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Artificial Intelligence Algorithms for Rapeseed Fields
Mapping Using Sentinel-1 Time Series: Temporal

Transfer Scenario and Ground Sampling Constraints
Saeideh Maleki , Nicolas Baghdadi , Cassio Fraga Dantas , Sami Najem , Hassan Bazzi ,

Núria Pantaleoni Reluy , Dino Ienco , and Mehrez Zribi

Abstract—This study aims to enhance rapeseed field detection
accuracy using Sentinel-1 (S1) time series data and addressing chal-
lenges in collecting ground samples. The proposed solutions include
model transfer between years without retraining and secondly,
developing models with limited training samples. The research
evaluates the performance of Random Forest (RF) and three deep
learning (DL) algorithms: Long Short-Term Memory Fully Con-
volutional Network (LSTM-FCN), InceptionTime, and Multi-layer
Perceptron (MLP). All four algorithms are evaluated initially with
abundant ground samples and later with smaller sample sizes
(100, 300, 500 and 1000 samples). Model transferability is tested
across years. The impact of S1 image count on transfer accuracy
is examined. Additionally, the effect of the phenological shift in the
rapeseed growth cycle of 15 and 30 days between the training and
test years was also investigated. The findings demonstrate strong
model performance when training and testing occur in the same
year (F1-score up to 95%). Within sample sizes of 300 to 1000, RF
and InceptionTime stand out with high accuracy (F1-score>90%).
When employing different years for training and testing with abun-
dant sample sizes, all four algorithms correctly classified rapeseed
(F1-score between 85.5% and 92.7%). In cases of a reduced number
of images, the performance of InceptionTime and LSTM-FCN
decreased (16% decrease in the F1-score), while RF and MLP
maintain their performance. Notably, RF outperforms DL algo-
rithms with an F1-score of 89.1%. In the context of a phenological
shift, only InceptionTime and LSTM-FCN demonstrated strong
performance (F1-score between 87.7% and 92.6%).

Index Terms—Deep learning (DL), INCEPTIONTIME, long
short-term memory fully convolutional network (LSTM-FCN),
multilayer perceptron (MLP), random forest (RF), rapeseed,
sentinel-1, temporal transferability.
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I. INTRODUCTION

THE aftermath of the COVID-19 pandemic and the war in
Ukraine have exacerbated threats to global food security

[1]. To avert this threat, the global community needs to expand
the cultivation of key crops and improve agricultural efficiency,
especially for multipurpose crops such as rapeseed, which is
important not only for food security but also for oil and live-
stock production [2]. Based on the United States Department of
Agriculture report on rapeseed production by country in 2022,
the top 7 rapeseed producers in the world are the European
Union, Canada, China, India, Australia, Ukraine, and Russia
[3]. Therefore, accurate information about the expansion of
the rapeseed cultivation is important, not only for agricultural
planning, but also for environmental and economic purposes [4].

Satellite imagery with different spatial, spectral, and temporal
resolutions facilitates the provision of crop information [5], [6].
However, using optical data, previous studies mentioned several
challenges in detecting rapeseed, such as the similarity between
the spectral response of some rapeseed phenological stages
and other vegetation species, spectral mixing pixels of mod-
erate resolution images, cloud contamination, and limitations
in achieving training samples in extensive farms [7], [8]. To
address these limitations, different methods and types of satellite
imagery have been used so far. Phenology-based classification
methods are mainly based on the difference between the growth
stages of rapeseed and other crops [9]. For example, the yellow
color of rapeseed during the flowering stage has been widely
used to detect rapeseed [2], [8], [10]. The normalized difference
yellow index is known to be an effective index for mapping
rapeseed using optical images [5], [8], [10]. In addition, the ratio
oilseed rape colorimetric index and the normalized rapeseed
flowering index were developed respectively by Wang et al. [11]
and Han et al. [10], based on the yellow color of rapeseed flowers.

In the vast regions, where rapeseed planting dates vary,
the availability of continuous time series images, covering all
growth stages of rapeseed in all parts of the study area is crucial.
The acquisition of optical images for the monitoring of rapeseed
fields can be difficult in some regions given that this crop is a
winter crop [12] and cultivated in countries with a prevalence
of cloudy days [5]. Thus, synthetic aperture radar (SAR) is a
good alternative, providing enough image frequency with the
advantage of nondependency on weather conditions. Previous
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studies have confirmed the variation in the SAR backscatter
signal following the phenological changes of rapeseed [10],
[13], [14]. McNairn et al. [15] described how the accumulation
of biomass and changes in the structure of rapeseed during
the growth stages increase the SAR backscatter. This change
in the SAR backscattering over rapeseed fields with biomass
accumulation has also been reported in studies of Wisemann
et al. [16], Yang et al. [17], and Lopes-Sanchez et al. [18].
In addition, unlike other crops, the random shape of rapeseed
leads to a higher contribution of the rapeseed plant to the SAR
backscatter than that of the soil [12]. Using SAR data, the
potential of VH and VV/VH to detect the peak flowering period
of rapeseed is also mentioned by Han et al. [10]. In addition,
Fieuzal et al. [14] showed that the best results are achieved using
the C-band rather than X and L bands. Sentinel-1 (S1) C-band
SAR sensors have made crop mapping easier, thanks to their
high spatial and temporal resolutions and their availability in
free and open access. S1 imagery provides weather-independent
data with a short revisit time (up to 6 days in Europe), which has
made S1 images advantageous for crop growth studies. Because
of these advantages, several studies have been carried out on
rapeseed mapping using SAR imagery or using a combination
of the optical and SAR images [2], [4], [10], [14], [19], [20],
[21], [22].

Although rapeseed mapping has been the subject of several
studies, some other research arguments should be addressed,
including the constraints of collecting ground samples of rape-
seed fields every year due to temporal and financial constraints,
the effect of the ground sample size on the accuracy of the
classification, and the possibility to use a model developed
using ground samples from one year on other years. This article
will reply to these concerns with the advantage of artificial
intelligence (AI) methods as AI exhibits a high potential to
compensate for the weaknesses of classical methods [23], [24].
The ability to learn from complex and large data sources allows
AI methods to map multiple crop types from multitemporal
images over a large and diverse region [9], [24], [25]. In ad-
dition, the ability of AI methods to determine the importance of
inputs in classification has made them more functional in time
series analysis. From the various AI methods, machine learning
techniques such as random forest (RF) are commonly used in
crop mapping [4], [26], [27], [28]. Using a RF algorithm, Liu
and Zhang [5] simulated the peak flowering date of rapeseed
and Meng et al. [29] determined the best temporal period for
rapeseed detection. However, deep learning (DL) methods are
gaining interest in satellite image classification [23], [30], [31],
[32], [33]. These methods are able to learn in an end-to-end
manner from the raw input data to perform image classification
[30], [34]. The DL algorithms for remote sensing data are
grouped as convolutional neural networks (CNNs) for spatial
learning and recurrent neural networks (RNNs) for sequential
data, such as time series [23]. To improve the vanishing gradient
problem of RNNs, long short-term memory (LSTM) networks
using a forget gate have been developed. Recently, methods
incorporating CNNs and LSTMs, such as convolutional LSTM,
have been applied to remote sensing applications involving both
spatial and temporal terms [35].

Fig. 1. Location of the study site and an example of the distribution of rapeseed
plots within the study site.

In this article, the advantage of four AI algorithms, including
RF, LSTM fully convolutional network (LSTM-FCN), Incep-
tionTime, and multilayer perceptron (MLP), have been tested
to facilitate the detection of rapeseed fields firstly by presenting
algorithms that provide high accuracy rapeseed classification
using only S1 time series. Second, by developing different solu-
tions for mapping the rapeseed fields when there are constraints
on ground sampling, by using a model trained with ground
samples from one year and then applying it to other years without
having to retrain it, and by testing the use of small training sample
size in the classification. Also, the effect of the phenological shift
in the rapeseed growth cycle between the training and test years,
and the effect of the number of images in the S1 time series on
the accuracy of the transferability of models were investigated.
The approaches proposed in this article could enable users to
detect the rapeseed fields regardless of the inaccessibility of the
study site and to obtain the accurate classification of rapeseed
over large regions. This paper is organized into six sections:
introduction, study site and dataset, methods, results, discussion,
and conclusions.

II. STUDY AREA AND DATASET

A. Study Area

This study was carried out in the Charente-Maritime depart-
ment in the west of France. The study area with a geographical
extent of approximately 8000 km2 is presented in Fig. 1. It
belongs to the oceanic climate zone, with about 1000 mm of
rainfall and 2000 h of sunshine per year. The main crops grown
in the area are wheat, maize, and sunflower. Table I shows the
nine most abundant crops in the study area in the years 2018,
2019, and 2020, based on the French registry for agricultural
plots (RPG, Registre Parcellaire Graphique). For each year, the
proportion of each crop type relative to the total cultivated area
in the study site is also provided.

B. Dataset

1) Ground Data: The ground samples were taken from the
RPG data which is the database of the farmers’ declarations of
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TABLE I
PROPORTION OF THE CULTIVATED AREA BY THE MAIN CROPS OUT OF THE

TOTAL CULTIVATED AREA IN THE STUDY SITE FOR THE YEARS 2018, 2019,
AND 2020

TABLE II
DATASET USED IN THIS STUDY

agricultural plots in France. It contains the boundaries of each
declared agricultural plot and information such as the crop type
and the size of each plot. The RPG is available for download
for the whole of France via.1 To map the rapeseed fields in the
current paper, the RPG data of the study years including 2018,
2019, and 2020 were used in order to create the large annual
sample dataset for the training and testing. The cultivation period
of rapeseed in the study area starts from September and ends
in July of the next year. Therefore, for a growing season that
starts from a sowing date in September 2018 and an end with a
harvesting date in July 2019, the RPG of 2019 was used as the
ground sample because the year of harvest is taken into account
in the RPG. Table II shows the total number of cultivated plots,
the number of rapeseed plots, and the proportion of rapeseed
plots in the total number of cultivated plots.

2) SAR Images: The time series of C-band (5.405 GHz)
SAR images acquired by the Sentinel 1A (S1A) and Sentinel
1B (S1B) satellites were used. Both “ascending” (evening at
18:00 UT) and “descending” (morning at 06:00 UT) acquisitions
were utilized in the VV and the VH polarizations. The pixel
spacing of S1 images is 10 m x 10 m. The data are freely
available from the European Space Agency’s (ESA) website
(https://scihub.copernicus.eu/dhus/#/home). The revisit time of
the S1 constellation is six days, meaning that one image is
available for each orbit every six days. In this study, a dataset
of all available orbits over the study area was collected. All the
acquired images regardless of the orbit number were stacked
in chronological order. Table II shows the total number of S1

1[Online]. Available: https://www.data.gouv.fr/en/datasets/registre-
parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-
groupe-de-cultures-majoritaire/

Fig. 2. Frequency of S1 images in “ascending” (a) and “descending” (d) for
all orbits covering our study site. The hatched area represents the period with
no S1 acquisitions.

images acquired over the study site and the average number of
images per month.

Fig. 2 shows the temporal distribution and the overall coverage
of the S1 orbits over the study site (each orbit has a unique
acquisition time). The first acquisition in our study site is a “de-
scending” image belonging to the orbit 81 (D81). The following
image comes 24 h later and is a descending acquisition as well
from orbit 8 (D8). Then, the third acquisition comes 36 h later
as an ascending acquisition from orbit 30 (A30). Six days after
the first image, the cycle is repeated in the same way with a new
image from D81 orbit. The hatched area in Fig. 2 represents the
3.5 days period that separates every bunch of three images (D81,
D8, A30) from the next bunch. The incidence angles vary on our
study site from 23° to 38° for the orbit 81 and from 32° to 48°
for the two orbits 8 and 30.

The S1 images were calibrated using the S1 toolbox developed
by ESA. Calibration was a two-step process; the first step was the
radiometric calibration, which converted a digital number into a
backscatter coefficientσ° in linear units. The second step was the
geometric correction, which was the process of ortho-rectifying
the images using a 30 m digital elevation model from the shuttle
radar topography mission.

For our dataset, which covers an area of 100 km x 100 km,
the incidence angle varies by about 15°. In order to reduce the
effect of the incidence angle, a possible solution would have
been to normalize its effect. However, the normalization function
can be different from one crop to another but also different for
the same crop between the different parts of the growth cycle
(bare soil, well-developed vegetation, etc.). Furthermore, it is
not well known for each specific type of crop. When using a
normalization function of the form cos(θ) [36] and a reference
incidence angle of 35°, the variation in the radar signal due to
the difference in the incidence angle is lower than 1 dB (our
dataset acquired with incidence angles between 23° and 48°).
As the form of the normalization function is not well known
and the variation of radar signal due to the incidence angle is
smaller than the increase of the signal due to vegetation growth
(several dB), we did not normalize by the radar incidence angle,
thus leaving the rapeseed mapping algorithms to overcome small
fluctuations in the radar signal due to a variation in the incidence
angle.

3) Sentinel-2 Images (S2): Sentinel2 images were down-
loaded from the Theia website.2 These images were used to
calculate the NDVI values with the goal to only explain and
interpret the temporal behavior of the S1 signals over rapeseed

2[Online]. Avilable: https://www.theia-land.fr/

https://scihub.copernicus.eu/dhus/#/home
https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/
https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/
https://www.data.gouv.fr/en/datasets/registre-parcellaire-graphique-rpg-contours-des-parcelles-et-ilots-culturaux-et-leur-groupe-de-cultures-majoritaire/
https://www.theia-land.fr/
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Fig. 3. Flowchart of method.

fields. Thus, optical related information was not involved in the
classification process.

III. METHOD

A. Temporal Behavior of Sentinel-1 Signals

The temporal behavior of S1 over rapeseed fields was studied
for the 2018, 2019, and 2020 growing seasons (the growing
season starts in September and ends in July of the following
year). For this study, an S1 dataset consisting of all three orbits
(8, 30, 81) available over the study area was used. Since this work
was conducted at plot scale, the average signal of all pixels in
each plot was calculated to obtain a single representative value
for each plot. The result of this process was two plot level time
series (marked with a “p”), VVp and VHp.

B. Rapeseed Fields Mapping

With the aim of evaluating the ability of AI algorithms for
rapeseed fields mapping and proposing an algorithm to over-
come some functional constraints in land cover classification,
four AI algorithms were evaluated. One machine learning and
three DL algorithms were used to detect the rapeseed fields from
S1 time series. The flowchart of the methodology of this article
is presented in Fig. 3, and the codes are available at GitHub.3

Within the machine learning methods, RF was selected as a well-
known method widely used in similar land cover classification

3[Online]. Available: https://github.com/cassiofragadantas/Colza_Classif

approaches and providing acceptable classification results [28],
[37], [38]. RF was used in this study as a baseline for accuracy of
classification by different algorithms. Within the DL methods,
MLP, which is a plain deep artificial neural networks (ANNs),
and two ANNs algorithms tailored for time series analysis called
LSTM-FCN [39] and InceptionTime [40] were selected. A more
detailed description of the selected algorithms is provided in
Section C of methodology. The Adam optimizer was used to
train all three DL algorithms [25]. Parameters of Adam were
fixed as: β1= 0.9, β2= 0.999, ε= 1e–07. The learning rate and
weight decay were set respectively as 1e–5 and 1e–6. The batch
size was set to 16 during training and a standard cross-entropy
loss function was used. The input data were the S1 time series
in two channels at plot scale (VHp and VVp) covering three
years (2018, 2019, and 2020). The classification process was
performed with the aim of detecting the rapeseed fields, so two
classes were used: rapeseed (positive class) and nonrapeseed
(negative class). Nonrapeseed class consisted of other crops
except rapeseed. Each classification was performed with 70%
of the ground samples as training and 30% as test data, split
randomly in five independent realizations. The classification was
carried out in two main parts including rapeseed fields mapping
using the same year for training and testing, and evaluating the
transferability of the models obtained by each algorithm in each
year onto other years. In each part, related factors that might
affect the accuracy of the mapping were tested.

1) Rapeseed Fields Mapping Using the Same Year for Train-
ing and Testing: Rapeseed fields mapping using the same year

https://github.com/cassiofragadantas/Colza_Classif
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for training and for testing was conducted using all four algo-
rithms. To train the algorithms and test the models all ground
samples mentioned in Table II (large annual sample dataset)
were employed.

2) Rapeseed Fields Mapping Using Smaller Training Sample
Size: The effect of the training sample size on the performance
of the four algorithms in the detection of rapeseed fields was
evaluated using the same year for training and for testing and
four different sample sizes including 100, 300, 500, and 1000
samples. The input time series were VV and VH time series at
plot scale (VHp and VVp). The training samples were drawn by
keeping the same ratio between positive and negative classes as
found in the large annual sample dataset (imbalanced training
data). For example, in the large dataset of the year 2018, the
percentage of rapeseed and nonrapeseed samples was about 3%
and 97%, respectively. Therefore, with a training sample size
of 1000, the number of rapeseeds fields in the training samples
was around 30 and the number of nonrapeseed fields was around
970.

3) Transferability of the Models Using Different Years for
Training and Testing: The transferability of models was in-
vestigated by training the four algorithms using samples from
one year and deploying the models on the other years. The
large annual sample dataset shown in Table II was used as
the base sample dataset. The transferability was investigated
using six combinations of training and test data, including
training using the samples of 2018 and testing with the sam-
ples of 2019 and 2020, training using the samples of 2019
and testing with the samples of 2018 and 2020, and training
using the samples of 2020 and testing by the samples of 2018
and 2019.

4) Effect of the Number of Images and the Shift in the Phe-
nological Cycle Between the Training and Test Years on the
Transferability of the Models:

a) Transferability of the models using a reduced number
of S1 images (only one orbit): To investigate the effect of the
number of S1 images in the time series (i.e., the time resolu-
tion), the transferability analysis described in Section III-B3 of
methodology was repeated using only S1 data of a single orbit
(orbit 8) for the six training-test years’ combinations. The large
annual sample dataset presented in Table II was used as ground
samples.

b) Transferability of the models with a shift in the pheno-
logical cycle between training and test years: The phenological
cycle of rapeseed can be different between two years on the same
site if, for example, the climatic conditions (mainly temperature
and rainfall) are different [22], [41]. This phenomenon could
be observed more frequently due to climate change. This dif-
ference in the phenological cycle can also be observed between
two different sites [41], [42]. The difference between sites and
years could cause both the temporal shift and the difference in
the duration of the growing cycle of rapeseed. In this article, only
the temporal shift in the phenological cycle between training and
test years has been investigated by considering the case of a shift
of 15 days and another of 30 days. The shift in the phenological
stages of crops over years (also over regions) could affect the
accuracy of mapping using different years as training and test.

This is important because, even between sites with similar cli-
matic conditions (e.g., in Europe and even in France), sowing and
harvesting of rapeseed take place at within+/- 1 month [43]. The
transferability test of the models that were developed in Section
III-B3 of methodology was also carried out on the cases where
the growth stages of rapeseed between the training year and test
years do not align perfectly. The phenological shift in the growth
stage of rapeseed was simulated in dataset of 2018, considered as
the training year. The trained algorithm with the shifted dataset
of 2018 was used to classify the dataset of 2020, considered as
the test year. Two periods of phenological shift were simulated
by removing days from the beginning of the training time series
(the whole S1 time series was thus shifted by 15 or 30 days). In
order to obtain the same size for the training and test data sets,
the days were removed from the last part of the test time series,
which did not include the main phenological cycle of rapeseed.
More precisely, after removing the days from the beginning of
the training dataset, the same size for training and testing was
achieved using the overlapping part of both time series. In this
case, the large annual sample dataset shown in Table II was
used.

5) Performance Assessment: To evaluate the results of the
classification in each use case, the precision, recall and F1 were
applied. Table III shows the description and equation of these
accuracy metrics.

C. Algorithms

1) Random Forest: RF algorithm consists of several decision
trees, where the results of trees are merged to create the final
results [28], [44]. It is a meta-estimator that adapts multiple
decision tree classifiers to multiple parts of the dataset, and
applies the average of all parts to improve the accuracy of results
and control overfitting [45]. Although RF is not sensitive to the
selection of hyperparameters [37], the accuracy of the results of
the RF approach is related to the number of trees. The number
of trees in this study was set as 100. Other parameters were set
as default.

2) Multilayer Perceptron: MLP algorithm is the DL model
that has the simplest and most traditional architecture, where
neurons in each layer are connected to all neurons in the neigh-
boring layers [35], [46]. The basic component of MLP includes
several nodes with weights and biases in multiple fully con-
nected layers [25]. In the MLP algorithm, the learning approach
of the weights and biases within the networks to simulate the
relationship between the input features and the output features
is performed in a backpropagation manner [25]. Since MLP has
the simplest architecture of ANNs, it was used as a basis to
evaluate the performance of other ANNs algorithms. In the MLP
algorithm, the number of hidden layers and neurons are defined
as hyper-parameters. Since all the hidden layers are connected in
MLP, more layers lead to higher complexity [25]. In this paper,
a standard MLP architecture was used with 2 hidden layers
containing 256 neurons each, plus the input and output layers. A
batch normalization and a rectified linear unit nonlinearity were
used on the two hidden layers. Finally, a dropout rate of 0.5 was
used during training.
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TABLE III
DESCRIPTION AND THE EQUATION OF THE ACCURACY METRICS THAT ARE USED IN THIS STUDY

3) Long Short-Term Memory Fully Convolutional Network:
LSTM-FCN is formed by adding the FCN, which take advantage
of CNNs, with long short-term memory recurrent neural net-
work, which is in the group of RNNs for time series classification
[39] The methods that utilize the CNNs architecture are used
for spatial learning whereas the RNNs architecture is utilized
for sequential learning [23]. In the current study, one type of
LSTM-FCN developed by Karim et al. [39] for multivariate
time series classification was used to map rapeseed fields. In
this algorithm, the squeeze and excitation block were added to
the structure of the univariate model and the fully conventional
blocks were increased to improve the accuracy of the results
[39]. The advantage of this model is that it outperforms most
state-of-the-art models with less preprocessing. The efficiency
of this algorithm in analyzing complex multivariate time series
classification, such as action recognition, and the possibility to
deploy this algorithm on constrained systems was shown by
Karim et al. [39]. The default model hyperparameters proposed
by Karim et al. [39] were used in our experiments.

4) InceptionTime: The InceptionTime algorithm was intro-
duced by Fawaz et al. [40] for multivariate time series analysis.
It is a collection of five deep learning models, each consisting
of two residual blocks which, in turn, contain three so-called
Inception modules. The Inception modules apply multiple one-
dimensional convolutional filters of different lengths to the input
data, which allows the network to extract features from the time
series at different scales. Because a single inception network
may be subject to high deviations in its accuracy, an ensem-
ble of networks with different weight initializations is used.
Moreover, the common vanishing gradient problem for deep
networks is tackled by the shortcut connections between residual
blocks which allow for a direct gradient flow. When deploying
this algorithm, the difference between the default and the best
hyperparameters is usually not significant [40]. Therefore, in
this study, the hyperparameters were set as default.

IV. RESULTS

A. Temporal Behavior of Sentinel-1 Signals

Fig. 4(a) and (b) show the mean and standard deviation
(represented by shading) of the S1 backscattering coefficient

in VHp and VVp polarizations over rapeseed fields during the
cultivation period of 2018, 2019, and 2020. Rainfall during
this period in 2020 is presented using the secondary Y-axis in
Fig. 4(a) and (b). In this study area, the cultivation period starts
from September and ends in July of the following year (see
Fig. 5). High amplitude and frequent variation in S1 signal at VV
and VH polarizations are observed at the plot scale [see Fig. 4(a)
and (b)]. As previous studies showed [8], [12], [14] this frequent
variation in S1 backscatter is mainly due to precipitation altering
the soil moisture values.

The temporal behavior of both VHp and VVp polarizations
shows four main phases. First, an increasing trend is seen
between September and November (from –20.5 to 14 dB for
VHp and from –12.5 to –7.5 dB for VVp. The values of both
polarizations then remain stable between November and March.
Next, the signal increases from March to reach its highest value
at the beginning of June (about –10.5 dB in VHp and –6 dB
in VVp). Then, both polarizations decrease from the middle of
June till July where the value VHp and VVp falls below –16
and –10 dB, respectively. It is worth mentioning that the VHp
shows a stronger vegetation growth dynamic than VVp with the
different stages of the rapeseed phenological cycle.

B. Rapeseed Fields Mapping

1) Rapeseed Fields Mapping Using the Same Year for Train-
ing and Testing: In this section, the performance of the four
considered algorithms to map the rapeseed fields in the case
where the same year is used for the training and test phases was
evaluated. The results of the accuracy assessment of rapeseed
fields mapping using the four algorithms are shown in Table IV.
Accuracy metrics are presented in this table as an average
value over all three years (Mean), the maximum value of each
metric within three years (Max), and the minimum value within
three years (Min). The results show that all algorithms have
a mean F1 close to 95%. However, InceptionTime gave the
highest mean F1 values (95.7%). Moreover, smaller differences
between the min and max of F1 are obtained with InceptionTime
(0.3%), which shows the stability of the classification results
across the years using this algorithm. In contrast, the highest
differences between the min, and the max of F1 are obtained
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Fig. 4. Sentinel-1 temporal behavior over rapeseed fields in 2018, 2019, and 2020. (a) VH at the plot scale (VHp). (b) VV at the plot scale (VVp). The mean
values are represented by bold lines and the standard deviation by the shaded areas. The rainfall events in the cultivation period of rapeseed in 2020 is presented
using the secondary Y-axis.

Fig. 5. NDVI temporal behavior over rapeseed fields in 2018, 2019, and 2020. The NDVI-values were calculated from Sentinel-2 images (S2), downloaded from
the Theia website (https://www.theia-land.fr/).

with the LSTM-FCN (2%), showing higher variation in the
accuracy across years. Concerning the precision and recall, the
highest precision is achieved by RF (97.4%), but it also showed
the lowest recall (92.7%). Meanwhile, the smallest difference
between recall and precision is achieved by InceptionTime and
MLP.

2) Rapeseed Fields Mapping Using Smaller Training Sample
Size: The effect of four training sample sizes including 100, 300,
500, and 1000 on the accuracy of the rapeseed map is shown in
Table V. In this case, the classification was performed using
small training samples in order to mime the ratio between the
rapeseed and nonrapeseed classes as found in the large annual

https://www.theia-land.fr/
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TABLE IV
ACCURACY ASSESSMENT OF RAPESEED CLASSIFICATION USING OUR

FOUR ALGORITHMS

TABLE V
EFFECT OF SAMPLE SIZE ON THE RAPESEED CLASSIFICATION ACCURACY

sample dataset (imbalanced training data). For example, in the
large dataset of the year 2018, the percentage of rapeseed and
non-rapeseed classes was 3% and 97%, respectively, so in the
case of classification of this year with the training sample size
equal to 1000, the number of rapeseeds on training samples was
30 and nonrapeseed was 970. In Table V, the average accuracy
metrics of the three years 2018, 2019, and 2020 are presented
(e.g., Mean-100 samples is the average of each metric over three
years of classification using 100 ground samples). Table V shows
that the Inception Time and RF provide higher accuracy metrics
than the other algorithms. Both RF and Inception Time yielded
F1 values greater than 90% when using a sample size greater
than 300. In the case of 100 samples, these two algorithms
respectively showed F1 values of 67.2% and 59.3%. For RF,
the reason behind the lower F1 value with a sample size of 100

TABLE VI
ASSESSMENT OF RAPESEED CLASSIFICATION ACCURACY USING DIFFERENT

YEARS FOR TRAINING AND FOR TESTING

is the lower recall value, and both lower precision and recall
for the Inception Time. Therefore, both Inception Time and RF
can produce accurate rapeseed maps using training sample size
of 300 samples or bigger, while in the case of 100 samples the
accuracy of their results are not high (but still better than the two
other algorithms). Among the ANNs algorithms, LSTM-FCN
presents the lowest accuracy between the two other algorithms
(F1 value below 40% with a sample size smaller than 1000,
and F1 value below 69% with 1000 samples). In addition, both
the recall and precision of this algorithm are lower than 60%
and 40% respectively when the sample size is less than 1000.
Using the MLP, when the sample size increases from 100 to
1000, the mean F1 value increases from 14.7% to 85.2% (F1
value of 54.0% and 65.6% with a sample size of 300 and 500,
respectively).

3) Transferability of the Models Using Different Years for
Training and Testing: The accuracy of rapeseed fields mapping
using different years for training and testing was evaluated.
This investigation is of some interest in the absence of ground
sampling over the same territory for certain years. Thus, the pos-
sibility of creating the rapeseed map using the ground samples
of the other years was tested. The transferability of the models
was carried out using large sample sizes since results of Section
IV-B2 of results showed that LSTM-FCN and MLP did not give
accurate results with smaller sample sizes. To evaluate the ability
of the AI algorithms to map the rapeseed fields for each year
using the ground sample of other years, six combinations of train
and test data were created (train on one year and apply on the
remaining two years). The mean, maximum, and minimum accu-
racy metrics of these combinations are presented in Table VI. As
shown in this table, RF, MLP, LSTM-FCN, and InceptionTime
yielded F1 value greater than 85% (min-values) using different
years of training and testing. These high values of F1 for the four
tested models show that it is possible to transfer a model from
one year to another for mapping rapeseed fields using S1 time
series data. The comparison between the four algorithms shows
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Fig. 6. Comparison between rapeseed maps created by InceptionTime and ground samples (RPG) for a part of the study site, using different years for training
and testing. (a) Training 2018/test 2019. (b) Ground samples of 2019. Rapeseed fields are colored green, other crops are colored grey.

that the InceptionTime provided mean F1 value higher than other
algorithms. The smallest differences between the minimum and
maximum of F1 were also achieved with the InceptionTime
algorithm (4% difference between F1 min and max). This means
that high accuracy was achieved with InceptionTime in all six
combinations of training and test years. LSTM-FCN provided
a mean F1 value of 89.3% which indicates that this algorithm
was also capable of providing accurate rapeseed fields map for
each year by training it using ground samples of the other years.
MLP showed the lowest F1 values (mean F1 equal to 85.5).
On the other hand, RF obtained a mean F1 value of 87.1%
but it showed the highest difference between the minimum and
maximum of F1 value (13.7%). This difference for both MLP
and RF algorithms was due to the low minimum recall (80.9%
and 78.9% with MLP and RF respectively). Therefore, RF and
MLP were less accurate in terms of transferability of the model
from one year to another.

To better appreciate the spatial accuracy of the transferability
of the models, the rapeseed maps were created by Inception time
(as the algorithm with the best accuracy outcome) was compared
to the ground samples (RPG). Fig. 6 shows the rapeseed field
map for 2019 using the ground samples of 2018. Fig. 7(a) and (b)
illustrate respectively the rapeseed field maps for 2020 using
the ground samples of 2018 and 2019. Also, the corresponding
ground reference maps for 2019 and 2020 are presented respec-
tively by Figs. 6(b) and 7(c). The rapeseed fields were mostly
classified correctly compared to the reference data. The analysis
of these maps shows that the rapeseed fields incorrectly classified
as nonrapeseed have a small area. For the rapeseed map of 2019
using the ground samples of 2018, 6.5% of the rapeseed fields
were misclassified as nonrapeseed, of which 51% had an area
smaller than 0.5 ha and 18% an area between 0.5 and 1 ha.
To map the rapeseed fields of 2020 from the ground samples
of 2018, 5.1% of the rapeseed fields were incorrectly classified
as nonrapeseed, of which 47% had an area smaller than 0.5
ha, and 26% an area between 0.5 and 1 ha. Finally, 6.7% of
the rapeseed fields were misclassified in 2020 when the ground
samples of 2019 were used, of which 37% had an area smaller

than 0.5 ha and 32% an area between 0.5 and 1 ha. In conclusion,
the misclassifications were therefore mainly occurred in the
detection of rapeseed fields smaller than 1 ha (about 70% of the
misclassification), which could be a consequence of the higher
edge effect in small fields, as well as the lower number of S1
pixels used to calculate the mean of the backscatter signals due
to the high speckle effect

4) Effect of Number of Images in Time Series and the Shift
in the Phenological Cycle Between Training and Test Years on
Transferability of the Models: Two important arguments about
the transferability of the models were addressed, including the
effect of the number of images in the S1 time series and the
effect of the shift in the phenological stage of rapeseed between
training and test years.

a) Using a reduced number of S1 images (only one orbit):
The effect of the number of S1 images on the transferability
of models for mapping the rapeseed fields was assessed by
considering only one orbit (orbit 8) out of the 3 orbits of our
initial time series. This use case allows us to see whether, in the
event of a reduction in the revisit time of S1 (failure of one of
the two satellites, which is currently the case), the accuracy of
the rapeseed fields classification remains good for the different
algorithms.

Table VII shows the performance of each algorithm using
one and three orbits where the year 2018 is set as a training
year and the years 2019 and 2020 were considered as the
testing years The results in this table correspond to the average
performance obtained over 2019 and 2020. As Table VII shows,
the performance of InceptionTime and LSTM-FCN decreased
when only one orbit was used compared to the accuracy obtained
using three orbits. In fact, the F1 value using InceptionTime
decreased from 94.1% with three orbits to 77.1% with only
one orbit (17.6% reduction). Similarly, LSTM-FCN showed a
reduction in F1 from 88.3% using three orbits to 72.1% using
one orbit (16.2% reduction). Looking at the recall and precision,
it can be seen that for InceptionTime the reduction occurred in
both recall and precision, while for LSTM-FCN the reduction
in recall caused the reduction in F1 compared to the use of three
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Fig. 7. Comparison between rapeseed maps created by InceptionTime and ground samples (RPG) for a part of the study site, using different years for training
and testing. (a) Training 2018/test 2020. (b) Training 2019/test 2020. (c) Ground samples of 2020. Rapeseed fields are colored green, other crops are colored grey.

orbits. The reduction in the number of S1 images in the time
series had less impact on the MLP and RF algorithms than that
on the LSTM-FCN and InceptionTime where the reduction in
F1 was of an order of 5% and 0.5% using one orbit instead of
three orbits for MLP and RF, respectively. However, RF with an
F1 value of 89.1% had better performance when compared to
MLP with an F1 value of 80.0%. The lower precision (72.3%)
compared to the recall (92.4%) caused the lower F1 value using
MLP when compared to RF. In conclusion, using one orbit of S1
time series, not only the performance of RF remains more than
acceptable, it also outperforms the other three ANNs algorithms
(MLP, LSTM-FCN, InceptionTime).

b) Using a shift in the phenological cycle between training
and test years: Table VIII shows the results of the accuracy as-
sessment of the transferability of the models with the simulation
of the 15-day and 30-day shifts in the phenological cycle of
rapeseed in 2018 as training data without any modification in the
2020 dataset as test. InceptionTime and LSTM-FCN provided
the best accuracy among other algorithms with nearly similar
accuracy metrics with and without the time shift. With a 15-days
shift in the phenological cycle of rapeseed, the InceptionTime
algorithm gave rapeseed fields map with F1 value equal to 92.6%
(the F1 value of 94.3% for the same combination of years without
shift). In the case of classification using InceptionTime with a
30-days shift, F1 reached 89.3%. LSTM-FCN gave F1 values of

85.6% and 84.7% for 15- and 30-days shift, respectively (the F1
value of 87.2% for the same combination of years without shift).
On the other hand, lower performance was obtained for RF and
MLP achieving F1 values of 34.6% and 29.1%, respectively, for
15 days’ shift. For a 30 days’ shift, RF and MLP had F1 values
lower than 5%. In the case of 15 days shift the low value of recall
(below 20%) caused the poor performance of both RF and MLP,
whereas in the case of 30 days’ shift, both recall (close to 0%) and
precision (55.8% and 18.9% for RF and MLP, respectively) were
low for these two algorithms. Thus, in the case of a phenological
shift between the training year and the test year, RF and MLP
were not able to produce accurate rapeseed fields map. However,
LSTM-FCN and InceptionTime were capable of maintaining
good accuracy in the presence of a phenological shift between
the training and mapping years.

V. DISCUSSION

A. S1 Temporal Behavior

The S1 backscatter analysis [see Fig. 4(a) and (b)] showed
that the radar signal at plot scale is affected by rainfall events,
especially in the early growth stage when the vegetation cover
is not very dense and the effect of the soil surface condition is
greater than the effect of the vegetation cover.
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TABLE VII
EFFECT OF S1 ACQUISITION DENSITY ON THE ACCURACY OF RAPESEED

FIELDS MAPPING

TABLE VIII
RESULTS OBTAINED BY APPLYING A TIME SHIFT OF 15 AND 30 DAYS ON THE

TRAINING DATASET OF 2018, WITHOUT MODIFYING THE TEST

DATASET OF 2020

The temporal behavior of VHp and VVp over rapeseed fields
showed four phases which are related to the four main phenolog-
ical stages of rapeseed [4], [12], [50]. However, the fluctuation of
the VHp channel is stronger with the growth cycle of rapeseed.
This was expected, as the VH is well known to be more sensitive
to the vegetation cover and its geometrical structure than the VV
polarization which is more sensitive to the soil moisture [51].

During the leaf production between September and Novem-
ber, both polarizations increase according to biomass growth
[14], [20]. When the rapeseed growth rate is low due to the
cold weather between November and March the value of VHp
and VVp is stable. During the rapid spring growth of rapeseed
between March and June, there is a strong increase in VHp and
VVp, corresponding to the stem elongation, inflorescence emer-
gence, and fruit development [4], [12]. According to Mercier
et al. [20] and Veloso et al. [12], the peak in signal is due to
the higher biomass, as well as taller rapeseed and randomly
oriented branches, resulting in higher backscatter due to the
double bounce effect. With the onset of senescence in June and
July, both VHp and VVp decrease strongly due to the lower water
volume in the top layer of rapeseed and higher soil contribution
than the vegetation contribution in the S1 backscattering signal
(higher S1 signal penetration) [20]. The unique behavior of the
S1 time series according to the phenological cycle of rapeseed,
especially the high peak in May and early June is valuable for
rapeseed fields mapping as shown in this study and previous
studies [8], [12]. Therefore, methods such as the DL algorithms,
which are based on the end-to-end learning from the input data,
can take advantage of this behavior of S1 signals to distinguish
the rapeseed fields.

B. Rapeseed Mapping

Although the mapping of rapeseed fields was carried out in
previous studies, this article has addressed several functional
arguments to facilitate the detection of rapeseed fields. First,
by presenting the algorithms capable of producing the rapeseed
maps using a S1 time series with a high accuracy and second
by developing different solutions for producing the rapeseed
fields map when there are not enough ground samples. In this
aim, four algorithms were used to classify the S1 time series,
including a machine learning algorithm, called RF, and three
DL algorithms, namely MLP, LSTM-FCN, and InceptionTime.
RF is a well-known method in remote sensing applications due
to its high performance [28], [37], [38]. Therefore, as in previous
studies such as the one by Zhong et al. [25], RF provides
the baseline for all other classifications in the current paper.
In addition, MLP, which is a public simple deep ANNs, and
LSTM-FCN and InceptionTime, which are specialized for time
series analysis, were also used for the classification of rapeseed
fields. Our results showed how AI algorithms offer specific
advantages for remote sensing applications. These advantages
are discussed in this section.

1) Application of AI in Rapeseed Fields Mapping: All four
algorithms including RF, MLP, LSTM-FCN, and InceptionTime
gave high accuracy metrics when detecting rapeseed fields uti-
lizing an S1-derived time series, using samples from the same
year for training and for testing (mean F1 value close to 95%).
Among the four algorithms that were applied in this article,
InceptionTime showed the best performance in classifying the
rapeseed fields using training and testing data from the same year
compared to the RF, MLP, LSTM-FCN. Not only did Inception-
Time provide the highest F1 value (95.7%), it also provided the
most stable performance across the different tested years. Fawaz
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et al. [40] mentioned that InceptionTime has less variation in
results, thanks to the application of multiple inception networks
in its architecture.

By using only S1 time series better results were obtained in
this article compared to Mercier et al. [20] who reported lower
accuracy (kappa value of 0.63) by classifying rapeseed fields
using only S1 time series and an incremental method developed
by Mercier et al. [52]. In fact, previous papers have either used
optical images alone or some combination of radar and optical
images to achieve high accuracy for rapeseed detection [19],
[53]. This article provides a high accuracy using only S1 time
series, which reduces the image processing and data analysis
time. Waldhoff et al. [54] integrated ASTER, Landsat-5-8, IRS-
P6, SPOT-6/7, and RapidEye images for mapping the rapeseed
fields in western Germany and obtained an F1 value of 86.2%
using the multidata approach proposed by Bareth [55]. Han
et al. [22] achieved F1 values between 0.84 and 0.91 using a
combination of S1 and S2 data from 33 countries using the pixel-
and phenology-based method. One of the strength points of the
current study is thus the ability to obtain the optimal rapeseed
mapping accuracy relying only on one satellite data source (the
S1 time series) which is in free and in open access mode.

2) Solutions to Ground Sampling Constraints: The difficul-
ties of ground sampling due to time and budget constraints, poor
accessibility to the study area as well as the absence of historical
training samples for each year have been mentioned in similar
remote sensing applications for land cover mapping [56], [57],
[58]. Based on the results of the current paper two solutions
could be proposed to mitigate the above-mentioned constraints.

Our first solution to the ground sampling constraints is to
develop a model over one year and apply it to other years without
having to train it again. The results of the current study showed
that using all the four algorithms, it is possible to accurately
detect the rapeseed fields, using different years for training and
for testing. InceptionTime showed the best performance when
compared to the other algorithms by providing the highest F1
(92.7%), as well as the smallest difference between minimum
and maximum of accuracy metrics (over our six combinations
of training and test years). This means that the InceptionTime al-
gorithm can use what it learns in each year to accurately classify
the next or previous year. The F1-score obtained in the current
study with InceptionTime (92.7%) is higher than methods used
in previous studies to classify the time series using historical
data for training. In Lin et al. [56], F1 value was 88% and 85%
for mapping, respectively, corn and soybeans using Sentinel-2
and Landsat optical time series. In addition, classification using
InceptionTime which learns the backscatter of rapeseed directly
from the satellite images is not as complicated as the decision
boundary-based approaches which select thresholds for each
crop from the historical samples and apply them to the target
year [38], [58], [59], [60]. Meanwhile, LSTM-FCN also showed
the capability of producing accurate rapeseed fields map for
each year using the ground samples of other years for training
with a mean F1 value of 89.3%. Looking at the results of RF,
despite the high mean value of F1 equal to 87.1%, this algorithm
performs less well when compared to the previously mentioned
ANNs algorithms in the case of temporal transfer due to 13.7%

difference between the minimum and maximum of F1 values.
Meanwhile, MLP had the worst performance with the lowest
F1 value among other algorithms in the transfer classification
(mean F1 of 85.5%).

In order to be sure about the possibility of obtaining high
accuracy results with our first solution to ground sampling con-
straints (creating the rapeseed map using the ground samples of
the other years), it is worth addressing two important arguments,
including the effect of the shift in the phenological cycle of
rapeseed between training and test years, and the effect of the
number of images in the S1 time series. The results obtained with
15-days and 30-days shift in the rapeseed growth cycle between
training and test datasets showed that using InceptionTime and
LSTM-FCN, it remains possible to classify the rapeseed fields
with an F1 value higher than 84.7% when there is a shift of up
to 30 days between the training and test years (F1 value higher
than 85.6% for a shift of 15 days). However, the F1 value of
InceptionTime was 5% higher than LSTM-FCN. On the other
hand, RF and MLP had poor accuracy (F1 value less than 35%
and 5%, respectively, for a shift of 15 and 30 days) and thus they
cannot be used in the case of temporal transfer when there is shift
in growth cycle of rapeseed between the training and test year.
These findings provide functional advantages that facilitate the
procurement of information about rapeseed which is a strategic
crop in the global trade and plays an important role in global
food security. Indeed, thanks to the temporal transferability of
InceptionTime and LSTM-FCN, even with a 30 days shift in the
growth cycle between training and test data, it is still possible
to get accurate information on rapeseed cultivation areas in the
main rapeseed producing countries regardless of challenging
conditions (for example the war in Ukraine) which cause in-
accessibility to large cultivation areas. In addition, these results
show that it is possible to map the rapeseed from ground samples
of previous years (same region) or collected on other regions in
the same agro-climatic zone, where the shift in the growth stage
of rapeseed is lower than 30 days. From a functional point of
view, the rapid retrieval of information on the area of cultivation
is always important for the decision makers [20], [61]. So, the
classification of time series using the ground samples collected
in the previous years with a shift of less than 30 days would be
worthwhile. Furthermore, as the phenological period is delayed
in cold regions compared to warmer regions, the possibility
of temporal transfer algorithms is a crucial argument for the
accurate classification of rapeseed over large regions or in the
case of climate change [4].

On the other hand, when the number of images in time
series was reduced, the performance of the classification with
InceptionTime and LSTM-FCN decreased for transferability of
model of around 16% (77.1% and 72.1%, respectively), whereas
the performance of RF and MLP did not decrease significantly.
However, RF gave an F1 value of 89.1% which was higher
than all the ANNs algorithms. Therefore, a reduction in the
revisit time of S1 reduces the accuracy of InceptionTime and
LSTM-FCN. Thus, in the case of large reduction in the number of
images in the time series, RF will be the best choice to use when
training and testing using different years without phenological
shift.
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TABLE IX
RECOMMENDATION ON THE USE OF OUR FOUR ALGORITHMS ACCORDING TO THE CONSTRAINTS IN THE FIELD SAMPLES

Our second solution to the ground sample constraints is to
propose a method that gives accurate results even when using
a small training sample size. Therefore, the effect of training
sample size on the performance of the AI classifiers was eval-
uated using four sizes of ground samples, including 100, 300,
500, and 1000. The results obtained in the case of small sample
size showed that RF and InceptionTime classify the rapeseed
with high accuracy metrics when the training sample size is
greater than 300 (F1-score higher than 90). However, when
using only 100 samples, InceptionTime did not perform better
than F1 value of 59.3. The accurate classification performed
by InceptionTime using sample sizes greater than 300 showed
the lower effect of sample size on the performance of which
confirms the stability of the results of this algorithm compared
to the other two ANNs. Although DL is known as a method that
requires a large training dataset, Fawas et al. [40] mentioned that
providing the accurate results using the small sample size by
InceptionTime as another advantage of assembling the several
inception networks in this algorithm. In the case of a sample
size of 100, RF gave an F1 value 7% higher than InceptionTime.
RF as a machine learning model, provides F1 values between
90% and 92% using the sample sizes larger than 300 samples
(300, 500, and 1000), which shows that when the number of
samples increases, no great improvement occurs in the accuracy
of classification by RF. On the contrary, the performance of
LSTM-FCN and MLP decreased dramatically using the sample
size smaller than 1000, therefore, these two algorithms are not
recommended for rapeseed classification in the case of small
sized samples.

In summary, taking into account the effect of the phenological
cycle shift, the number of S1 images, and the size of training
samples on the ability of our four algorithms to provide a solution
to the constraints concerning the ground samples, Table IX
illustrates the recommended algorithms for each use case. It is
possible to use all algorithms in the case of the temporal transfer
when there is no shift in the training and test data. InceptionTime
can be used in all tested cases, although its performance is not
the highest for the case of 100 samples, and temporal transfer
with a smaller number of S1 images. RF could be used for all
tested cases except when there is phenological shift. LSTM-FCN
is useful for temporal transfer even when there is a shift in the
phenological cycle. But, MLP can only be used in the case of
1000 samples or temporal transfer without phenological shift.
This means that MLP cannot be widely used as a functional
algorithm in the case of sample size constraints. This can be due
to its simple ANNs architecture.

VI. CONCLUSION

This article presents an assessment of artificial intelligence
algorithms for mapping rapeseed fields using S1 time series
data. The accuracy of rapeseed mapping was assessed for four
algorithms considering

1) the effect of the sample size for training;
2) the ability to deploy a model trained on one year on other

years;
3) the effect of the number of available S1 images in the time

series;
4) the effect of a possible phenological shift between studied

years.
In the case where large databases (nearly 100 000 samples)

are used for training, this article demonstrated that RF, Incep-
tionTime, LSTM-FCN, and MLP were capable of accurately
mapping the rapeseed fields using only S1 SAR time series using
the same year for training and for testing (F1 score between
95.0% for RF and 95.7% for InceptionTime). However, using a
smaller sample size (but no less than 300 samples), RF and In-
ceptionTime gave better results (F1 score higher than 92.0% for
InceptionTime and 90.0% for RF) compared to the LSTM-FCN
and MLP (F1 score higher than 29.0% for LSTM-FCN and
53.9% for MLP). It was also shown that all four algorithms were
able to produce an accurate map of rapeseed fields in the case of
temporal transfer when the training and test data were selected
from different years (F1 score between 85.5% for MLP and
92.7% for InceptionTime). The number of S1 images in the time
series is an important dimension for temporal transferability,
especially for the two ANNs algorithms that are specialized in
time series analysis (InceptionTime, LSTM-FCN), because the
accuracy of classification using these two algorithms dropped
down when the number of images in the time series decreased (a
decrease of 16.9% for InceptionTime, 15.9% for LSTM-FCN).
However, RF performed well even when the number of images
in the time series decreased (F1 score of 87.1% with three orbits,
and 85.1% with one orbit). In the case of a phenological shift
between years, only InceptionTime and LSTM_FCN (F1 score
about 89.3% with InceptionTime and 84.6% with LSTM-FCN
for phenological shift of 30 days) achieved good accuracy in
rapeseed field mapping, whereas RF and MLP were not suitable
for the case of a phenological shift between the training year and
the mapping year. It is worth noting that in this article, the default
parameter values for the algorithms were used with the aim to
have a unique baseline for the comparability of the performance
of the algorithms in each scenario. However, tuning of the
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algorithms can be applied in further studies. Indeed, adjusting
these parameters based on the data could improve the model’s
performance and ensure optimal results. In addition, to tackle
more challenging transfer scenarios between training and test
datasets, an interesting avenue for future work would be to apply
more robust training techniques (e.g., with data augmentation)
and account for domain changes beyond time lags. The findings
of this article are not only useful for remote sensing researchers,
but they also facilitate the detection of rapeseed fields for other
stakeholders such as policy makers and insurance companies,
even with the constraints of collecting ground samples for
each year.
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