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Abstract—The foundation model (FM) has garnered significant
attention for its remarkable transfer performance in downstream
tasks. Typically, it undergoes task-agnostic pretraining on a large
dataset and can be efficiently adapted to various downstream ap-
plications through fine-tuning. While FMs have been extensively
explored in language and other domains, their potential in remote
sensing has also begun to attract scholarly interest. However, com-
prehensive investigations and performance comparisons of these
models on remote sensing tasks are currently lacking. In this survey,
we provide essential background knowledge by introducing key
technologies and recent developments in FMs. Subsequently, we
explore essential downstream applications in remote sensing, cov-
ering classification, localization, and understanding. Our analysis
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encompasses over 30 FMs in both natural and remote sensing fields,
and we conduct extensive experiments on more than 10 datasets,
evaluating global feature representation, local feature represen-
tation, and target localization. Through quantitative assessments,
we highlight the distinctions among various FMs and confirm that
pretrained large-scale natural FMs can also deliver outstanding
performance in remote sensing tasks. After that, we systematically
presented a brain-inspired framework for remote sensing founda-
tion models (RSFMs). We delve into the brain-inspired character-
istics in this framework, including structure, perception, learning,
and cognition. To conclude, we summarize 12 open problems in
RSFMs, providing potential research directions. Our survey offers
valuable insights into the burgeoning field of RSFMs and aims to
foster further advancements in this exciting area.

Index Terms—Brain modeling, deep learning, foundation model,
image analysis, remote sensing.

I. INTRODUCTION

THE rapid advancements in data and model parameters have
catalyzed the emergence of a new paradigm in artificial

intelligence (AI) [1], [2], [3]. Through large-scale pretraining
of neural networks, we witness the manifestation of novel
characteristics, enabling a previously unprecedented level of
understanding and reasoning [4]. The models trained on broad
data can be adapted to a wide range of downstream tasks. These
models are called foundation models (FMs) to underscore their
critically central yet incomplete character [5].

Different from the nonFMs designed for a specific task or
domain, FMs are a new paradigm that can be adapted to many
different tasks and domains. As shown in Fig. 1, the main
characteristics of FMs can be summarized into three aspects:
data and model size, learning strategies, and adaptation.

1) Data and model size: FMs are trained on large amounts
of unlabeled or weakly labeled data, such as text, images,
audio, or video, that cover a broad range of topics and
domains. For example, visual training datasets include
ImageNet-22K [6] and JFT-300M [7], and multimodal
datasets include Laion [8]. As for model size, flexible and
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Fig. 1. Framework of the RSFMs. The models are trained with large-scale multimodality data and can be adapted to downstream applications.

expandable models, such as ViT, can be scaled up from
ViT small with 50 million parameters to ViT-22B with 22
billion parameters [3].

2) Learning strategies: FMs use self-supervised or semisu-
pervised learning to learn from the data without human
supervision or with minimal human guidance. Numerous
self-supervised algorithms are employed for pretraining,
including contrast learning [9], generative masked image
modeling [1], and multimodal contrast learning [10].

3) Adaption: FMs can be adapted or fine-tuned to various
downstream tasks or domains by adding a small amount
of task-specific data or parameters.

The interpretation of remote sensing (RS) is a crucial method
for observing the Earth [11], [12], [13], and FMs have garnered
significant attention and increasingly play a vital role in this
domain [14], [15]. RS images, acquired through satellites, are
generated at a substantial scale, reaching PB scale [16]. Due to
the complexity of RS data and the requirement for professional
knowledge, the labeled RS data are scarce. The pretraining
approach of the FM can mine the value of RS data and enable
the utilization of a significant amount of unlabeled data.

Inspired by the FMs developed for natural images, the field of
RS has also seen the emergence of FMs, garnering attention [17],
[18], [19], [20], [21], [22]. The typical remote sensing founda-
tion model (RSFM) is pretrained using a substantial number of
optical images, validating the feasibility of training FMs in the
RS domain. In addition, scholars have considered factors, such as
multispectral images, time-series images [20], and geographical
resolution [22], to build more robust RS models.

The advancements in RSFMs have been impressive. However,
there is still a noticeable gap between the scale of RS data and
the models, especially when compared with natural FMs. Table I
summarizes the basic information of FMs in both natural and RS
domains, highlighting the disparity in dataset size and model
parameters. RSFMs typically rely on data-driven approaches,

training large-scale parameters from limited RS datasets, such
as Million AID [40], which contains only 1 million images. In
contrast, natural FMs benefit from much larger datasets, such as
ImageNet-1K, containing millions of images.

Beside the scale of models, most RSFMs follow the paradigm
of the nature of FMs. It has been demonstrated that natural
FMs suffer from brittle, unchangeable structures. Model-based
generation is prone to hallucinate unintended results [42]. These
unstable results limit the application of the FMs in the field of
RS, which requires high accuracy and robustness to guarantee
security. To bridge this gap, brain-inspired RSFMs will be a
new potential research direction [11]. Jiao et al. [43] have
conducted systematic analyses of algorithms inspired by brain
and biological mechanisms, including neural networks, natural
computing, machine learning, and compression. Their work has
provided valuable insights into how brain-inspired approaches
can be applied to enhance the capabilities of FMs. Similarly,
Schmidgall et al. [44] have explored the integration of more
biologically plausible mechanisms into current brain-inspired
learning representations, with the goal of further enhancing the
capabilities of these networks. Zou et al. [45] focus on reviewing
brain-inspired models with an emphasis on the spatiotemporal
nature of visual signals.

In this article, we have drawn insights from brain character-
istics to propose a brain-inspired framework for RSFMs. The
exploration of brain-inspired algorithms in the context of RS
holds great promise and offers exciting opportunities for future
research and advancements in the field.

We investigate the progress of current RSFMs, as shown
in Fig. 2. The rest of this article is organized as follows. In
Section II, we describe the key technologies underlying these
models, including the essential transformer structure of FMs
and self-supervised pretraining methods. Furthermore, we in-
troduce common methods for efficient parameter optimization,
taking into account the application paradigm of the latest FMs.
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TABLE I
SUMMARY OF EXISTING REPRESENTATIVE FMS IN NATURAL AND RS FIELDS

Fig. 2. Organizational structure of this survey.
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Section III covers the latest developments in various FMs, in-
cluding language FMs, visual FMs, visual-language FMs, and
RSFMs. Section IV delves into several core applications of
RS interpretation, focusing on classification, localization, and
understanding tasks. To address the lack of systematic compar-
ison between current RSFMs and natural FMs, experiments are
conducted in RS interpretation from three perspectives: global
representation, local representation, and object localization in
Section V. These experiments provide a fair comparison of the
proposed RSFMs. In Section VI, a framework of brain-inspired
RSFM is proposed and the key characteristics of the brain
are discussed. The 12 open problems of RS are discussed in
Section VII. Finally, Section VIII concludes this article.

Our contributions can be summarized as follows.
1) We have comprehensively investigated the key technolo-

gies and latest advancements in FMs. This provides a
comprehensive overview of FM research.

2) To the best of our knowledge, this is the first systematic
summary and analysis of the performance of existing
RSFMs compared with natural FMs. The experimental
results can serve as a guide.

3) We propose a framework of brain-inspired RSFM and
investigate the key characteristics of the brain. In addi-
tion, 12 open problems in the construction of RSFMs are
discussed.

Overall, our work provides valuable insights into the FM
landscape, offers performance comparisons, and highlights im-
portant characteristics and challenges in the realm of RSFMs.

II. KEY TECHNOLOGY OF FMS

The key technology of FMs consists of the model structures,
learning algorithms, and fine-tuning. In this section, we first in-
troduce the important structure, transformer. Then, the develop-
ment of self-supervised learning (SSL) and parameter-efficient
tuning are discussed.

A. Transformer

Transformer [46] is a neural network model based on a self-
attention mechanism, which is often used in natural language
processing tasks. Due to the nonlocality and the natural rela-
tionship of language, this long-term and self-attention behavior
makes the transformer an effective tool [47].

The main idea of the transformer is to calculate the context-
related representation through the self-attention mechanism.
Convolutional neural networks (CNNs) of the traditional re-
current neural network (RNN) [48] have some difficulties in
processing long sequence data when processing long sequence
data [49]. The entire network structure of the transformer is com-
posed of attention mechanisms, abandoning traditional CNN
or RNN, and obtaining context information by calculating the
correlation between each word and all other words, thereby
avoiding the problem of traditional models [50].

The core component of the transformer includes a multihead
self-attention mechanism and forward feedback network. In the
multihead self-attention mechanism, the input text sequence will

Fig. 3. Architecture of transformer.

be split into multiple vectors. Then, a series of linear transforma-
tions, attention calculation, and concatenation operations will
be followed to generate an output vector. This output vector
contains the information in each position of the input sequence,
and the information at each position is considered equally.
Therefore, the transformer is more suitable for processing long
text sequences compared with the circulating neural network
[51], [52], [53].

1) Villian Transformer: The main structure is shown in
Fig. 3. The core of the transformer consists of the encoder and
decoder. It shows the overall encoder–decoder structure of the
transformer model. The encoder converts the input sequence
into the context vector, and the decoder uses the context vector
to generate the output sequence. The encoder is mainly com-
posed of two layers of the self-attention head and a two-layer
feedforward neural network. There is also a decoder that has
the self-attention layer and feedforward layer. In addition, there
is also a self-attention layer between these two layers to pay
attention to the relevant parts of the input sentence, which is
similar to the attention of the Seq2Seq model [54].

Specifically, a transformer usually contains multiple continu-
ous encoders. Each encoder consists of multiple layers. Each
layer contains two sublayers: multihead attention and feed-
forward network. In the multihead self-attention mechanism,
the input sequence is divided into multiple heads. Each head
performs a self-attention calculation, and the attention weight
weighted the input vector to obtain the relationship of each word
with other words. And then, the output vector can be calculated.



10088 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 4. Architecture of ViT.

The output vectors of all heads are merged into a longer vector
through the concatenation operation. It contains information on
each position in the input sequence, and the information at each
position is considered equally. This is why transformer is more
suitable for handling long text sequences. Multihead attention
and feedforward networks use residual connections and layers
among the sublayers. In the feedforward network, the two neural
networks of the RELU activation function use the two layers of
neural networks for nonlinear transformation.

Compared with the encoder, each decoder block is added with
a multihead crossing-attention layer to embed the decoder into
the encoder output. In addition, all sublayers in the encoder and
decoder use the remaining connections and layers to improve
the scalability of the transformer. To record the sequential in-
formation, each input embedding is attached to the start of the
encoder and decoder stack with a position encoding. Finally, a
linear layer and a softmax operation are adapted to predict the
next word.

Compared with the traditional RNN, the transformer model
can directly obtain global information. It is one of the advantages
of high computing efficiency, parallel computing, and process-
ing long text sequences. Therefore, it is widely used in NLP.
In ChatGPT [55], [56], [57], transformer technology is used to
generate text and text classification tasks. Its efficient computing
power and accurate prediction results have been verified in
practical applications.

2) Visual Transformer: Transformer has achieved great suc-
cess in NLP. Subsequently, it was extended to computer vi-
sion and showed good performance in computer visual tasks,
including image recognition, classification, segmentation, and
so on. It has proven to be a simple and scalable framework.
Compared with the traditional methods, it has obvious training
efficiency advantages. It can use a pure transformer architecture
or combined with CNN to achieve better results.

ViT: The overall framework of ViT [58] is shown in Fig. 4.
First of all, the image is divided into 16× 16 patches and
then the flatted patches of the flatted linear mapping. The ob-
tained patch and position encoding are sent to the transformer
encoder for encoding. Finally, send the encoded features into
the MLP head for classification. Among them, the transformer
encoder is mainly the position encoder structure proposed in the
transformer. The appearance of ViT is a preliminary attempt by

Fig. 5. Architecture of Swin transformer.

Fig. 6. Compare the architecture of ResNet bottleneck and bottleneck trans-
former. (a) ResNet bottleneck. (b) Bottleneck transformer.

transformer in computer visual tasks [59]. It is convolution-free
and highly recognized by researchers for its excellent long-
distance modeling capabilities.

Swin Transformer: Swin transformer [60] adapts the hierar-
chical construction method, similar to the CNNs. The sizes of the
feature maps decreased with the feature layer deepened. ViTs
feature maps’ sizes are unchanged, with 16 times downsam-
pling. Unlike ViT, its feature maps change 4 times, 8 times,
and 16 times downsampling. In detail, its overall framework is
figured, as shown in Fig. 5(a). It comprises patch partition, linear
embedding, patch merging, and Swin transformer blocks. The
overall architecture of two successive Swin-transformer blocks
is shown in Fig. 5(b). The hierarchical characteristics of the Swin
transformer have an essential role in visual recognition.

BotNet: BotNet [61] is a simple but effective backbone for
visual representation. It introduces self-attention to many visual
tasks, including image classification, object detection, and in-
stance segmentation. BotNet consists of Bottleneck transformer
blocks. In detail, its framework is shown in Fig. 6. For 2048-
dimensional (2048-D) input, the ResNet bottleneck contains the
convolutional operations, including 1× 1× 512, 3× 3× 512,
and 1× 1× 2048. The skipping connection of ResNet is still
maintained. Compared with the ResNet bottleneck, the bottle-
neck transformer only replaces the original second convolutional
operation with multihead attention (MHSA), as shown in Fig. 6.
In the bottleneck transformer, MHSA is the central core novelty.
It enables the model to capture different characteristics and
modes in the input data. In addition, BotNet replaces the spatial
convolutions in the last three bottleneck blocks of ResNet with
global self-attention. It has significantly improved the baseline
regarding instance segmentation and target detection and re-
duces the parameters to minimize delay.
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3) Advantages and Disadvantages: NLP was a latecomer
over the past ten years of a deep learning revolution. Anna
Rumshisky, a computer scientist at the University of Mas-
sachusetts, said that NLP [62], [63] was behind the computer
in a sense. Vision transformer (ViT) breaks the restrictions
of incompetence computing in the RNN model. Note that the
mechanism provides context information for any location in
the input sequence. It is one of the advantages of parallelism,
unlimited positioning operations, strong global characteristics,
strong versatility, and strong scalability so that the generative
pretrained (GPT) model [64], [65] has excellent performance.
Specifically, the advantages are listed as follows.

1) Design innovation: It abandoned the most fundamental
RNN or CNN in NLP and achieved excellent results.
The design of it is very inspiring and worthy of in-depth
research.

2) The key to transformer’s design is that the distance be-
tween any two words is 1, which is effective for solving
the difficult long-term dependencies in NLP.

3) Transformer cannot only be applied to machine translation
in NLP but also not even limited to the NLP field. It is a
direction of very scientific research potential.

4) The parallelism of the algorithm is good, which is in line
with the current hardware environment.

Of course, its model still has some limitations such as follows.
1) Although the rough abandonment of RNN and CNN is

very dazzling, it also causes the model to lose the ability
to capture local characteristics. The combination of RNN,
CNN, and transformer may bring better results [66].

2) The lost location information that transformer is important
in NLP and adding position embedding to the feature
vector is just a suitable measure, and it does not change
the inherent defects in the transformer structure.

3) Although transformer helps integrate and improve AI tools
[67], as with other emerging technologies, transformer
also has expensive costs. A transformer model requires
a lot of computing power during the pretraining stage to
defeat the previous competitors [47], [68].

4) From the perspective of the transformer, there are prob-
lems of large memory occupation and high delay in archi-
tecture based on the transformer, which hinders their effi-
cient deployment and reasoning. Recently, many studies
have improved computing and memory efficiency around
the original transformer architecture, but most of them are
concentrated in the semisupervised field [25], [69].

B. Self-Supervised Learning

SSL plays a crucial role in training FMs. Many state-of-the-art
FMs utilize SSL in the pretraining phase. This pretraining phase
allows the FM to acquire rich features and representations, and
then use the labeled data to fine-tune for specific downstream
tasks. SSL is a form of unsupervised learning that aims to extract
useful and generalizable feature representations from a large
amount of unlabeled data for downstream tasks [70], [71], [72].
Referred to as the “dark matter” of intelligence, SSL differs from
supervised learning, which is constrained by the availability

Fig. 7. General approach of SSL. First, an auxiliary task is trained using an
unlabeled dataset to apply the SSL scheme. Subsequently, the learned network
weights are transferred from the pretext task to the downstream task, enabling
training on a small amount of data with labels.

of labeled data. Instead, self-supervised methods leverage a
“semiautomatic” process to obtain “labels” directly from the
data itself, saving significant manpower and time costs [71]. In
recent years, SSL has achieved remarkable success in the field of
deep learning, particularly in natural language processing, with
the emergence of influential language models, such as BERT
[4] and GPT-3 [73]. In computer vision, models, such as MAE
[1] and DINOv2 [74], have been able to match or even surpass
supervised models in certain scenarios. The general workflow
of SSL in computer vision is illustrated in Fig. 7. SSL defines a
pretext task based on unlabeled inputs to generate descriptive
and interpretable representations [70], [72], [75], [76]. The
pretext task is a predesigned task in the pretraining phase, where
the objective function is learned by inputting unlabeled data.
Typically, pretext tasks can be prediction-based, context-based,
or generation-based, and the supervision signal is generated from
the data itself [75]. After training on the pretext task, the learned
representations are transferred as initial weights to downstream
tasks to achieve their intended objectives.

1) SSL for Natural Images: Based on the different pretext
task approaches, three different SSL methods can be identified:
generative, contrastive, and predictive [70], [77], as shown in
Fig. 8.

Generative Methods: Generative methods aim to learn repre-
sentations by reconstructing or generating input data. The basic
idea is to model the underlying data distribution to capture the
statistical properties and dependencies of the input data. Gen-
erative methods can implicitly capture meaningful features and
structures in the data without relying on explicit labels. These
methods often utilize generative models, such as autoencoders
and generative adversarial networks (GANs) [78], to perform
reconstruction or generation tasks.

An autoencoder consists of an encoder network that maps
input data to a latent space representation and a decoder
network that reconstructs the data from the latent space. Based
on the autoencoder, several variant methods have emerged.
For example, variational autoencoder [79] combines the
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Fig. 8. Summary of popular self-supervision methods and typical models.

Fig. 9. Training procedure of the MAE (Image from [1].).

encoder–decoder structure of an autoencoder with probabilistic
modeling. It assumes the existence of a prior distribution P (Z)
over the latent space and models the conditional distribution
P (X|Z). The encoder approximates the posterior distribution
P (Z|X) by inferring the model Q(Z|X). Recently, generative
methods have been commonly used for information recovery
tasks, such as inpainting, where a portion of an image is removed,
and the network’s context encoder is trained to restore the
missing pixel values based on the surrounding context [80]. This
idea has evolved into the masked autoencoders (MAEs) task [1],
where random masks are applied to input image patches, and
the missing pixels are subsequently reconstructed, as shown
in Fig. 9. In order to correctly reconstruct each pixel, the
model needs to understand the different objects and relevant
components present in the image. Therefore, the learned feature
representations are useful for other downstream tasks.

Fig. 10. Training procedure of the MoCo (Image from [84].).

GAN [78] consists of two networks: a generator G : ZX
and a discriminator D : X[0, 1]. The generator synthesizes fake
samples from random noise in the latent space, while the dis-
criminator attempts to distinguish between real and fake sam-
ples. These methods are primarily used for image generation
and image super-resolution tasks. For example, BigGAN [81]
introduces innovations, such as a large-scale GAN architecture,
conditional batch normalization, category conditioning, and or-
thogonal regularization. These advancements enable BigGAN
to generate high-quality, diverse, and category-specific images.
SRGAN [82] is capable of recovering high-resolution textures
in super-resolution tasks by learning from a large set of down-
sampled images.

Contrastive Learning Methods: Contrastive learning methods
aim to learn representations by maximizing the similarity be-
tween semantically related samples and minimizing the similar-
ity between unrelated samples. The key idea of contrastive learn-
ing is to create a contrastive objective function that encourages
the model to bring similar samples closer together in the feature
space and separate dissimilar samples. Classical contrastive
learning methods can be categorized into four types: negative
sampling, clustering, knowledge distillation, and redundancy
reduction.

The negative sampling method involves creating a set of
negative samples dissimilar to the anchor samples. The objective
is to encourage the model to differentiate and separate posi-
tive and negative examples in the learned representation space,
thereby learning valuable feature representations and avoiding
model collapse. In SSL with negative sampling, models, such
as SimCLR [83] and the MoCo series, are typical approaches.
SimCLR uses a CNN as a feature extractor and employs various
data augmentation strategies to increase data diversity. As shown
in Fig. 10, the MoCo model [84] uses a momentum-based update
strategy to update model parameters and performs contrastive
learning by comparing a set of samples with a larger queue of
negative samples. MoCo and its variants, such as MoCov2 [85]
and MoCov3 [9], have demonstrated strong performance in SSL
tasks, proving the effectiveness of negative sampling in training
robust and discriminative representations.

The clustering approach utilizes clustering algorithms to
group similar samples in an unsupervised manner. One repre-
sentative method is DeepCluster, which first clusters images into
different clusters and then trains a CNN to recognize assign-
ments [86]. Another example is the SwAV [87] model, which
introduces the concept of grouping similar representations into
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a cluster. It generates multiple views of an image using data
augmentation and then groups these views into clusters based
on their similarity. SwAV encourages similar representations
within each cluster and makes representations from different
clusters dissimilar.

The knowledge distillation method refers to the process of
transferring knowledge from a teacher model to a student model.
The teacher model is usually a pretrained model with high
performance, while the student model is trained using SSL. In
SSL, based on knowledge distillation, several notable models
have been proposed. One classic method is BYOL [23] and
DINO (DINO [25] and DINOV2 [74]) series. BYOL focuses
on predicting the representation of one augmented view from
another view. It uses an online network as the student network
and a target network as the teacher network, updating the target
network using a momentum-based update strategy. The DINO
model combines the transformer architecture and learns repre-
sentations by maximizing consistency between two views of
the same image, where one view is used as a query and the
other view is used as a key to predict the output of the teacher
network by the student network. Building upon DINO, DINOv2
further incorporates a clustering objective to encourage samples
that are semantically similar to cluster together in the learned
representation. This helps the model capture finer grained and
meaningful structures in the learned representation.

Redundancy reduction refers to the process of reducing redun-
dant information in learned representations. The goal is to ensure
that the representations capture the essential and discriminative
features of the data. For example, the Barlow twins model [88]
maximizes the cross-correlation matrix of the representations
while minimizing its diagonal elements. This encourages the
representations to capture statistical dependencies between dif-
ferent parts of the input data while reducing redundancy. By
maximizing cross correlation, the model learns to encode useful
information across different views.

Predictive Methods: Predictive methods aim to learn useful
representations by training models to perform prediction tasks.
Popular image prediction tasks involve methods based on both
spatial and spectral aspects of the image. In the spatial-based
approach, the image prediction task involves predicting the
relative positions of two patches from the same image or iden-
tifying the random order of a sequence of patches from the
same image. The former trains CNNs to predict the relative
positions of two randomly sampled patches in an image. The
latter constructs image puzzles by decomposing the image into
a series of nonoverlapping patches and predicts the relative
positions of each patch to reconstruct the image. Image puzzle
tasks require learning how parts are assembled within an object,
the relative positions of different parts, and the shape of the ob-
ject. Therefore, these representations are useful for downstream
classification and detection tasks. For example, Noroozi and
Favaro [89] proposed CFN, where a neural network is trained
to solve the Jigsaw puzzle, learning both feature mappings of
object parts and their correct spatial arrangements. Geometric
transformation recognition tasks are used to identify the rotation
angle of the entire image. This task requires the network to learn
to locate salient objects in the image, recognize their orientations

and object types, and then associate object orientations with the
original image. RotNet, proposed by Gidaris et al. [90], per-
forms unsupervised representation learning by predicting image
rotations. Counting tasks aim to train models to count visual
primitives in an image and learn the representation of the image
by outputting the number of objects in the image, effectively
learning spatial and object information in the image. However,
spectral-based methods aim to automatically add realistic colors
to grayscale images, which are referred to as the image coloring
(IC) task. For example, CNN is used for IC followed by classifi-
cation, detection, and segmentation downstream task validation
in [91].

2) SSL for RS Images: SSL in RS is a method that utilizes
unlabeled information in RS data to learn useful representations.
In the field of RS, SSL has been widely applied to multispectral
imagery, hyperspectral imagery, and synthetic aperture radar
(SAR) imagery. Similar to the domain of natural images, RS
SSL can also be categorized into three different approaches:
generative, contrastive, and predictive.

Generative Methods: Generative methods in RS imagery
often rely on techniques, such as autoencoders and GANs.
However, generative methods in RS involve additional tasks.
For instance, tasks, such as urban flood mapping and hyper-
spectral unmixing, are included. Specifically, Peng et al. [92]
proposed the SSL framework for patch-based urban flood
mapping using multitemporal multispectral satellite imagery.
They utilized patch-level change vector analysis with features
learned by a self-supervised autoencoder to generate patch-
level change maps highlighting potential flood-affected areas.
Jin et al. [93] introduced AAENet, a novel technique network
for unsupervised hyperspectral unmixing. The proposed ap-
proach improved model performance and robustness by in-
corporating untied-weighted autoencoder, discrimination net-
work, adversarial processes, and adding abundance priors to the
framework.

Contrastive Methods: In contrastive methods, negative sam-
pling remains a popular approach. For example, Hou et al. [94]
proposed a contrastive learning-based algorithm for hyperspec-
tral image classification, which consists of a pretraining phase
and a fine-tuning phase. In the first phase, the model is pretrained
by constructing positive and negative sample pairs to learn
to discriminate between them. In the second phase, based on
the pretrained model, features are extracted from hyperspectral
images for classification, and a small number of labeled sam-
ples are used for fine-tuning the features. Similarly, Scheiben-
reif et al. [95] adopt a two-stage approach, where the model
is trained to predict whether two image patches come from
the same image. Swin transformer is combined with SSL for
land-cover classification and segmentation. In clustering-based
methods, contrastive learning-based dual dynamic graph con-
volutional network (GCN) for SAR image scene classification
proposes a clustering-based contrastive learning approach using
dual dynamic GCN for SAR image scene classification. The
proposed clustering-based contrastive SSL model is used to
transform SAR images into a higher level embedding space
as richer representations without any labels, aiding subsequent
node representations and information propagation in GCN.
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Knowledge distillation methods are often inspired by models
in the natural image domain. For instance, Muhtar et al. [96]
proposed a method called IndexNet for semantic segmentation.
The proposed IndexNet consists of two branches: the index
contrastive branch and the instance contrastive branch. The
index contrastive branch learns pixel-level representations by
tracking object positions and maintaining sensitivity to changes
in object positions to ensure consistency. The instance con-
trastive branch follows the standard BYOL learning process,
learning image-level representations by combining image-level
and pixel-level contrastive learning to capture spatiotemporal-
invariant features.

Predictive Methods: RS prediction methods can also utilize
other downstream tasks by constructing a pretext task based
on rotation prediction. For example, Ji et al. [97] used rotation
prediction to identify the input’s 2-D rotation to guide the learn-
ing of transferable knowledge across categories. They combined
contrastive learning to bring positive sample pairs closer and
push away negative sample pairs, promoting intraclass con-
sistency and interclass inconsistency. These pretraining tasks
are jointly optimized in an end-to-end manner with semantic
category prediction tasks, ultimately achieving RS image scene
classification. In addition, in [98], IC is used as a pretexting task
to learn feature representations, which are then transferred to a
U-Net model for predicting the semantic segmentation of remote
sense urban scenes.

C. Parameter-Efficient Tuning for FMs

Fine-tuning is a crucial method for applying pretrained mod-
els to downstream tasks. However, it involves updating parame-
ters for both the entire model and each task model. Fine-tuning
a large FM poses significant challenges in terms of comput-
ing resources and storage. To address this, the technology of
parameter-efficient fine-tuning (PEFT) has been explored and
implemented. The primary objective of PEFT is to enhance the
performance of pretrained models on new tasks by minimizing
the number of fine-tuning parameters and reducing computa-
tional complexity. This, in turn, mitigates the training cost asso-
ciated with large pretrained models. In most cases, PEFT only
requires the addition or updating of a small number of parameters
in the model to facilitate its application on downstream tasks.
Remarkably, these techniques achieve comparable accuracy
compared with full fine-tuning. In this section, we introduce
various PEFT strategies, such as prompt tuning, adapter tuning,
and low-rank adapters (LoRA). For more parameter-efficient
tuning strategies, interested readers can refer to the literature
[99].

1) Prompt Tuning [100]: Prompting refers to constructing a
language instruction to the input text of LLM so that the LLM can
solve the downstream tasks without fine-tuning the whole model
[73]. To construct better prompting texts, prompt tuning treats
the prompts as task-specific continuous vectors and directly
optimizes them via gradients during fine-tuning [100]. Prompt
tuning only adds trainable vectors to the input embedding layer,
initializing them with text. This approach allows fine-tuning with
smaller learning parameters and offers higher computational

Fig. 11. Illustration of the parameter-efficient tuning algorithm, including
adapter and LoRA. (a) Simple example of the adapter with transformer block.
(b) Illustration of the LoRA algorithm.

efficiency. Despite fine-tuning fewer model parameters, Prompt
tuning achieves accuracy comparable to full fine-tuning.

Prefix tuning [101] is a kind of prompt tuning method. It uses
a series of “virtual tokens” to create a prefix of tokens, providing
“implicit” hints to the model. As a result, the parameters of the
large language model remain frozen, and for each layer’s input, a
set of continuous task-related prefix tokens is learned to prompt
the model. To ensure stable training, an MLP layer is added to
reparameterize these prefix tokens. Once training is complete,
only the parameters of the prefix layer need to be saved to obtain
a fine-tuned model for a specific task.

Inspired by the prompt tuning, some research articles try
to apply these efficient tuning methods to the visual domain.
Visual prompt tuning (VPT) [102] prepends a set of learnable
parameters to the pretrained ViT and conducts experiments on
a wide variety of downstream recognition tasks. It shows that
VPT achieves significant performance gains compared with
other parameter-efficient tuning protocols. Multimodal prompt
learning [103] learns prompts on both text and vision branches
to ensure mutual synergy. In addition, branch-aware hierarchical
prompts are also designed to progressively model the stagewise
feature relationships. Oh et al. [104] proposed the black-box
visual prompting, which efficiently adapts the large-scale pre-
trained models without knowledge about model architectures
and parameters.

2) Adapter Tuning [105], [106]: Adapter tuning is a more
general fine-tuning strategy designed for large models. It in-
volves adding an adapter module within each layer or between
layers while keeping the main parameters of the pretrained
model fixed, as shown in Fig. 11(a). During the fine-tuning
process, only the parameters in the adapter are trained to adapt
to downstream tasks, reducing the computational overhead of
training. The advantage of adapter tuning lies in its ability to
retain the model’s general knowledge while learning specific
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knowledge for downstream tasks, avoiding catastrophic forget-
ting and task interference. This approach is now widely used in
various applications.

3) LoRA [107]: LoRA is a well-known technology for fine-
tuning the model. Fine-tuning typically involves modifying all
parameters in the model, but today’s large language models with
billion-scale parameters make conventional fine-tuning strate-
gies computationally expensive. Previous research has shown
that neural networks are overparameterized, and their parameters
can be represented separately using low-rank representation.
Unlike fine-tuning all parameters, the LoRA algorithm suggests
that we can learn a low-rank weight residual parameter, denoted
as ΔW , to achieve the fine-tuning effect.

As shown in Fig. 11(b), for a weight W , rather than adjusting
all parameters fully, we only need to learn the residual ΔW of
this parameter. Moreover, this residual can be decomposed into
two low-rank matrices, ΔW = AB. As a result, we only need
to fine-tune matrices A and B to achieve the fine-tuning effect,
and the performance after fine-tuning is equivalent to that of full
fine-tuning.

Due to its ease of use and effectiveness, LoRA has prompted
the development of various methods to improve it, enabling
fine-tuning models with more parameters, even on smaller com-
puters. For example, AdaLoRA [108] considers the importance
of parameters, adaptively allocates the budget for parameter op-
timization, and parameterizes incremental updates in the form of
singular value decomposition. QLoRA [109] enhances Vallian
LoRA from a quantitative perspective. QLoRA backpropagates
gradients through a frozen, 4-bit quantized pretrained language
model into LoRA. This enables fine-tuning of 65B parameter
models on a single 48G GPU while maintaining comparable
performance with 16-bit fine-tuned models.

III. DEVELOPMENT OF FMS

A. Language FM

Language FMs, also known as large language models, have
gained significant attention in recent years. These models utilize
a vast amount of text for unsupervised training and excel in text
representation and understanding. Some of the notable language
FMs are summarized in Table II.

One of the pioneering models is deep bidirectional transform-
ers (BERT) [4], which achieve deep representation pretraining
by joint conditioning on unlabeled samples in a bidirectional
manner. BERT achieves state-of-the-art results on seven NLP
tasks. Raffel et al. [110] proposed a method to convert all text-
based language problems into a text-to-text format and trained a
T5 model with 11B parameters. Subsequently, the well-known
GPT transformer series models were introduced. GPT-3 [73], in
particular, demonstrated the potential of large-scale parametric
language models and inspired a wide range of applications.
For instance, WebGPT [111] implemented question answering
in a web browser environment, while Codex [112] performed
fine-tuning on the basis of GPT to enable the model to mas-
ter Python code-writing capabilities. Following these devel-
opments, several language FMs with large-scale parameters
were proposed [113], [114], [115], [116], [117], showcasing

impressive performance in language translation, summarization,
question answering, and text completion. These models have
displayed unprecedented capabilities [117].

Moreover, advancements, such as InstructGPT [118], have
further improved the control and flexibility of large language
models, ensuring the logic and values of the models align with
human understanding. This has opened up new possibilities for
utilizing language FMs in a more human-like manner.

B. Vision FM

Drawing inspiration from the construction of language FMs,
the field of computer vision has also delved into large-parameter
FMs. Table II summarizes some representative vision FMs.

The exploration of vision FMs can be categorized into three
main aspects: training methods, parameter number, and tasks.
BYOL [23] enables SSL by interacting between two networks.
SimCLR [24] proposes a semisupervised learning method that
combines unsupervised, distillation, and few-shot supervision to
enhance the model’s capabilities. SimMIM [26] simplifies the
training process of MAE while maintaining accuracy.

Researchers have also explored breakthroughs in the number
of parameters in visual models. Leveraging the scalability of
the ViT model, Zhai et al. [2] scaled the ViT model to 1.8
billion parameters. Taking it a step further, Google proposed a
model [3] with 22 billion parameters, demonstrating the visual
scaling potential akin to large language models. In addition,
InternImage [119] implements a large-scale CNN FM, achieving
performance improvements similar to ViT.

While most of these models are focused on image-based tasks,
the extension of natural image FMs to video domains has also
been explored [120], [121], [122]. These advancements have
opened up new possibilities for utilizing large-parameter FMs
in various visual tasks, both for images and videos.

C. Vision–Language FM

In the current landscape, FMs have evolved to encompass
more than just deep models; they now focus on utilizing vast
amounts of data and computational power to tackle diverse prob-
lems. The goal is to use a unified model capable of addressing
multiple modalities and tasks. Consequently, there is a growing
emphasis on training vision–language models [123]. Table II
summarizes some of the representative vision–language FMs.

CLIP [10] is a prominent example that leverages a large-scale
collection of image–text pairs from the Internet for contrastive
learning, enabling the creation of a unified representation of
multimodal data. Inspired by CLIP, various multimodal image
FMs have been proposed, differing in their model structures [30],
[124], feature representations [125], [126], multimodal feature
fusion approaches [27], feature alignment loss functions [28],
pretraining methods [29], and more. These advancements have
significantly improved the performance of multimodal FMs.

In addition, DALL-E [127] combines the diffusion model
with multimodal FMs to generate images from text. SAM [31]
introduces a promptable model with training strategies that
enable the segmentation of objects using text, points, and lines
as prompts. GPT-4 [128] exhibits superhuman capabilities on
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TABLE II
SUMMERY OF LANGUAGE, VISION, AND VISION–LANGUAGE FMS
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TABLE III
SUMMERY OF RSFMS

various professional and academic datasets. mPLUG-2 [130]
introduces a multimodule composition network, including text,
image, and video. Metatransformer [131] proposed a unified
framework performing learning across 12 modalities with un-
paired data (e.g., natural language, 2-D images, 3-D point clouds,
audio, video, time series, and tabular data).

These models are all built upon large-scale training data and
self-supervised methods, harnessing the potential of unlabeled
multimodal data encompassing both vision and language to train
the FMs. As a result, these models can effectively perform a wide
range of tasks that involve both vision and language processing.

D. RS Foundation Model

The research on natural image FMs has seen significant
progress, and the field of RS has also garnered substantial
attention in this regard. However, due to the inherent domain
gap between natural images and RS images, directly applying
pretrained models from natural images to RS images often leads
to suboptimal results. To address this challenge, the construction
of RSFMs can be divided into two approaches: training from
scratch and continuous training using pretrained natural image
models. The RSFMs are summarized in Table III.

1) Training From Scratch: The training from scratch ap-
proach involves collecting a large number of RS images and
using the training methods employed in natural image FMs.
Wang et al. [32] conducted experiments on RS pretraining mod-
els, showing that pretraining methods can effectively alleviate
data differences but may still be influenced by task differences
as downstream tasks require distinct representations from scene
recognition tasks. Sun et al. [18] collected 2 million RS im-
ages to build a large-scale dataset covering diverse scenes and
objects worldwide for pretraining. They proposed the RingMo
masked image modeling method, addressing the problem of
dense small targets often overlooked in complex RS scenes.
Wang et al. [17] trained a visual RS transformer model with
approximately 100 million parameters and introduced a new
rotating variable-size window attention method to accommodate
the characteristics of dense RS targets. Addressing the issue of
large differences in the scale of RS targets, Reed et al. [22]
proposed the scale-MAE method. This method explicitly learns
the relationship between data at different known scales, enabling

robust multiscale representations. Furthermore, SatMAE [20]
established an MAE-based pretraining framework for temporal
or multispectral satellite imagery, extending the paradigm to
multispectral imagery as well as temporal dimensions. Geograph
[33] introduced a method for comparative learning of spatiotem-
poral structure for RS data. In addition, CSP [132] utilized
geospatial information in the image to construct a pretraining
framework for contrastive learning.

2) Continuous Training: While training from scratch has
propelled the development of RSFMs, it can be resource-
intensive and challenging for large-scale models. As a result,
some researchers have turned their focus to the method of con-
tinuous training, which utilizes the existing pretrained natural
image FMs. Cha et al. [19] implemented a billion-level RS image
FM based on Wang et al.’s [17] work. Mendieta et al. [21]
constructed a compact yet diverse dataset called GeoPile to
increase the amount of information in the pretraining data. They
introduced the GFM model and carried out continuous pretrain-
ing based on the large-scale ImageNet-22k pretrained model
to achieve an efficient geospatial FM with minimal resource
cost and carbon impact. These continuous training approaches
offer a cost-effective and efficient way to leverage the existing
pretrained models in the RS domain.

IV. APPLICATIONS OF RSFM

In this section, we introduce the important applications of
RSFMs. The applications are shown in Fig. 12. The applications
are divided into three types: classification task, location task,
and understand task. The classification tasks classify the image
into a certain category at the image level or pixel level. Location
tasks locate the target with boxes or masks. The understand tasks
involve in the process of language. The representative algorithms
in recent years are summarized in Tables IV and V.

A. Classification Task

1) Scene Classification: Scene classification is an image
classification task similar to natural images. Given an RS image,
it needs to be classified into a specific category according to
the category settings [133]. In the whole RS image, the scene
information contained is complex, so the picture used for scene
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Fig. 12. Application of RSFMs. The applications are divided into three types: classification task, location task, and understand task. The classification task and
location task are pure-visual tasks. The understand tasks involve in the process of language.

classification is usually cut out from the whole image according
to a specific target to obtain a single-category image.

Scene classification tasks mainly require model representa-
tion capabilities, so many new algorithms are also applied to
this field. Yang et al. [134] proposed an explainable multiscale
spatial–spectral transformer. Spatial attention is a popular al-
gorithm to achieve multiscale fusion [135], [136], [137]. Con-
trastive learning is widely applied to learn robust representation
in RS [138], [139], [140], [141], [142]. In addition, GAN [143],
neural architecture search [144], autoencoder [145], knowledge
distillation [146], and collaborative framework [147] have also
been applied to scene classification.

2) Semantic Segmentation: Semantic segmentation, also
known as land-cover and land-use classification in RS, is one of
the most important and widely used tasks in RS interpretation.
This task involves classifying each pixel of an image into specific
categories representing different ground objects. The classifi-
cation process must take into account various factors, such as
multiscale characteristics of ground objects, texture features, and
spectral characteristics. However, the ground resolution of RS
images can be limiting, as often a single pixel contains spectral
information from multiple ground objects, making it challenging
to accurately distinguish the boundaries of individual ground
objects. Nevertheless, with advancements in high-resolution RS
imaging technology, the accuracy of ground object segmentation
has significantly improved and become widely used in various
applications.

Numerous studies have been conducted in the field of se-
mantic segmentation in RS. To leverage the potential of large
amounts of unlabeled data, various algorithms, such as semisu-
pervised [148], self-supervised [149], [150], [151], [152], [153],
and self-training [154], [155] methods, are widely employed in

RS semantic segmentation. These methods make effective use of
unlabeled data to improve the accuracy of segmentation. In ad-
dition, factors, such as multiscale [156], [157], spatial–temporal
[158], [159], [160], and boundary [161] information, which are
crucial for semantic segmentation, are often carefully considered
and incorporated into the design of algorithms. Furthermore,
there are investigations into the interaction-based segmentation
of RS images, which explore methods that involve interactions
between pixels for more accurate segmentation results [162].

3) Change Detection: Remote sensing change detection
(RSCD) is a process that involves identifying and extracting
differences between multitemporal RS images captured in the
same geographic area. The typical workflow of RSCD methods
includes several steps, such as RS image preprocessing (align-
ment, correction, noise reduction, etc.), selecting appropriate
change detection methods, and analyzing the results.

Due to the limited availability of labeled data for train-
ing, clustering algorithms remain the mainstream approach for
change detection [167], [172], [173], [174]. Attention modules
have also emerged as a noteworthy technique in this field [166],
[177]. Notable attention modules include hybrid attention [168],
convolutional block attention module [169], and spatialwise
attention [175], which have been proposed to enhance the
performance of change detection algorithms. In addition, the
characteristics of GANs [165] and the Swin-transformer model
[170] have been integrated into change detection algorithms,
further improving their effectiveness.

Researchers have also proposed innovative methods to
reason about both single-temporal and cross-temporal se-
mantic correlations for change detection [171], and spatial–
spectral cross-fusion approaches, such as SSCFNet [176], have
been introduced to improve change detection performance.
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TABLE IV
SUMMARY OF THE REPRESENTATIVE ALGORITHMS OF CLASSIFICATION APPLICATION

Furthermore, multiscale geometric techniques, such as Shearlet
[173] and contourlet [167], have been applied to change detec-
tion to provide multiscale and multidirectional features, leading
to better performance in detecting changes in RS images.

B. Location Task

1) Object Detection: Object detection is a crucial task in RS
interpretation that involves identifying and localizing objects of
interest within a scene. However, object detection in RS presents
unique challenges compared with natural scenes. RS targets are
often densely distributed, making it difficult for conventional
horizontal bounding boxes to effectively capture and surround
the targets. Moreover, the significant variation in scale among
RS objects adds complexity to the detection task.

To address these challenges, researchers have proposed vari-
ous approaches to improve object detection in RS imagery. For
example, Zhang et al. [179] introduced the Laplacian feature
pyramid to capture multiscale features, enhancing the detection
performance. Ye et al. [184] developed an adaptive attention
fusion method in conjunction with EfficientDet [236] to better
handle multiscale objects. Bai et al. [181] leveraged time–
frequency analysis and deep reinforcement learning to reduce
computational complexity while ensuring detection accuracy.

In addition to the traditional target detection methods, re-
cent efforts have focused on advancing learning algorithms
for object detection. Weakly supervised learning [178], [183],
[186], SSL [188], and distillation strategies [182], [187] have
gained attention as effective approaches for improving ob-
ject detection performance in RS imagery. These learning
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TABLE V
SUMMARY OF THE REPRESENTATIVE ALGORITHMS OF LOCATION AND UNDERSTANDING APPLICATIONS
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methods help enhance the model’s ability to learn from limited
labeled data, leading to better object detection results in RS
applications.

2) Moving Object Detection: The advancement of RS pho-
tography technology has allowed satellites to capture continuous
videos by staring at specific areas [237]. Moving object detec-
tion in satellite videos involves extracting objects in motion,
such as airplanes, ships, and cars. However, due to factors,
such as changes in lighting, weather, and viewing angles, the
moving targets often occupy only a small portion of the scene.
As a result, moving target detection faces challenges of false
detections and missed detections caused by image blur and
shaking.

One popular approach for moving object detection in RS is
background subtraction [190], [191]. Zhang et al. [193] explored
background modeling and incorporated sparse constraints to
achieve the accurate extraction of moving objects. However,
in low-quality videos, background subtraction methods tend to
produce a large number of false alarms and may miss many
positive targets. To address these limitations, several methods
based on temporal and appearance features have been proposed
[192], [194]. For example, DSFNet [195] is a two-stream de-
tection network that considers both dynamic and static informa-
tion. SDANet [196] is an anchor-free detector that utilizes road
information to suppress false alarms. These approaches aim to
improve the accuracy and robustness of moving object detection
in RS videos, making it an active area of research with promising
applications in various domains.

3) Object Tracking: Object tracking in satellite videos in-
volves continuously tracking single or multiple objects [238].
However, due to the limited ground resolution of satellite imag-
ing, the targets in satellite images are usually very small, pro-
viding limited detail information, which can lead to tracking
deviations or difficulty in distinguishing targets from the back-
ground. In addition, the presence of clouds and buildings can
further hinder object tracking.

In single-object tracking (SOT), correlation filter-based al-
gorithms remain comparable [202], [203], [204]. To address
challenges in high-spatial-resolution representation, HRSiam
[197] is proposed. Cui et al. [199] explore reinforcement learn-
ing to tackle occlusion problems during tracking. MBLT [200]
leverages motion and background information to improve object
tracking in satellite videos. Spatial-channel attention is also
utilized in SOT for RS [201], [206], and dynamic information
in videos is explored in [198], [205], and [208].

In multiple-object tracking (MOT), Ao et al. [209] propose
probabilistic noise modeling algorithms and evaluation proto-
cols for MOT. He et al. [210] develop graph reasoning algo-
rithms that leverage the relations between objects and introduce
the AIR-MOT dataset. Zhang et al. [211] utilize bidirectional
tracking for trajectory verification to mitigate the influence
of similar objects. CFTracker [212] introduces a cross-frame
feature update and training flow to enhance tracking perfor-
mance. These advancements in object tracking techniques for
satellite videos hold significant promise for improving the ac-
curacy and robustness of RS applications.

C. Understanding Task

Understanding tasks in RS interpretation encompass tasks
involving linguistic descriptions, including visual grounding
(VG), image captioning, and visual question answering (VQA).

1) VG: VG, also known as referring location, is a derivative
task of target detection. In contrast to target detection, where
the category of the target is predefined, VG requires locating
the target in the image based on a given linguistic expression.
This task demands not only language understanding but also
comprehension of the categories and relationships of targets
in RS images to achieve the accurate localization. RS VG is
still in its early stages of development, and datasets, such as
RSVG [213], DIOR-RSVG [214], and RefSegRS [215], have
been introduced.

Zhan et al. [214] proposed the MGVLF module, which com-
bines image features extracted from CNNs and text features
obtained using BERT to achieve target localization. Similarly,
Sun et al. [213] proposed the GeoVG model, which also utilizes
BERT to encode text. Moreover, the geospatial relations of the
target are taken into consideration to improve accuracy.

2) Image Caption: Image captioning involves summarizing
the text describing an image based on the information in the
image. In the case of RS images, which are taken from a
high altitude, the targets are small and numerous. As a result,
RS image caption algorithms tend to focus on describing the
dominant content in the scene while overlooking smaller objects
of interest. In addition, current RS image description datasets
suffer from issues, such as small image sizes and limited richness
of content. Existing algorithms face difficulties when applied to
large-scale images and struggle to fully describe the content
using rich, hierarchical, and coherent language.

Numerous studies have been conducted on RS image cap-
tioning, with attention mechanisms and semantic information
often employed [216], [218], [219], [220], [225], [226]. Wang
et al. [222] proposed a pure transformer for image captioning
in RS. TypeFormer [221] was introduced to control the type of
generated captions, while Chg2Ca [227] extended captioning
to change descriptions in RS. In addition, multilabel [217] and
metalearning [223] have also been considered.

3) VQA: VQA involves answering questions based on image
information. In RS, VQA is mainly divided into three types:

1) determining whether a specific target is present in the
image;

2) identifying the target within the question description area;
3) counting the number of targets.
Current RS VQA models often overlook information in the

image space, leading to lower accuracy in information answer-
ing. Moreover, the design of current VQA tasks is relatively
simple and cannot handle more complex questions. Further-
more, these tasks do not consider the role of landmark build-
ings in question answering, necessitating the integration of real
geographic information to enhance the practicality of visual
answering tasks.

Zhang et al. [228] propose a spatial hierarchical reasoning
network to model and reason the relationships between entities.
Yuan et al. [230] introduce a self-paced curriculum learning
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approach for VQA in RS. Models, such as BERT [229], [233],
CLIP [231], and GPT [235], have been widely applied, and
addressing the open-set problem of VQA in RS is also a focus
of research [232]. The VQA task related to change detection
is an emerging research direction [234]. Furthermore, visual
question generation is also a valuable area for the development
of VQA [235].

V. EXPLORATION OF THE EFFECTIVENESS OF EXISTING FMS

ON VARIOUS RS APPLICATIONS

RS interpretation is a technology utilized for analyzing and
comprehending images. Numerous FMs have been developed
for image interpretation. In this section, we conduct systematic
experiments to compare the performance of RSFMs with nat-
ural FMs in RS applications. The experiments cover three key
aspects: global representation (scene classification), local repre-
sentation (semantic segmentation), and object localization (ob-
ject detection). Furthermore, we provide a detailed discussion
on the strengths and weaknesses of the currently existing FMs.

A. Scene Classification

We conducted experiments on representation capabilities us-
ing five commonly used scene classification datasets in RS.

1) Dataset: We conducted experiments on scene classifica-
tion using a total of five datasets.

WHU-RS19 [239]: This dataset consists of 1005 images
collected from Google Earth imagery, covering 19 categories
of RS scenes. The images are fixed at a size of 600× 600
pixels with a spatial resolution of 0.5 m. Each category contains
approximately 50 images.

UCMerced [240]: UCMerced is obtained from the United
States Geological Survey National Map and comprises 21
classes, with 100 images per category. Compared with WHU-
RS19, UCMerced offers a higher spatial resolution of 0.3 m.
The images in UCMerced are cropped into smaller regions of
256× 256 pixels.

AID [241]: AID is an aerial imagery dataset that includes
10 000 images with 30 categories of RS scenes. The number of
sample images varies from 220 to 420 for each class. The spatial
resolutions of the images range from 8 to 0.5 m, presenting a
challenge in scene classification. AID dataset was constructed
to consider higher intraclass variations and smaller interclass
dissimilarity for comprehensive comparisons.

RESISC [242]: Also known as NWPU-RESISC45, this
dataset consists of 31 500 images extracted from RS images
in Google Earth. It comprises 45 categories, with 700 images
in each class. The spatial resolution of RESISC varies from 30
to 0.2 m. The image size is standardized to 256× 256 pixels.
RESISC covers over 100 countries and regions worldwide,
providing rich image variations, high within-class diversity, and
between-class similarity.

fMoW [41]: The functional Map of the World (fMoW) is
a large-scale RS dataset used for training machine learning
models. It enables the prediction of building functions and land
use based on the time series of satellite imagery. The dataset
contains over 1 million images from more than 200 countries,
annotated with 63 categories. There are two versions available:

fMoW full, consisting of four-band and eight-band multispectral
images, and fMoW-RGB, which is in JPEG format and contains
RGB images converted from multispectral data. Since most FMs
only work with RGB images, we utilized the fMoW-RGB dataset
for our experiments.

These datasets provide a diverse range of RS scenes and
facilitate a thorough evaluation of the representation capabilities
of FMs.

2) Experimental Analysis: Except for the fMoW dataset, the
other datasets were not initially divided into training and test sets.
Therefore, we randomly divided these datasets into training and
test sets using different training ratios. Specifically, we selected
50% of the WHU-RS19 dataset, 20% and 50% of the AID
dataset, 50% and 80% of the UCMerced dataset, and 10% and
20% of the RESISC dataset as the training sets, respectively.
The remaining images were used as the test sets. To mitigate the
impact of randomness, each separation with a specific training
ratio was performed three times. For the fMoW dataset, we
used the official training and test sets provided by the dataset
creators. The experimental results are presented in Table VI.
In this experiment, four RSFMs are selected for comparison,
including RSP [32], RVSA [17], SatMAE [20], and ScaleMAE
[22]. In addition, SwinV1 [60], SwinV2 [26], CLIP [10], ALBEF
[27], BEiT-v3 [30], BLIP-2 [29], and SAM [31] are involved in
experiments.

Among the FMs for RS, the RSP model has demonstrated
promising results on multiple datasets. This can be attributed
to the model’s utilization of MillionAID’s classification labels
during pretraining, which enables better performance on scene
classification datasets. On the other hand, RVSA, SatMAE, and
ScaleMAE are FMs trained using label-free self-supervised al-
gorithms. SatMAE exhibits superior performance on the WHU-
RS19 and UCM datasets. The ScaleMAE model achieves the
best results on AID, RESISC, and fMow datasets while also
performing competitively with other RSFMs on WHU-RS19
and UCMerced datasets. The success of ScaleMAE can be
attributed to its consideration of different ground sampling dis-
tances during the training process, leading to effective adaptation
to datasets with multiresolution characteristics.

Among the natural FMs, the BLIP2 and CLIP series models
have achieved remarkable results. The BLIP2 model utilizes the
image encoder from CLIP, resulting in a similar performance to
CLIP. The CLIP model demonstrates excellent representation
capabilities for RS images, thanks to the inclusion of RS-related
data in its dataset. Furthermore, compared with models trained
with masked image modeling techniques, such as Swin trans-
former, FMs trained using image–language pairs training place
greater emphasis on capturing high-level semantic information.
As a result, they exhibit superior representation abilities. On the
other hand, the underwhelming results of SAM can be attributed
to its design for segmentation tasks. The large feature map causes
background information to interfere with target information
during average pooling, consequently impacting classification
outcomes.

Moreover, when comparing all FMs, we observe that natural
FMs consistently outperform current RSFMs. Even when Swin
transformer is trained without RS images, it still demonstrates
superiority on WHU-RS19, UCM, AID, and RESISC datasets.
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TABLE VI
NUMERICAL RESULTS OF COMPARISONS WITH FMS ON FIVE SCENE CLASSIFICATION DATASETS WITH DIFFERENT TRAINING RATIOS

Fig. 13. Feature visualizations of six FMs. (a) UCMerced dataset. (b) RESISC dataset.

Furthermore, we use the T-SNE algorithm to visualize features,
as shown in Fig. 13. The RSP shows good features in UCMerced
dataset but performs worse in the complex dataset, RESISC.
The CLIP and BLIP-2 perform well across these datasets. This
further corroborates the notion that large-scale pretrained natural
FMs remain highly competitive in the field of RS. In addition,
this insight inspires us to leverage natural FMs to enhance the
development of RSFMs in terms of efficiency and performance.

B. Semantic Segmentation

Semantic segmentation, also known as land-cover classifi-
cation in RS, differs from scene classification as it involves

classifying pixels of an image on a pixel level. This allows for
the evaluation of the local representation capabilities of FMs. In
our experiments, we combine the UperNet [243] with the FMs
and fine-tune them using five semantic segmentation datasets to
compare their performance.

1) Datasets: We conducted experiments on semantic seg-
mentation using a total of five datasets.

DFC22 [244]: The DFC22 dataset is based on the MiniFrance
dataset [245] and is designed for training semisupervised seman-
tic segmentation models for land-use/land-cover mapping. It
contains 766 labeled images with a resolution of approximately
2000× 2000. In our experiments, we compared the fine-tuned
performance of each FM. We uniformly resized all images to



10102 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE VII
NUMERICAL RESULTS OF COMPARISONS WITH FMS ON FIVE SEMANTIC SEGMENTATION DATASETS

512× 512 pixels and randomly split them into training and test
sets with a 4:1 ratio. No unlabeled images were used.

Vaihingen [246]: The Vaihingen dataset, released by the
International Society for Photogrammetry and Remote Sensing
(ISPRS) Commission, consists of RS images of the Vaihingen
village. It is divided into 33 patches, with 17 patches used as the
test set and the remaining 16 patches as the training set. The patch
sizes range from 1996× 1995 pixels to 3816× 2550 pixels. In
our experiments, we resized all data to 512× 512 pixels with an
overlap size of 128 pixels.

MER [247]: The Mars-Seg (MER) dataset consists of 4155
RGB images and 1024 grayscale images, capturing the Martian
landscape. The RGB images have a resolution of 560× 500,
while the grayscale images have a resolution of 1024× 1024.
To conduct our experiments, we uniformly resized the MER
images to 512× 512 pixels. We randomly split both the RGB
and grayscale images into training and test sets with a 4:1 ratio.

Gaofen Image Dataset (GID-15) [248]: The GID-15 is a large
dataset for land-use and land-cover classification. It contains
ten high-quality Gaofen-2 images from different cities in China,
with a resolution of 7200× 6800 pixels. In our experiments,
we applied the sliding window method with a window size of
512× 512 and a stride size of 384 to extract patches from the
images. The resulting patches were then randomly divided into
training and test sets using a 4:1 ratio.

Potsdam [249]: The ISPRS Potsdam dataset comprises 38
high-resolution aerial images with a resolution of 0.5 m. It is

annotated with six categories, including impervious surfaces,
buildings, low vegetation, trees, cars, and clutter. The dataset is
divided into 24 training images and 14 testing images, each with
a size of 6000× 6000 pixels. In our experiments, we used the
sliding window method with a window size of 512× 512 and a
stride size of 384 to extract image patches.

2) Experimental Analysis: The experimental results are pre-
sented in Table VII. In this experiment, three RSFMs are selected
for comparison, including SatMAE [20], ScaleMAE [22], and
RVSA [17]. In addition, Deeplabv3+ [250], ConvNeXt [251],
VAN [252], MViTv2 [253], SegFormer [254], ViT [58], SwinV1
[60], SwinV2 [255], CLIP [10], and DenseCLIP [256] are in-
volved in experiments.

From the table, we can observe that different RSFMs yield
varying effects on semantic segmentation. ScaleMAE performs
well on DFC22 and Vaihingen datasets, achieving mIoU scores
of 50.2 and 72.3, respectively. RVSA shows better performance
on the larger datasets GID-15 and Potsdam. The three RSFMs
perform similarly on the MER dataset.

Among the natural base models, Swin transformer achieves
the best results on DFC22, GID-15, and Potsdam datasets. This
can be attributed to two factors: its ability to represent RS
images and the structure of the model. Our scene classification
experiments have already demonstrated the Swin transformer’s
strong representation capability for RS images. In semantic
segmentation, Swin transformer provides multiscale features, ef-
fectively improving accuracy. MViTv2 also performs admirably,
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particularly excelling on the Vaihingen and MER datasets. It is
worth noting that MViTv2 is only pretrained on ImageNet 1K,
indicating that its performance gains are primarily derived from
its excellent multiscale design and improved representation abil-
ity of local features. Furthermore, the tiny and small versions of
the MViTv2 series models are also competitive. This highlights
the fact that the number of parameters cannot solely determine
the performance of a model when it is applied to a specific RS
dataset.

By comparing all the FMs, it becomes evident that natural
FMs outperform current RSFMs in terms of performance. This
can be attributed to two main factors. First, the current RSFMs
are pretrained on the fMoW and MillionAID datasets, which
do not comprehensively cover all RS datasets. Consequently,
these models do not exhibit significant advantages in the lo-
cal representation segmentation. In addition, the current FMs
predominantly utilize ViT as the underlying structure, which
also affects their performance. Therefore, designing an RSFM
requires not only a well-suited pretraining algorithm but also an
excellent multiscale structure that enables the model to meet the
requirements of diverse applications.

C. Object Detection

Object detection is a crucial task in RS interpretation, as it
necessitates the model’s ability to handle objects with significant
size variations while also performing accurate classification. In
our experiments, we integrate the oriental-RCNN [257] with the
FMs and fine-tune them on two widely used RS object detection
datasets to assess their performance.

1) Datasets: We utilized two object detection datasets for
our experiments: DOTA v1.0 and DIOR-R.

DOTA v1.0 [258]: DOTA is a renowned dataset widely used
for rotated object detection in the RS domain. We employed
DOTA v1.0 for evaluation purposes. This dataset consists of
15 common categories, 2806 images, and 188 282 instances,
gathered from various sensors and platforms. The image sizes
in DOTA v1.0 range from 800× 800 to 4000× 4000 pixels.
The labels for the training and validation sets are publicly
available. The categories in DOTA v1.0 include plane (PL),
baseball diamond (BD), bridge (BG), ground track field (GTF),
small vehicle (SV), large vehicle (LV), ship (SH), tennis court
(TC), basketball court (BC), storage tank (ST), soccer ball field
(SBF), roundabout (RA), harbor (HB), swimming pool (SP), and
helicopter (HC). For our experiment, we trained the model on
the train set and evaluated its performance on the validation set.

DIOR-R [259]: The DIOR-R dataset is an extension of the
previous DIOR dataset [260]. It comprises 23 463 images and
192 518 instances, encompassing a wide range of scenes and 20
common object classes. The images in DIOR-R have a fixed size
of 800 pixels. The object categories in DIOR-R include airplane
(APL), airport (APO), baseball field (BF), basketball court (BC),
bridge (BR), chimney (CH), dam (DAM), expressway service
area (ESA), expressway toll station (ETS), golf field (GF),
ground track field (GTF), harbor (HA), overpass (OP), ship
(SH), stadium (STA), storage tank (STO), tennis court (TC),
train station (TS), vehicle (VE), and windmill (WM).

2) Experimental Analysis. DOTA: The experimental results
for DOTA are presented in Table VIII. In this experiment, ResNet
[261], PVTv2 [262], Poolformer [263], VAN [252], MViTv2
[253], ConvNeXt [251], SwinV1 [60], SwinV2 [255], and RVSA
[17] are involved in experiments.

Overall, there is no significant gap between the FMs designed
for natural images and those tailored for RS. Swin transformer
achieved an mAP of 76.5, while ConvNext and RVSA both
achieved 76.3 mAP. However, Swin transformer and ConvNext
yielded comparable results to the ViTAE-base model in RVSA
when using a large-parameter model. Consequently, RVSA
demonstrates superior performance in RS target detection. This
can be attributed to the incorporation of a rotating variable-size
window attention method in the RVSAs structural design, effec-
tively enhancing the model’s accuracy in object detection.

From a category standpoint, Swin transformer exhibits a
significant advantage over RVSAs ViTAE-B in the baseball-
diamond and roundabout categories, achieving 11.6 and
6.7 mAP scores higher, respectively. These two object classes
are less sensitive to rotating boxes, rendering the design of
RVSA less beneficial in terms of performance improvement.
Conversely, RVSA surpasses Swin transformer by 8.5 mAP
in the soccer-ball-field category. Therefore, incorporating the
FM can enhance the accuracy of the downstream applications.
Certain modules specifically designed for downstream tasks
remain crucial even in FMs and can effectively improve model
performance.

DIOR-R: Similarly, we can observe similar patterns in the
DIOR-R dataset experiments as in the DOTA dataset. The
experimental results on the DIOR-R dataset are presented in
Table IX. Swin transformer, ConvNext, and RVSA all achieved
great performance. RVSA demonstrated excellent performance
in both the tennis court and vehicle categories. Swin trans-
former employs a multiscale transformer structure, enabling
better detection of super large airports. ConvNext, with its con-
volutional structure, exhibited superior detection performance
for ships.

In this section, we conduct experiments focusing on three es-
sential aspects: global representation (scene classification), local
representation (semantic segmentation), and object localization
(object detection). Our findings from these experiments reveal
that the foundational models trained with natural images exhibit
comparable performance with the ones developed for RS. The
CLIP model stands out for its remarkable performance in scene
classification; however, it does not perform as well in semantic
segmentation. At present, no single FM can excel across all
these applications in our experiments. This underscores the
necessity for further development of FMs to suit a wide array of
applications in the RS field.

VI. BRAIN-INSPIRED RSFM

A. Overall Architecture of the Brain-Inspired RSFM

The FM aims to address multiple modalities and tasks with a
unified approach. However, based on the experiments conducted
in Section V, we have identified several shortcomings in the
current FMs’ performance. Particularly, there is a lack of RSFMs
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TABLE VIII
NUMERICAL RESULTS OF COMPARISONS WITH FMS ON DOTA V1.0 DATASETS WITH DIFFERENT TRAINING RATIOS

that can effectively handle multimodal data. These existing
data-driven FMs still have limitations in terms of data size, model
structure, and learning strategies.

To address these challenges, we propose a brain-inspired
framework for an RSFM, as illustrated in Fig. 14. This frame-
work aims to integrate multimodal data in RS, such as image,
video, point cloud, and text, and represent them uniformly for
data-driven learning. Moreover, it incorporates prior knowl-
edge, such as object spectral signature, road network infor-
mation, and terrain and geographical location, into the model
for knowledge-driven learning. By combining both data-driven
and knowledge-driven approaches, we expect to enhance the

model’s performance and adaptability. More importantly, the
brain-inspired properties can guide us to construct the model,
represent the data, build learning algorithms, and process rea-
soning. Thus, in the following sections, we will delve into the key
brain-inspired properties, focusing on four aspects: structure,
perception, learning, and cognition.

B. Basic Properties of Brain-Inspired RSFM

1) Structure: The foundation of a functional model lies in
its structure. Just as the human brain possesses a complex
architecture to enable its comprehensive functions, we seek to
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TABLE IX
NUMERICAL RESULTS OF COMPARISONS WITH FMS ON DIOR-R DATASETS WITH DIFFERENT TRAINING RATIOS

design a model with similar characteristics. In this section, we
explore the brain’s spiking structure, diversity, and geometry.

Spiking: The human brain, consisting of 86 billion neurons,
communicates through highly structured connections called
synapses [265]. Neurons exchange information in a sparse
and asynchronous manner through discrete action potentials
or “spikes” [266]. To emulate this essential characteristic of
the human brain, the spiking neural network (SNN) was in-
troduced, as shown in Fig. 15. Unlike the traditional neu-
ral networks, SNN processes sparse spatiotemporal signals by
simulating the excitation and inhibition of neurons. Spiking

neurons receive spikes developing the membrane potential
through time-following differential equations. A spike is emitted
when the membrane potential crosses a threshold [264]. This
approach offers advantages in terms of analog computing, low-
power consumption, fast reasoning, event-driven processing, on-
line learning, and large-scale parallelism, as it has demonstrated
superior performance [267].

Diversity: The brain’s composition is not uniform; it relies on
various neuron types to achieve its complex functions. The cere-
bral cortex, for example, is organized into four major structures:
the occipital lobe, temporal lobe, parietal lobe, and frontal lobe
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Fig. 14. Overall framework of the brain-inspired RSFM.

Fig. 15. Illustration of (a) classical artificial neural unit and (b) spiking
neurons. The image is reproduced following [264].

[268]. Recent studies have revealed a rich diversity of neurons
in the brain. For instance, Yao et al. [269] analyzed over 500 000
individual cells in the mouse primary motor cortex and identified
56 highly replicable neural types. Ed Lein et al. demonstrated the
abundance of neuronal species in the cerebral cortex [270] using
techniques, such as patch clamp. This diversity is essential for the
realization of different modalities and functional differentiations
in the brain. Similarly, our neural network needs to incorporate
a variety of neuron types to facilitate the realization of different
tasks and modalities in the model.

Geometry: Traditionally, the brain’s complex functions were
thought to arise from intricate inter-regional connections. How-
ever, neural field theory suggests that the brain’s geometry may
represent a more fundamental dynamical constraint. Studies
by Caucheteux et al. [271] using human magnetic resonance
imaging data demonstrated that cortical and subcortical activity
can be understood as arising from the excitation of fundamental
resonant modes of the brain’s geometry (i.e., its shape). This

implies that geometric constraints play a crucial role in shaping
brain functions in addition to neural connections. Therefore,
our model should also take into account the potential role of
geometric constraints in shaping functions.

Discussion: SNNs have been studied a lot in deep learning.
Yao et al. [272] proposed attention SNN. It integrates the atten-
tion mechanism into a million-scale SNN. On the ImageNet-1K
dataset, it has achieved performance equivalent to that of the
traditional artificial neural networks for the first time, and its the-
oretical energy efficiency is 31.8 times that of the artificial neural
networks with the same structure. Therefore, brain-inspired
SNNs have many potentials. For large-scale basic models, SNNs
will have more potential. However, neuron diversity and geomet-
ric constraints have not been studied in the current model. The
model’s functional design of different neurons and geometric
constraints combined with dynamics research will help improve
the robustness of the basic model.

2) Perception: Perception is the process through which hu-
mans obtain information from the external world. For the brain,
this input information includes visual, auditory, tactile, and other
sensory data. Similarly, in RS, different data, such as visible light
and SAR, provide multimodal information. To design an effec-
tive FM, we need to mimic the human brain’s characteristics,
such as sparsity, selectivity, and directionality, to enhance the
model’s efficiency in perceiving information.

Sparsity: The brain exhibits a hierarchical, sparse, and peri-
odic structure [273]. Sparsity plays a crucial role in biological
brains as it allows for the representation and processing of
information using only a small number of activated neurons or
saliences. This sparsity is a property of neural coding that en-
hances the brain’s efficiency, robustness, and flexibility. Studies
have shown that sparse representations in the cerebral cortex’s
V1 may satisfy the optimality criteria of information theory
[274]. As we move to the higher levels of neurons, the receptive
fields become larger, and the sparsity becomes stronger. Recent
research has also indicated that neural circuits are organized in
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a sparse yet efficient manner. Higher levels of intelligence have
been associated with more direct information processing and less
cortical activity during reasoning, highlighting the importance
of sparsity in the brain’s efficient perception [273].

Selectivity: Selectivity, often referred to as attention mecha-
nism, is a key feature of the brain’s ability to focus on specific
objects and control areas of attention [275]. The brain receives a
vast amount of information simultaneously but cannot process it
with equal priority. Therefore, it employs selective attention to
filter and prioritize information [276]. Selective attention exists
widely in the human visual system and is regulated by both
bottom-up and top-down mechanisms. Bottom-up selectivity re-
sponds to salient stimuli from the environment, such as changes
in target brightness or motion. On the other hand, top-down
selectivity allows humans to process relevant information based
on the current behavior and intentions while ignoring irrelevant
information, forming a close integration between attention and
cognition [277].

Directionality: Directionality is the brain’s ability to per-
ceive its own position and orientation. The brain has azimuthal
and oblique angle cells that provide orientation and position
information. When the head faces a particular direction, the
corresponding direction cells are activated [278]. Neural coding
patterns of egocentric spatial orientation have been discovered in
the medial temporal lobe of the human brain, supporting vector
representations of egocentric spaces by encoding distances to
reference points [279]. Building a multiscale directional network
in the FM aligns with the biological basis and significance of
directionality in perception.

Discussion: Overall, the application of sparsity, directionality,
and selectivity in deep learning can lead to more efficient and
effective neural networks that are better able to generalize and
learn from data. Child et al.’s [280] sparse transformers can
be used in long sequences for better performance in density
modeling. Networks based on multiscale geometric structures,
such as Ridgelet neural network and contourlet neural network,
all use characteristics, such as directionality, to achieve a more
sparse representation [43]. These methods can provide theoret-
ical support for the perception of brain-inspired FMs.

3) Learning: Learning is a fundamental process for humans
to acquire memories, knowledge, and practical skills. From a
neuroscience perspective, neurons possess plasticity, enabling
them to learn by modifying their connections and weights [281].
In this section, we introduce three brain-inspired learning mod-
els: Hebbian learning, error-correction learning, and competitive
learning.

Hebbian Learning: In 1949, Hebbian presents a postulate:
“cells that fire together wire together.” This means that when an
axon of cell is near enough to excite another cell or repeatedly or
persistently takes part in firing it, the connection weight between
these two cells will be increased. Inspired by this postulate, the
correlation-based learning rules are generally called Hebbian
learning [283]. Hebbian learning is a form of unsupervised
learning, as it does not rely on external feedback or error signals.
Instead, it captures statistical correlations between inputs and
outputs, forming associative memories.

Fig. 16. Learning paradigm integrating global error-driven learning (called
“global plasticity,”) and local correlation-driven learning (called “LP,”). Image
from [282].

Error-Correction Learning: Error-correction learning follows
the principle that neurons should learn from their mistakes.
In this form of learning, the connection weight between two
neurons is adjusted based on the difference between the actual
output and the desired output (i.e., the error). Error-correction
learning is a form of supervised learning, as it requires a
teacher or target to provide the desired output. By minimizing
the error, this learning mechanism improves the performance
of the network. The most popular learning algorithm for use
with error-correction learning is the backpropagation algorithm
[284]. Through setting the target loss, the gradient can be back-
propagated across the neural network and the weight can be
updated [285].

Competitive Learning: Competitive learning operates on the
principle that neurons should compete for activation. Only a few
neurons in a layer are allowed to be active at a time, while the
others are inhibited. The weights of connections between inputs
and active neurons are strengthened, whereas the weights of
connections between inputs and inactive neurons are weakened
[286]. Similar to Hebbian learning, competitive learning is un-
supervised and does not rely on external feedback. It enables the
discovery of features or clusters in the input data, leading to the
formation of sparse representations. Activation learning [287]
is a type of competitive learning. It injects competition within
and among neurons and show the capacity of learning plentiful
local features from few shots of input patterns.

Discussion: The learning method represented by error-
correction learning of backpropagation has excellent perfor-
mance on specific tasks. Therefore, it occupies the mainstream
position in the current model learning. But its supervised learn-
ing is still far from the way the brain learns. Wu et al. [282]
proposed a neuromorphic global–local synergic learning model,
as shown in Fig. 16. It can metalearn local plasticity (LP)
and receive top-down supervision information. By combining
different learning methods, the ability of the model in few-shot
learning, continual learning, and other scenarios is improved.
Therefore, organically combining a variety of brain-inspired
learning methods into the learning of the FM will help improve
the learning efficiency.

4) Cognition: Cognition refers to the process through which
human beings acquire knowledge, apply that knowledge, and
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process information, representing the most fundamental psy-
chological process in human beings. The human brain receives
information input from the external world, processes it, converts
it into internal psychological activities, and then controls actions
accordingly. In this section, we will primarily introduce the
mechanisms of brain memory, forgetting, and reasoning.

Memory: Memory is fundamental to human beings’ ability
to solve complex problems. The human brain can encode and
store past experiences to form memories, which can be searched
and retrieved when needed. Engram cells serve as fundamental
evidence that the brain forms memories, providing the necessary
conditions [288] for their emergence. Based on their differen-
tiation and actions, memories can be divided into short-term
memory and long-term memory.

Short-term memory, also known as working memory, usually
lasts only seconds or minutes [289]. Two theories about short-
term memory are “activity-silent neural networks” and “sus-
tained activity.” Activity-dependent synaptic plasticity enables
the formation of a transient nervous system [290], leading to
transient increases or decreases in neurotransmitter signals on
synapses, forming a dynamic neural network [291]. Short-term
memory is formed through the strengthening or weakening of
these transient signals. The theory of sustained activity suggests
that short-term memory is maintained by continuous action
potential discharge. Studies by the authors in [292] and [293]
have also shown functional magnetic resonance imaging and
electroencephalography results indicating a sustained increase
in brain activity during the delayed period of memory tasks.

The hippocampus, located in the temporal lobe, is a crucial
part of the limbic system responsible for forming new memories
and converting short-term memory into long-term memory in the
human brain. This process, often called consolidation, involves
gene activation and the formation of new synaptic connections
between neurons in the brain. Research by Yap et al. [294]
revealed that the hippocampus expresses sparse populations of
neurons activated by novel experiences. These neurons may
fine-tune their inputs to form persistent networks that provide
a coordinated response to an experience, leading to long-term
memory consolidation.

Forgetting: Forgetting is the opposite process of remember-
ing. Forgetting occurs for different reasons and occurs at differ-
ent stages of memory formation, storage, and retrieval. Currently
known forgetting mechanisms include passive forgetting and
active forgetting [295]. Passive forgetting is the nonspontaneous
memory loss process of the human brain. Over time, memories
become difficult to retrieve without context. In addition, similar
memories can form interference and, thus, be lost. Finally, the
instability of the biological memory mechanism will cause the
memory to fade naturally over time. In contrast, active for-
getting is considered to be a spontaneous memory extinction
process. Active forgetting usually includes motivated forgetting
and retrieval-induced forgetting. Motivated forgetting refers to
the forgetting process that is under our own cognitive control.
For example, when certain memories affect one’s positive image
or are inconsistent with beliefs, motivational forgetting will
actively abandon this part of the memory. Retrieval-induced
forgetting describes that when memory is consolidated through

learning, it may weaken the same type of memory that has not
been practiced, and only retrieval of certain memories may cause
the forgetting of other memories. All in all, forgetting plays
a vital role in human beings. It allows us to focus on what
is retained in memory and to protect ourselves from adverse
memories.

Reasoning: As a complex intelligent system, the brain’s causal
inference ability is one of the main manifestations of its intel-
ligence. When the brain processes multisensor information, it
exhibits the ability to make causal inferences. In particular, in
situations where information from multiple sensors differs, the
brain is able to infer whether the signals come from the same
source or independent sources and does not integrate signals that
are unlikely to come from the same source. Reuben et al. [296]
show how interactions between different types of neurons lead
to optimal integration and causal inference. Many neurons that
receive input from both modalities are congruent neurons with
similar tuning for both modalities, enabling multisensory inte-
gration. There are also heterotropic neurons, capable of detecting
signals from different sources. The collaboration of coherent
and heterotropic neurons may be what enables the brain to form
causal inferences.

Discussion: Memory and forgetting play an important role
in the cognitive process. Memorizing can help the model form
knowledge, while forgetting can clear unnecessary information.
Memory-based models have been heavily proposed [297] in
current time-series modeling. In addition, reasoning has also
received extensive attention, and a large number of models with
reasoning have been proposed [298]. However, the current basic
model still does not involve the exploration of these cognitive
abilities, and its performance on complex tasks is still very
limited.

VII. OPEN PROBLEMS

As the basis of RS field, the FMs have received extensive
attention and research. There are still many challenging open
problems to be solved in this field. In this section, we analyze
12 open problems about RSFMs and propose potential solutions,
as shown in Fig. 17.

A. Brain-Inspired FMs

Neural networks have their roots in the study of the brain’s
neuron structure [299]. While AI research has made significant
progress, the current FMs still fall short of capturing the brain’s
remarkable capabilities. The brain is exceptionally complex, yet
it can achieve functions, such as recognition, cognition, and
decision making, while consuming minimal power. Developing
brain-inspired FMs can drive AI toward higher performance and
lower costs.

The design of brain-inspired FMs can be approached from
two main perspectives: brain structure and brain characteristics.
The SNN, for example, emulates the human brain’s activation
and inhibition of signals through accumulation [300]. Another
approach, the capsule network, simulates a set of neurons and
uses vectors to represent feature pose information [301]. The
brain’s inherent characteristics, such as sparseness, selectivity,
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Fig. 17. Top 12 open problems of FMs.

and directionality, offer valuable insights for designing founda-
tional models that can better mimic the brain’s efficiency and
effectiveness.

B. Physics-Informed FMs

In tasks related to RS interpretation, the data are collected
from the physical world. However, current FMs often focus
solely on data-driven approaches, neglecting the underlying
physical characteristics of the data. By incorporating these phys-
ical characteristics, we can effectively unearth latent features
within the data and extract robust and sparse representations.

A prime example of physics-informed data interpretation
is the use of the Fourier transform for the spectrum analysis
of 1-D signals and wavelet transform for 2-D signals. These
methods realize a sparse representation of a complex signal.
Yang et al. [134] employed lifting wavelet to extract multi-
scale frequency-domain features, leading to more robust feature
representations. Wave MLP represents each token as a wave
function with phase and amplitude in quantum mechanics, which
enhances token representation [302]. In addition, Li et al. [303]
proposed utilizing electromagnetic scattering information for
SAR automatic target recognition. This approach characterizes
the electromagnetic scattering properties of the target, providing
crucial physical structure information. By integrating the exist-
ing physical research, it becomes possible to effectively describe
target characteristics and improve FM performance.

C. Learning Theory of FMs

A typical characteristic of the FM is that it is trained using
SSL, so the model is task agnostic [5]. However, the learning
theory of the FMs is not well studied. SSL is a type of un-
supervised learning. When a model is optimized for a certain
goal (such as image reconstruction), the model can also achieve
excellent performance on an unoptimized goal (such as image
classification). The results obtained in this experiment do not
have as good theoretical support. Therefore, it is an important
issue to study the learning theory of the FM.

Sutskever et al. [304] proposed the use of compression to
explain unsupervised learning. He regarded the information
obtained by unsupervised learning as the common structure
noticed by the compressor. The better the compressor, the more
common structures it can extract. Correspondingly, the common
patterns learned by a model in the data of unsupervised tasks
can be used to help perform supervised tasks. Chen et al. [305]
demonstrated that a good sequence predictor can also achieve
powerful unsupervised learning in the image domain. The cur-
rent theoretical research on FMs is still in the initial stage of
development, but there is still a long way to go to theoretically
guide the design of learning algorithms.

D. Causal Inference of FMs

Despite the significant breakthroughs of FMs, the current
pretraining models face challenges in learning potential causal
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relationships within data. The existing research reveals a critical
shortcoming of correlation-based FMs in terms of causal infer-
ence [306]. However, systems, such as AutoGPT and BMTools
[307], have shown promising potential by enabling models to
learn how to call various tools to complete tasks.

Incorporating the underlying theory of causal inference into
FMs can greatly enhance their understanding. For instance,
the structural causal model allows for counterfactual reasoning,
enabling inferences about how other variables would be affected
if certain variables were to change. In addition, the structural
causal model can determine the conditional independence be-
tween variables, assessing whether other variables remain in-
dependent when certain variables’ values are given [308]. By
combining FMs with the reasoning capabilities of the structural
causal model, we can significantly improve the model’s ability
to analyze potential variable relationships.

E. Interpretability of FMs

Improving model interpretability is a crucial step toward
understanding the internal algorithm logic of FMs. Utilizing in-
terpretable model structures can be an effective approach in this
regard. One such technique is wavelet decomposition, which can
decompose features from the frequency domain. This allows for
the learning of interpretable geometric texture features, making
it easier to understand how the model processes and represents
different patterns in the data [309]. By incorporating wavelet
decomposition into the model, researchers can gain insights into
the specific features and characteristics that the model focuses
on during the interpretation process.

Furthermore, constructing models based on the existing phys-
ical principles can also enhance interpretability. Wu et al. [310]
treat the forward process of neural network calculations as a
diffusion process from a given initial state, explicitly utilizing
dependencies between samples during forward calculations. By
doing so, they explicitly utilize dependencies between samples
during forward calculations, which can help in better under-
standing how the model propagates information and makes
decisions based on the input data.

In addition, the attention correlations in the transformer
structure can be leveraged to visualize feature associations. By
visualizing these associations, researchers can gain insights into
which parts of the input data are most relevant to the model’s
predictions. This enhances the interpretability of the model
to some extent, providing a glimpse into the decision-making
process of the FM.

F. Robustness of FMs

The training of FMs on large and diverse unlabeled datasets
brings advantages in terms of generalization and feature extrac-
tion capabilities. However, it is practically impossible to collect
a dataset that covers all possible distributions of scenes, making
the robustness of the model closely related to the distribution of
the training data [5].

To enhance the robustness of FMs, data augmentation is a
simple yet effective method. Applying various transformations
to the training data can introduce diversity into the training

dataset and help the model learn to handle different variations
of the data. The model can avoid overfitting to specific patterns
and improves the ability to handle unseen data [83].

Moreover, adaptation methods are valuable for enhancing the
robustness of FMs when applied to downstream tasks. Fine-
tuning a small number of parameters while freezing others in
the model can improve the model’s performance on out-of-
distribution samples. This process allows the model to adapt
to the specific characteristics of the target task while retaining
the general knowledge learned during pretraining [5].

In addition, incorporating external knowledge into the
model’s input can further boost its robustness. By providing
relevant information as additional input, such as prior knowledge
about the scene, domain-specific attributes, or environmental
context, the model gains a broader understanding of the data
and handles diverse and complex scenes well.

G. Knowledge-Based RSFMs

The capability of FMs in visual language has significantly
advanced due to large-scale image and text alignment data,
enhancing their understanding and analysis abilities. However,
in the RS field, collecting abundant image and text-paired data
for training is challenging. To address this, Deng et al. [311]
created a dataset called GeoSignal, enabling fine-tuning of large
language models specifically for Earth science-related queries.
Similarly, fusing RS interpretation with large language models
requires constructing fine-tuning datasets with expert knowledge
to enhance the model’s accuracy.

While underlying models demonstrate impressive perfor-
mance, they are often limited in capturing and exploiting
common-sense errors, leading to potential risks. To improve the
reliability and interpretability of FMs, incorporating knowledge
graphs can be advantageous [312]. Knowledge graphs serve as
structured knowledge databases that provide additional informa-
tion for model reasoning. By combining the FM with knowledge
graphs, the model gains access to key task-related knowledge
through in-contextual learning without requiring retraining. The
FMs robust knowledge understanding and processing capabili-
ties can further enhance its accuracy and performance.

H. Spatiotemporal Forecasting Ability of RSFMs

FMs driven by large-scale data have shown remarkable capa-
bilities in feature extraction and understanding complex images.
However, current RSFMs, using masked image modeling for
SSL, fail to fully exploit the potential time-varying relation-
ships in time-series data. Consequently, a significant amount
of data remains untapped. To address this limitation, exploring
a multitemporal FM pretraining method can be beneficial. By
training the model with input from RS time-series data, we can
analyze the dynamic temporal information within the data. This
approach enables the FM to perform spatiotemporal analysis
and prediction, significantly enhancing its ability to monitor
disasters and other time-sensitive phenomena.
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I. Multimodal and Cross-Modal RSFMs

RS data exhibits a wide variety, with different sensors pro-
viding data with varying temporal and spatial references and
formats. This diversity makes it challenging to collect and
align high-quality multimodal sample data, thereby limiting the
development of multimodal RSFMs. One potential solution is
to establish a standardized interface, which would enhance the
efficiency of data aggregation.

Furthermore, different tasks often exploit distinct physical
properties. For example, sound separation requires frequency
information, while sound content recognition relies on timing
information. Therefore, the data feature extraction models for
different modalities need to be constructed based on their unique
characteristics [313]. Introducing texture features, scattering
center features, phase coherence features, spectral correlation
features, etc., can effectively process multimodal data. In addi-
tion, selecting suitable feature spaces, such as Euclidean space,
Hilbert space, and Unitary space, can help mitigate information
loss.

To address the challenge of inconsistent data space–time
benchmarks and alignment difficulties, an independent feature
extraction network can be designed for each modality [131].
Subsequently, a small set of alignment features can be utilized
to align the features, enabling FMs to work effectively across dif-
ferent data modalities. This approach ensures that the extracted
features retain their unique properties while being compatible
across different modalities.

J. Efficiency of RSFMs

As the amount of data and model parameters increases, there
is growing concern about the training and reasoning efficiency of
FMs. Large-scale language models have already achieved train-
ing with billion-scale parameters, and the number of parameters
in RS vision FMs is expected to continue rising. However, the
processing of vast amounts of RS image data requires significant
computational resources. Therefore, the PEFT algorithms can
help reduce training overhead.

Quantization and pruning are also essential techniques to
consider. By reducing the precision of individual weight nu-
merical representations, the model’s operating efficiency can be
significantly improved. For instance, transformer models can be
quantized from FP32 to INT8, a widely adopted practice in train-
ing large language models. Pruning, on the other hand, involves
removing elements of the network, ranging from individual
weights to higher granularity component channels. Researchers,
such as Spyrison et al. [314], have proposed sparse pruning
methods, enabling GPT-series models to achieve 50% sparsity
in a single pass without the need for retraining. In addition,
research has demonstrated full parameter fine-tuning of a 65
billion parameter model on eight 3090 GPUs [315]. As such,
continuously integrating the latest technology with RSFMs can
improve training and reasoning efficiency while saving valuable
computational resources.

Integrating the latest technology advancements with RSFMs
can lead to improved training and reasoning efficiency, allowing
for more efficient use of valuable computational resources.

By continually exploring and implementing parameter-efficient
techniques, researchers can ensure that RSFMs remain scalable,
powerful, and capable of handling the ever-increasing volume
of RS data with minimal computational overhead.

K. Security of RSFMs

The issue of hallucination in large language models is indeed
a significant concern [42], especially in the visual domain,
where it can resemble the phenomenon of adversarial examples.
In certain cases, the model may confidently predict incorrect
information or assign high probabilities to nontarget areas,
which can lead to serious consequences in practical applications,
particularly in RS, where model misidentification can result in
critical decision-making errors.

Adversarial sample defense has been explored by researchers
to enhance the security of models, both in general contexts [316]
and specifically in RS [317]. However, given the large number of
parameters in FMs, the effectiveness of conventional adversarial
attack mitigation strategies may require further investigation and
development.

Moreover, while adversarial attacks are commonly studied
and implemented on digital images, it is vital to consider the
potential impact of such attacks on high-resolution RS images.
In RS, even minor local changes in real scenes could lead to
significant model misidentification, highlighting the need for
robust defense mechanisms that can handle such real-world
variations.

L. Friendliness of RSFM Interfaces

RSFMs offer a significant advancement in the application of
RS interpretation. However, their adoption still presents a high
threshold for users. To promote the widespread use of RSFMs,
it is crucial to design simple and user-friendly system interfaces.
These interfaces should facilitate various RS interpretation ap-
plications and enable RSFMs to adapt with only a small number
of samples.

The RSFM system should support the following key func-
tionalities to enhance user experience.

1) Dataset Management: The system should allow users to
easily upload and construct datasets. This feature enables
users to input their own data for specific tasks, making it
convenient to work with their own RS data.

2) Task Setting: Users should be able to set up interpretation
tasks effortlessly. The interface should provide intuitive
options to define the specifics of the tasks they want to
perform using RSFMs.

3) Model Fine-Tuning: RSFMs should offer users the ability
to fine-tune models with their dataset to achieve better
performance on specific tasks. This fine-tuning process
should be straightforward and require minimal expertise.

4) Efficient Model Deployment: Once the model is ready, the
system should enable high-precision and efficient deploy-
ment. Users should be able to deploy their customized
RSFM models quickly and easily for practical applica-
tions.
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By providing a user-friendly interface, RSFMs can be readily
applied to a broader range of scenarios and tasks. Users, even
those with limited expertise in RS or deep learning, can utilize
RSFMs to accomplish their interpretation objectives through
simple and efficient operations. This will significantly enhance
the practicality and accessibility of RSFMs in the field of RS
interpretation.

VIII. CONCLUDING REMARKS AND DISCUSSION

FMs have emerged as a promising direction in RS research.
In this article, we provided a comprehensive survey of the
current development of RSFMs. We started by explaining the key
technologies underlying FMs, including transformer structures,
self-supervised pretraining methods, and efficient parameter
optimization techniques. Then, the latest developments in FMs
across various domains are presented, including language, vi-
sion, visual language, and RSFMs. We explored core applica-
tions in RS interpretation, including classification, location, and
understanding tasks.

After that, performance comparison experiments are con-
ducted from three aspects: global representation, local repre-
sentation, and target localization. Through the experiments, we
observed that while RSFMs demonstrate potential, they still face
challenges in achieving significant advantages over natural FMs
due to limited RS data and certain structural design limitations.

Through the above research and analysis, this article sum-
marizes the research and development of the RS FM. From the
perspective of the development process of the FM, models are
updating quickly. As mentioned in this article, a model, such as
metatransformer [131], applies the data with 12 modalities to
one FM, and similar research will quickly follow up in the field
of RS. In the near future, multimodal and cross-modal RSFMs
will receive a lot of research. A large amount of data in the field
of RS will be more fully mined. The barriers of multimodal data
will also be gradually broken down.

However, the large-scale computing behind these studies
means that this form of research is difficult to follow. A large
number of calculations and lack of theoretical research support
will be the shortcomings of the current RSFM. To this end,
this article further elaborates a valuable research direction of
the FM, that is, the brain-inspired RSFM. Different from the
current research ideas of the FM, the brain-inspired properties
will provide FMs with a theoretical foundation from a biological
background, reliable performance, and higher data utilization
efficiency. This framework provides a novel perspective to guide
the development of future models and applications in RS inter-
pretation.

Finally, we identified 12 open problems in RSFM research,
encompassing areas, such as brain-inspired modeling, phys-
ical information integration, and knowledge-based learning.
Addressing these open problems will drive the proposal and
adoption of innovative methods in RS interpretation.

In summary, RSFMs hold immense potential and continue
to be an active area of research. By addressing the identified
challenges and exploring new avenues inspired by brain charac-
teristics, we can unlock the full potential of RSFMs.
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