
the six-category dataset.

2) FUSAR-Ship: Another benchmark dataset FUSAR-Ship
is introduced to further confirm the effectiveness of SA2Net. The
high-resolution dataset FUSAR-Ship originates from China’s
Gaofen-3 (GF-3) satellite, the country’s maiden civil C-band
fully polarimetric spaceborne SAR. The GF-3 SAR images
possess an azimuth resolution of 1.124 m and a slant range
resolution ranging from 1.700 to 1.754 m. The FUSAR-Ship
dataset is assembled through an automatic SAR-AIS matchup
procedure encompassing over 100 GF-3 scenes, containing over
5000 ship image chips integrated with AIS information. In this
article, FUSAR-Ship consists of seven main categories, namely
bulk carriers, container ships, fishings, tankers, general cargo
ships, other cargo ships, and others. Table III shows the ship sam-
ple numbers of each category in FUSAR-Ship. Fig. 7 presents
several SAR ship samples from the FUSAR-Ship dataset.

B. Implementation Details

All the experiments are implemented on a personal computer
(PC) with NVIDIA GeForce RTX 2060 VENTUS (12G) GPU
and 24G RAM. The software development process is carried out
within the Python programming language environment, utilizing
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Fig. 7. SAR ship samples in FUSAR-Ship. (a) Bulk carrier. (b) Container ship.
(c) Fishing. (d) Tanker. (e) General cargo. (f) Other cargo. (g) Other.

the open-source PyTorch machine learning library. For training
and inference acceleration, CUDA10.1 is employed.

1) Image Preprocessing: The backbone we utilized is pre-
trained ResNet-50. The pretrained weights of ResNet-50 are
based on natural images, which are three-channel images.
However, the SAR images we exploit in our manuscript are
single-channel. In order to utilize the pretrained ResNet-50, we
replicate the grayscale value across all three channels. In other
words, the values in all three channels are the same at each pixel
position since our grayscale image has only one channel. Such
conversion can also be found in other classic work [34].

2) Parameter Setting: These experiments are trained under
the same parameters. The size of the input images in OpenSAR-
Ship are unified to 224 × 224. Using stochastic gradient descent
(SGD) optimizer with the weight decay parameter 0.001 and the
momentum parameter 0.9, the proposed network is trained by
10 000 iterations. The batch size is set to 16 due to the limited
GPU memory. To alleviate the adverse impact of vanishing
training gradients, we assigned a relatively low learning rate
of 0.0001, which is appropriate for our method.

3) Loss Function: The cross entropy(CE) loss is served as
the loss function

L = − 1

N

N∑
m=1

y′m log(ym) (7)

where the mth sample recognition result is denoted as ym, the
mth sample ground truth is denoted as y′m, and the total number
of training samples is denoted as N .

4) Evaluation Metrics: Similar to most scholars, accuracy
(%) is used as the core evaluation criteria to measure recognition
performance and confirm effectiveness of the proposed modules.
For comprehensive evaluations of SAR ship recognition results,
four additional performance metrics are employed in the experi-
ments, including: 1) F1; 2) precision; 3) recall; and 4) confusion
matrix. The definition of these metrics are as follows.

Accuracy is defined by

Accuracy =
TP + TN

TP + TN+ FP + FN
(8)

where TP denotes true positives, TN denotes true negatives,
FP denotes false positives, and FN denotes false negatives.

TABLE IV
RECOGNITION PERFORMANCE OF DIFFERENT BACKBONES ON

THREE-CATEGORY OPENSARSHIP AND FUSAR-SHIP

In other words, the numerator denotes the number of correctly
recognized ship samples, the denominator denotes the number
of all test ship samples.

Recall [21] is defined by

Precision =
TP

TP + FP
. (9)

Precision [21] is defined by

Precision =
TP

TP + FP
. (10)

F1 [21] is defined by

F1 = 2× Recall× Precision

Recall + Precision
. (11)

Furthermore, in order to evaluate the ship recognition perfor-
mance in a more specific manner, a confusion matrix is adopted
as a classwise measure to evaluate the recognition ability of each
category. This evaluation method has been commonly utilized
in previous studies on SAR ship recognition as well.

5) Backbone: Generally speaking, the backbone will directly
influence the recognition performance. In the context of SAR
ship detection task, ResNet serves as the most favored backbone
in some popular and substantial works [35], [36], [37]. Thus,
we also apply it to SAR ship recognition task empirically. To
choose the most suitable backbone for our task, we conduct the
experiments of ResNet-18, ResNet-34, ResNet-50, and ResNet-
101 as the backbone networks of SA2Net. The experimental
results are presented in Table IV. From the experimental results,
we found that the recognition performance of ResNet-50 shows
the optimal accuracy not only on OpenSARShip, but FUSAR-
Ship as well. The primary reason for this observation is that the
features learned by ResNet-18 and ResNet-34 are insufficient,
and ResNet-101 is prone overfitting due to its deep network.
Therefore, we choose the pretrained ResNet-50 as the backbone
in the subsequent experiments.

C. Recognition Results

1) Quantitative Evaluation: Table V shows the evaluation
metrics of SA2Net on the three-category OpenSARShip task,
six-category in classical algorithms task, and seven-category
FUSAR-Ship task. From Table V, the SAR ship recognition
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TABLE V
EVALUATION METRICS OF SA2NET ON OPENSARSHIP AND

FUSAR-SHIP TASKS

accuracy on three-category OpenSARShip is 82.91%, on six-
category OpenSARShip is 61.10%, and that on the seven-
category FUSAR-Ship task is 88.28%. As for OpenSARShip,
the latter performance is significantly lower compared to the
former, primarily due to the inherently higher complexity of the
six-category recognition task as compared to the three-category
task. In addition, the number of training samples available for the
six-category task is smaller than that of the three-category task,
further amplifying the recognition challenge associated with the
six-category task. Due to FUSAR-Ship has a better resolution
with more ship detailed representations can be learned, the
recognition accuracy can reach 88.28%.

2) Confusion Matrix: The recognition performance under
three-category and six-category tasks for each ship class in
confusion matrix forms are offered by Tables VI, VII, and VIII,
respectively. Most diagonal values are higher than others in the
same line from both tables, which indicate that most ships can
be recognized correctly. A notable observation from the three
tables is that most diagonal values predominantly surpass the
corresponding values in the same row, implying a high rate of
correct recognition for most ships, but there are still some classes
which are easily confused. From Table VI, the bulk carrier is
recognized as a container ship mistakenly. This phenomenon
may arise due to the outline of the ship is too vague, which
acts as a strong scattering point, thereby limiting its capacity
to facilitate effective recognition. From Table VII, the general
cargo is recognized as a cargo mistakenly. In fact, their class
differences are rather small, and the general cargo can be re-
garded as a special cargo. From Table VIII, the primary source of
class prediction confusion lies among the categories of fishing,
other, and other cargo. This phenomenon can be attributed to the
analogous geometries shared by these three ship classes.

D. Comparison With Traditional Methods and Modern
CNN-Based Methods

To thoroughly evaluate the efficiency of the proposed method,
we compare the experimental results with the state-of-art meth-
ods, including the traditional feature-based methods [6], [7], [8],
classic object recognition CNNs [9], [38], [39], [30], [40], and
novel task-specific SAR ship recognition CNNs [21], [22], [25],
[27], [28], [29]. The comparison methods are our reappearance
and our experiments are as consistent as possible with their
original reports. It should be noted that the inputs of Zeng et al.
[22] and SE-LPN-DPFF [25] are paired VV-VH SAR amplitude
images. More specific, the input of training sample number
is 150 VV-VH SAR amplitude images for three-category task

and 100 VV-VH SAR amplitude images for six-category task.
For other approaches, the inputs consist of unpaired VV and
VH SAR amplitude images, wherein single-channel VV and
single-channel VH SAR images are sequentially fed directly
into the networks. Please note that the FUSAR-Ship dataset
solely offers single-channel SAR images, thereby preventing the
reappearance of Zeng [22] and SE-LPN-DPFF [25]. Table IX
shows the quantitative SAR ship recognition performance with
traditional methods and modern CNN-Based methods. From
Table IX, the following conclusions can be drawn:

1) Among all traditional methods, on the three-category
OpenSARShip dataset, the optimal recognition accuracy
is 61.72% from KNN, but is still greatly lower than
our SA2Net (61.72%<<82.91%). On the six-category
OpenSARShip dataset, among all traditional methods, the
optimal recognition accuracy is 43.54% achieved by SVM.
However, this accuracy remains significantly lower com-
pared to our proposed SA2Net (43.54%�60.10%). On
the FUSAR-Ship dataset, among all traditional methods,
the optimal recognition accuracy is 77.19% achieved by
RF. However, this accuracy remains significantly lower
compared to our proposed SA2Net (77.19%�88.28%).
Modern CNN-based models typically exhibit superior
recognition accuracies compared to traditional method,
aligning with expectations. This observation suggests that
the features extracted by modern CNNs may possess en-
hanced characterization capabilities.

2) On the three-category OpenSARShip dataset, SA2Net of-
fer the highest recognition than other modern CNN-based
methods. Among all of them, the suboptimal recognition
methods is 80.82% from SE-LPN-DPFF [25]. However, it
is still lower than our SA2Net by 2.09%, which shows the
SOTA SAR ship recognition performance of our proposed
SA2Net.

3) On the six-category OpenSARShip dataset, SA2Net also
offer the highest recognition accuracy than others. Among
all of them, the suboptimal recognition method is 59.73%
from SE-LPN-DPFF [25]. Nevertheless, our SA2Net
achieves a 1.37% higher accuracy, showcasing its superior
performance as the state-of-the-art SAR ship recognition
model.

4) On the seven-category FUSAR-Ship dataset, SA2Net also
offer the highest recognition accuracy than others. Among
all of them, the suboptimal recognition methods is 86.69%
from HOG-ShipCLSNet [21]. Nevertheless, our SA2Net
achieves a 1.59% higher accuracy, indicating its superior
performance.

5) Although SE-LPN-DPFF use the dual-polarization coher-
ence features to characterize ship feature relationships
in different polarization channels to improve recognition
accuracy, the method neither comprehensively utilize the
multiscale features nor leveraged empirical knowledge re-
garding ships. Thus, it recognition performances are infe-
rior to SA2Net’s. In addition, although HOG-ShipCLSNet
[21] utilized the multiscale features, it simply flattened
them and use each feature scale equally, which reduce
the ability of the network to extract and choose effective
features for precise recognition.
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TABLE VI
CONFUSION MATRIX OF SA2NET RECOGNITION RESULTS ON THREE-CATEGORY OPENSARSHIP

TABLE VII
CONFUSION MATRIX OF SA2NET RECOGNITION RESULTS ON SIX-CATEGORY OPENSARSHIP

TABLE VIII
CONFUSION MATRIX OF SA2NET RECOGNITION RESULTS ON FUSAR-SHIP

TABLE IX
COMPARISON OF SA2NET ON THE THREE-CATEGORY AND SIX-CATEGORY UNDER OPENSARSHIP
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TABLE X
ABLATION STUDIES OF EACH MODULE IN SA2NET

E. Ablation Study

In this part, a series of ablation studies on OpenSARShip
and FUSAR-Ship are performed to verify the effectiveness of
FWM, FAM, and SAM. For a fair comparison, all subsequent
studies are performed with the same settings. The overall com-
parisons are displayed in Table X. Most specifically, adding
any of FWM, FAM, i.e., the first three rows of Table X, could
boost the recognition accuracy of our model, resulting from the
powerful feature supplementation and refinement donated by our
task-specific modules. Besides, as can be seen from the fourth
and fifth columns of Table X, the accuracy gains further improve-
ments when enabling two modules. Eventually, as can be seen
from the sixth column of Table X, compared with the baseline,
when applying FWM, FAM, and SAM together, the accuracy
of our method achieved the highest on both OpenSARShip and
FUSAR-Ship datasets. Next, we will analyze the effectiveness
of FWM, FAM, and SAM in detail.

1) Effect of FWM: Most existing methods simply extract
multiscale features of the network, which limits the performance
of SAR ship recognition. To get rich representations at all scales,
we leverage semantic and detailed features of different scales
extracted by the backbone to construct FWM. Through feature
weaving, FWM combines high-level and low-level features to
obtain enriched representations. This approach enhances feature
discrimination in comparison to the direct utilization of multi-
scale features extracted solely by the backbone.

Table X provides the results of the FWM in the ablation exper-
iments for both datasets. It should be noted that “×” means that
only the last layer features of the backbone network are utilized,
ignoring the multiscale features of middle layers from CNN.
From Table X, compared with the baseline, FWM gains 3.21%
accuracy boost on three-category OpenSARShip task, 2.73%
accuracy boost on six-category OpenSARShip task, and 4.79%
accuracy boost on FUSAR-Ship task, which is an impressive
improvement. To get a comprehensive understanding of FWM,
another experiment is conducted to validate the effectiveness
of feature weaving, which is named as “ablation study intra
FWM.” Table XI provides the results. The “×” means that
our SA2Net does not perform feature weaving. In other words,
the multiscale features are not fused in SA2Net. The results
in Table XI show that feature weaving achieves 0.52% and
0.89% improvements in accuracy under three-category Open-
SARShip and seven-category FUSAR-Ship tasks. Although the
improvements in feature weaving are not impressive as other
modules, it still demonstrates that integrating high-level and

TABLE XI
ABLATION STUDY INTRA FWM

low-level information is an effective way to improve SAR ship
recognition accuracy.

The improvements of two groups of ablation studies indicate
the necessity and effectiveness of combining different scales of
CNN to achieve SAR ship recognition of various sizes.

2) Effect of FAM: The proposed FAM is introduced to incor-
porate the priory knowledge of the ship shape into the network by
providing rectangular receptive fields that align with the shape
of ships. In addition, the directional rectangular kernels can
deal with the challenges of arbitrary orientations of ships pose.
Table X provides the results of the FAM in the ablation exper-
iments for both datasets. The “×” means that only the square
kernel is employed for feature extraction. The results in Table X
show that FAM module achieves reasonable 2.69%, 1.53%,
and 3.36% improvements in accuracy under the three-category
OpenSARShip, six-category OpenSARShip, and FUSAR-Ship
tasks compared with the baseline. The improvements show that
introducing the rectangular kernels breaks through the limitation
of traditional fixed kernel, making the feature extraction more
powerful. So FAM is rational for the recognition task of SAR
ship target with large aspect ratio and arbitrary orientations.

3) Effect of SAM: Although FWM can provide rich repre-
sentation at all scales, different scale features are not equally
effective for recognition. Compared to deep features, shallow
features are often not discriminative enough. To adaptively select
and assign weights to desired feature scales while disregarding
irrelevant scales, we propose SAM to control the information
flow of different scales. Table X shows the recognition results
with and without SAM. The “×” means that the multiscale
features are fused by a simple summation. From Table X, the re-
sults show that SAM module achieves reasonable 1.04%, 0.81%,
and 1.22% improvements in accuracy under the three-category
OpenSARShip, six-category OpenSARShip, and FUSAR-Ship
tasks compared with SA2Net without SAM. This is in line
with our knowledge of CNNs. The shallow features contains
more detailed information, which is less in discriminative. So
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Fig. 8. Three-category task t-SNE feature visualization of the embedding vector distribution. (a) Our network without FWM. (b) Our network without FAM.
(c) Our network without SAM. (d) Our network SA2Net.

each scale feature is not equally effective for recognition. How-
ever, HOG-ShipCLSNet gave the opposite conclusion. They
found that the average weighting type achieves a slightly better
accuracy than the adaptive type. We analyze their network
carefully to find the underlying reasons. One possible reason
is that HOG-ShipCLSNet applied too much FC layer in their
network. Many of them have more than 2000 neurons, a few
even as high as 32 768. When the adaptive type is used, the
network might fail to search the suitable weight parameter due to
the heavy computational burden, which also lead to ship feature
extraction insufficiency.

From the ablation study, FWM, FAM, and SAM have dif-
ferent effects on the recognition of SAR ship with scale vari-
ance, large aspect ratio, and arbitrary orientations. Each com-
ponent of SA2Net helps each other to achieve the optimal
recognition performance and tackle the problems of SAR ship
recognition.

4) t-SNE: To provide a comprehensive understanding of
the impact of FWM, FAM, and SAM, we visually present
the qualitative results using t-distributed stochastic neighbor
embedding (t-SNE) [41] of three-category task in Fig. 8. In the
t-SNE visualization, the greater the distance between different
categories, the higher the recognition accuracy achieved by the
model. Fig. 8(a)–(d) illustrate the visualization based on SA2Net

without FWM, SA2Net without FAM, SA2Net without SAM,
and SA2Net, respectively. It can be found that after supplement-
ing the three modules, the recognition error is alleviated and the
feature embeddings from the same class are more aggregated,
which is shown in Fig. 8(d). The combination of the three
modules separates the features between different categories and
the intraclass features of the same category are closer together.
These results indicate that the three modules help each other to
achieve the optimal recognition performance and tackle with the
challenges of SAR ship recognition.

F. Discussion

In this section, we will further discuss and explain FWM. A
discussion about detection and recognition integrated network
is also included.

1) FWM: Why FWM shows impressive improvement is ben-
efit from two aspects. One is leveraging the multiscale features
obtained from intermediate layers. The other is fully mining and
combining the feature maps of different scales through feature
weaving. We first conduct a comprehensive ablation study to
analyze how much the different scale features are related to the
final recognition probability on three-category OpenSARShip
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TABLE XII
COMPARISON OF QUANTITATIVE EVALUATION INDICES WITH DIFFERENT

NUMBER SCALES IN FWM

Fig. 9. Visualization of the features of different ships. (a) Original images.
Visualization of feature map C3 (b) and M3 (c) with FWM.

and FUSAR-Ship. Then, the feature visualization results of
FWM are given.

Table XII shows the results of how much the different
scale features are related to the final recognition probability
on three-category OpenSARShip and seven-category-FUSAR-
Ship. From Table XII, when using a single scale, the recognition
results only achieve 79.70% on three category OpenSARShip
and 84.67% on seven category FUSAR-Ship. When two scales
are employed, SA2Net improves results by 1.87% on three-
category OpenSARShip and by 2.41% on FUSAR-Ship. The
optimal recognition results are obtained when three layers are all
utilized, showing the necessity of leveraging multiscale features
to recognize ships of various sizes.

To validate the effectiveness of feature weaving, we present
some qualitative visualization results of feature maps C3 and
M3 in Fig. 9. The sizes of C3 and M3 are 28 × 28 pixels. The
activation heatmap of the extracted feature is the summation of
the values in each row along the channel dimension. Fig. 9(a)
is the original SAR ship images. As illustrated in Fig. 9(b),
although features extracted by C3 focus on ship targets, the
features are not sufficient enough. To deal with the problem
and capture more information, feature weaving can integrate
high-level and low-level information through a weaving process,
resulting in rich representations. As shown in Fig. 9(c), the

Fig. 10. Ship detection results with OBox.

network with feature weaving has more information and pays
more attention to the distinguishable regions, so these important
parts have higher activation scores. It proves the feature weaving
effectively enriches the representations of SAR ship targets.

2) Detection and Recognition Integrated Network: Nowa-
days, an increasing number of scholars have paid more attention
to establishing a unified detection and recognition SAR ship
network [42], [43], [44]. However, the detection and recognition
parts are independent and irrelevant in classical algorithms.
On the contrary, in practical applications, it is often neces-
sary to perform detection and recognition tasks in the SAR
images simultaneously. To achieve satisfied unified detection
and recognition performance, one necessary way is to inject
more discriminative features extracted by SAR ship recognition
methods to SAR ship detection methods. As, shown in Fig. 10,
the most recent detection algorithms [36], [45] utilize oriented
bounding box (OBox) to tackle with the challenge of arbitrarily
oriented ships. In SA2Net, the proposed FAM utilizes directional
rectangular convolution kernels to solve the same problem. In the
future study, I believe the joint utilization of FAM and OBox may
boost the performance of detection and recognition integrated
network.

IV. CONCLUSION

In this article, we propose a SA2Net to further improve the
performance of ship recognition in SAR image. ResNet-50 is
adopted as the backbone to extract SAR ship features. Taking
into account the special shape prior characteristics of the ship
class, the FAM in SA2Net is designed to enhance the semantic
features of ships, which incorporate the priority knowledge of
the ship shape. The proposed FAM breaks through the limita-
tion of traditional square kernels. In addition, to achieve ship
recognition with diverse sizes, the comprehensive utilization
of multiscale features holds paramount importance. Different
from aggregate multiscale features with unified weights, SAM
in SA2Net adaptively weights the desired feature scales and
disregards the irrelevant scales. The proposed FWM in SA2Net
generates rich and reliable representations through repeatedly
fusing the representations produced by the backbone to obtain
better representations at all scales. The experimental results,
comparisons, and ablation studies on representative three- and
six-category OpenSARShip tasks show that SA2Net greatly
improves the recognition performance.
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