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Cross-Modal Local Calibration and Global Context
Modeling Network for RGB–Infrared

Remote-Sensing Object Detection
Jin Xie , Jing Nie , Bonan Ding , Mingyang Yu , and Jiale Cao , Member, IEEE

Abstract—RGB–infrared object detection in remote-sensing im-
ages is crucial for achieving around-clock surveillance of unmanned
aerial vehicles. RGB–infrared remote-sensing object detection
methods based on deep learning usually mine the complementary
information from RGB and infrared modalities by utilizing feature
aggregation to achieve robust object detection for around-the-clock
applications. Most of the existing methods aggregate features from
RGB and infrared images by utilizing elementwise operations (e.g.,
elementwise addition or concatenation). The detection accuracy
of these methods is limited. The main reasons can be concluded
as follows: local location misalignment across modalities and in-
sufficient nonlocal contextual information extraction. To address
the above issues, we propose a cross-modal local calibration and
global context modeling network (CLGNet), consisting of two novel
modules: a cross-modal local calibration (CLC) module and a
cross-modal global context (CGC) modeling module. The CLC
module first aligns features from different modalities and then
aggregates them selectively. The CGC module is embedded into
the backbone network to capture cross-modal nonlocal long-range
dependencies. The experimental results on popular RGB–infrared
remote-sensing object detection datasets, namely DRoneVehicle
and VEDAI, demonstrate the effectiveness and efficiency of our
CLGNet.

Index Terms—Multimodal fusion, object detection, remote-
sensing object detection.

I. INTRODUCTION

RGB–INFRARED remote-sensing object detection is a cru-
cial remote-sensing task that focuses on classifying and
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locating arbitrary-oriented objects within a pair of RGB and
infrared remote-sensing images, which plays a significant role
in remote image understanding. Recently, deep neural networks
have pervaded many areas of remote-sensing understanding
ranging from remote-sensing image classification [1], [2], [3],
[4] and remote-sensing object detection [5], [6], [7], [8], [9],
[10], [11] to RGB–infrared remote-sensing object detection [12],
[13], [14], [15].

Existing RGB-based remote-sensing object detection meth-
ods achieve great success, particularly in well-lit environments.
However, the detection performances of these methods are sig-
nificantly declined in low-light conditions. The main reason is
that RGB cameras struggle to capture useful information about
objects in low-light scenarios. In contrast, infrared cameras
are sensitive to temperature variations and can capture infrared
images that provide additional information during nighttime.
However, infrared images often suffer from the loss of details
and lower resolution, which are the crucial factors for decreas-
ing the detection accuracy. To address the above challenges,
remote-sensing object detection methods using RGB–infrared
images have emerged as a powerful solution. The RGB–infrared
remote-sensing object detection methods aim at combining the
strengths of RGB images and infrared images to achieve the ac-
curate object detection across a range of illumination conditions.

RGB–infrared remote-sensing object detection [13], [14],
[16] has gained significant popularity in various applications,
such as surveillance of unmanned aerial vehicles. These meth-
ods typically rely on fusing features extracted from both RGB
and infrared input images. UACMDet [13] aggregates multi-
modal features by utilizing the uncertainty information of two
modalities, which mines cross-modal complementary informa-
tion effectively. The redundant information suppression network
(RISNet) [14] is proposed to fuse RGB–infrared features by
mitigating cross-modal redundancy and mining the comple-
mentary cross-modal information. The aforementioned methods
generally consider the effect of modality importance in feature
aggregation.

RGB–infrared remote-sensing object detection methods face
some key challenges that limit the detection accuracy. The first
one is the misalignment in spatial positions between the RGB
features and infrared features, caused by various factors, such
as time differences in image capturing and distances between
different cameras. The second one is lacking of global con-
textual information, which is proven the clue of reasoning the
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existence and locations of objects. The elementwise operations
for aggregating multimodal features in existing methods [13],
[14] make it difficult to effectively address the aforementioned
issues.

In this article, we propose a novel feature aggregation manner,
terms cross-modal local calibration and global context modeling
network (CLGNet), consisting of a cross-modal local calibration
(CLC) module and a cross-modal global context (CGC) mod-
eling module, which solves the above two problems to improve
the detection accuracy for RGB–infrared remote-sensing object
detection. Specifically, the CLC module employs a calibration
convolution to align RGB and infrared feature first and utilizes
a selective aggregation module (SAM) to filter out irrelevant
information and noises. The proposed CLC module can alleviate
the misalignment problem in spatial positions and reduce the
heterogeneity between the RGB and infrared features. In addi-
tion, the CGC module captures global contextual information in
RGB and infrared features by mining the interactive informa-
tion between two modalities, which can improve the detection
accuracy.

In summary, the novelty, contribution, and characteristic of
the proposed CLGNet are as follows.

1) We propose a novel network for remote-sensing object
detection called the CLGNet. It consists of two key mod-
ules: the CLC module and the CGC modeling module.
Our CLGNet can significantly improve the detection per-
formance by addressing the spatial misalignment issues,
reducing abundant information during feature fusion, and
enriching cross-modal nonlocal information.

2) The proposed CLC module encompasses a calibration
convolution and an SAM. This CLC module is adept at
diminishing noise and eliminating irrelevant information
during the process of feature aggregation. More specifi-
cally, the calibration convolution mitigates noises intro-
duced by spatial offsets between modalities, while the
SAM counteracts the presence of irrelevant information
caused by the imbalance in modality reliability.

3) The CGC modeling module enhances the enrichment of
cross-modal global contextual information, thereby facili-
tating the inference of object presence and locations under
diverse illumination conditions. In addition, we provide
experimental and theoretical evidence to demonstrate the
superior performance of our CGC compared with single-
modal global context modeling operation experimentally
and theoretically.

4) Our CLGNet is a generic feature aggregation module
that can be flexibly integrated into diverse detectors and
consistently improves their detection accuracy (see Fig. 1).
Moreover, our CLGNet achieves the state-of-the-art per-
formace on our four widely used RGB–infrared object de-
tection benchmarks (i.e., DroneVehicle, VEDAI, LLVIP,
and KAIST).

The rest of this article is organized as follows. In Section II,
we discuss the relevant literature and prior research in the field.
We present our proposed CLGNet in Section III, detailing its
key components. In Section IV, we present and analyze the
experimental results. Finally, Section V concludes this article.

Fig. 1. Detection accuracy comparison on the DroneVechile test set. Our
CLGNet is generic and obtains consistent improvements while being integrated
into diverse detection frameworks.

II. RELATED WORK

In this section, we begin by reviewing the object detection
methods, remote-sensing-oriented object detection methods,
and RGB–infrared object detection methods that form the ba-
sis of RGB–infrared remote-sensing-oriented object detection
methods.

A. Object Detection

Object detection aims at classifying and locating objects in
images. With the development of deep learning, object detection
methods based on deep learning have achieved great success.
Existing object detection methods based on deep learning can
be roughly divided into two categories: anchor-based object
detection methods [17], [18], [19], [20], [21] and anchor-free
object detection methods [22], [23], [24], [25]. Anchor-based
object detection methods predict the locations and categor-
ies of objects by deploying hand-crafted anchor boxes. Anchor-
free object detection methods locate and classify objects without
deploying default anchor boxes.

B. Remote-Sensing-Oriented Object Detection

Remote-sensing-oriented object detection [9], [26], [27], [28]
aims to classify and locate the arbitrary-oriented objects in
remote-sensing imagery in which the objects are often arbitrary-
oriented, dense-distributed, and of small sized. Most existing ori-
ented object detection methods are modified from general object
detection methods [17], [20], [29] by additionally regressing the
orientation. Instead of using rotated anchors to generate rotated
region proposals, RoI transformer [6] introduces a rotated RoI
learner to learn a rotated region of interest from a horizontal
region of interest, which reduces the computational complexity.
Oriented RCNN [9] directly generates oriented region proposals
from the traditional axis-aligned anchors, which further de-
creases the computational cost. Yang et al. [30] proposed a
fully differentiable KFIoU loss for oriented object detection.
Huang et al. [31] designed a taskwise sampling convolution to
extract specific features of classification and localization tasks
for arbitrary-oriented remote-sensing object detection.
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Fig. 2. Overall architecture of the proposed RGB–infrared object detection method. The focus of our proposed method is a novel CGC modeling module and a
CLC module. The CGC module is embedded into the two-steam backbone networks to enrich the cross-modal global contextual information. The CLC module
takes the RGB and infrared features from the feature pyramid network as inputs and aligns and aggregates RGB and infrared features adaptively.

C. RGB–Infrared Object Detection

RGB–infrared object detection [32], [33], [34], [35], [36],
[37], [38] aims at classifying and locating objects around the
clock by combining RGB images and infrared images, which
serves as a fundamental approach for numerous other tasks, such
as RGB–infrared person reidentification [39]. RGB images have
rich textures in the daytime, while infrared images provide more
effective information at night. RGB–infrared object detection
aggregates the complementary information RGB images and
infrared images to achieve better object detection accuracy.

D. RGB–Infrared Remote-Sensing-Oriented Object Detection

Sun et al. [13] collected paired drone-based RGB–infrared
images from day to night and created the DroneVehicle dataset.
Moreover, a UA-CMDet is proposed and fuses complementary
information from RGB–infrared images by concatenation to
improve the vehicle detection performance in low-light condi-
tions. An uncertainty-aware module is proposed to predict three
uncertainty weights for RGB, infrared, and fused modalities.
The uncertainty weights are utilized to achieve illumination-
aware cross-modal NMS to improve the detection accuracy.
RISNet [14] suppresses the redundant information in cross-
modal fusion by computing the information entropy and im-
proves the vehicle detection performance in poor illumination
conditions. Li et al. [16] proposed a cross-modal knowledge
distillation strategy, including selective feature knowledge distil-
lation and adaptive prediction knowledge distillation, to improve
the accuracy of RGB–infrared remote-sensing object detection.

Limitation: Many of the existing methods [32], [33] aggregate
features from different modalities using simple elementwise
operations (e.g., addition or concatenation). These approaches
often treat both modalities equally, potentially leading to the
incorporation of irrelevant and distracting information from
different modalities. Moreover, UA-CMDet [13] relies on RoI-
based operations, which restricts its application to two-stage

object detectors and limits its versatility. In contrast, our pro-
posed CLGNet serves as a versatile feature aggregation network
that can be seamlessly integrated into anchor-free, two-stage,
and single-stage detectors. Furthermore, many existing meth-
ods [13], [14] overlook the importance of modeling long-range
feature dependencies, which play a crucial role in understanding
pedestrian presence and locations.

III. METHODS

A. Overall Architecture

Fig. 2 shows the overall architecture of the proposed RGB–
infrared object detection method. A two-stream backbone net-
work integrated with our proposed CGC modeling module takes
RGB and infrared images as input to extract features with
enriched global contextual information. And then FPN [40]
is employed to construct a feature pyramid to help detect the
objects of various sizes. A novel CLC module is utilized to
align features with spatial positions and aggregate multimodal
features selectively. At last, the aggregated features go through
a detector to predict the locations and categories of objects.

B. CGC Modeling Module

Modeling long-range dependencies to capture global contex-
tual information has been demonstrated as an effective way
of improving detection accuracy [41], [42]. GCNet [41] is
a lightweight nonlocal operation to capture global contextual
information, achieving great success in single-modal tasks. De-
spite its effectiveness in single-modal tasks, it fails to perform
well in multimodal tasks. The main reason for the performance
gap is the lack of consideration for the reliability of different
modalities. The reliability of the modalities may vary with the
changes in illumination conditions. Specifically, in the day, the
infrared features are unreliable, leading that it is difficult to cap-
ture the global contextual information of the infrared features.
For the same reason, it is difficult to capture the global contextual
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Fig. 3. Architecture of our proposed CGC modeling module.

information of RGB features at night because the RGB features
are unreliable at night. To address this issue, we propose a novel
CGC modeling module. Fig. 3 shows the architecture of the
proposed CGC module.

We first pass the RGB features xr and infrared features xf

through two separate convolutional layers whose kernel size is
1× 1. Next, we add the outputs of these two layers together
and reshape the resulting features to prepare for matrix multi-
plication. Finally, we apply a softmax operation to compute the
global attention pooling weights wp. The computational process
can be represented by the following equations:

wp = S(R(f1×1(xr) + f1×1(xf )) (1)

where wp is the global attention pooling weight, which is used
to extract global contextual features. f1×1 is the convolutional
layer whose kernel size is 1× 1. S and R denote the softmax
and reshape operations, respectively.

Then, the obtained global context weights are utilized to
extract global contextual features. The detailed computation is
given as follows:

gr = FC(σ(LN(FC(R(xr)wp))))

gf = FC(σ(LN(FC(R(xf )wp)))) (2)

where gr and gf are the RGB and infrared global contextual
features, FC denotes the full-connected layer, R represents the
reshape operation, LN is the layer normalization, and σ is the
ReLU activation function. It can be noted that the obtained
global attention pooling weights wp depend on both RGB and
infrared features. This ensures that the RGB and infrared global
contextual features (i.e., gr and gf ) calculated by the weights
wp are robust and discriminative, regardless of the illumination
level being high or low. Finally, the generated RGB and infrared
global contextual features are as a residual part to be added into
the input RGB and infrared features, respectively. The following
equation provides a detailed computation of the process

x̂r = xr ⊕ gr

x̂f = xf ⊕ gf (3)

where ⊕ represents the broadcast elementwise addition, and
x̂r and x̂f denotes the enhanced of the RGB and infrared
features, respectively, which contains enriched global contextual
information. These two features are used to replace the original
features xr and xf as input to the subsequent layers of backbone
networks.

Fig. 4. Architecture of our proposed CLC module. The focus of our CLC
module is the calibration convolution and an SAM, which is utilized to align
and aggregate features, respectively.

Our proposed CGC module can be embedded into any stage of
the backbone network (e.g., ResNet). In Section IV, we conduct
experiments to analyze the effects of the embedded stages.
According to the experimental results, we integrate our CGC
module into Stage 3, Stage 4, and Stage 5 of ResNet.

C. CLC Module

The heterogeneity across different modalities would lead to
the introduction of noise in the multimodal feature aggregation.
And position shifts caused by camera acquisition stage would
lead misalignment problems in spatial positions during multi-
modal feature aggregation. The above two issues make it difficult
to obtain discriminative aggregated features. To alleviate the
above problems, we propose a novel CLC module, which first
employs a calibration convolution to align multimodal features,
and then uses an SAM to reduce irrelevant information and
noises during feature aggregation. In the next, we describe the
details of our proposed CLC module (see Fig. 4).

The input of our CLC module is the features xri and xfi

extracted by the feature pyramid network, where i denotes the
feature level of the feature pyramids. For each level feature, one
CLC module is utilized to aggregate scale-specific multimodal
features. For brevity, the feature level i is omitted in the following
sections.

Calibration convolution: The calibration convolution is uti-
lized to align multimodal features. The computational process
can be denoted as follows:

x̃r(p) =
∑

pn∈R
w(pn) · xr(p0 + pn +Δ(p0)) (4)

where p0 denotes the spatial location of the features xr, R
is the set of sampled positions corresponding to a regular
grid (e.g., for a convolution whose kernel size is 3× 3, R =
{(−1,−1), (−1, 0), . . ., (0, 1), (1, 1)}), and w is denoted the
weights of the convolution. The input and output features are
denoted by xr and r, respectively. The kernel offsets Δ(p0) are
used to augment the regular sampling grid, which calibrates the
features from the RGB and infrared branches. The computational
process for the kernel offsets Δ(p0) can be expressed using the
following equations:

Δ(p0) = f3×3(xr‖xf ) (5)

where f3×3 denotes a convolution layer whose kernel size is
3× 3. ‖ denotes the concatenation operation. xr and xf are the
input features of RGB branch and infrared branch, respectively.
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The aligned RGB features x̃r and infrared featuresxf are further
used to aggregate together by the next SAM.

SAM: The input to the SAM consists of the infrared features
xf and the RGB features x̃r, which are aligned with the infrared
features using the above calibration convolution. Two parallel
convolution layers followed by one softmax layer are utilized to
predict the selective aggregation weights ar/f . The computation
process can be denoted by

zr = f1×1(x̂f‖xr) ∈ RH×W×1

zf = f1×1(x̂f‖xr) ∈ RH×W×1

ar =
ezr

ezr + ezf

af =
ezr

ezr + ezf
(6)

where ‖ denotes the concatenation operation, f1×1 denotes the
convolution layer whose kennel size is 1× 1, and H and W are
the height and width of the features. The selective aggregation
weights ar/f refer to the spatial importance weights for the
multimodal feature maps that being aggregated. These weights
are learned through end-to-end training. Once the selective
aggregation weights have been learned, they are utilized to
aggregate multimodal features. Selective aggregation weights
can be used to identify important modalities at specific spatial
locations, filtering-out irrelevant information. The aggregation
of multimodal features using the selective aggregation weights
can be represented mathematically as follows:

xa = xr · ar + xf · af (7)

where xa is the aggregated features, and · denotes the elemen-
twise multiplication. Finally, the resulting aggregated features
are input into the following detection head network to predict
the object categories and locations.

IV. EXPERIMENTS

A. Datasets

Here, we conduct experiments on two RGB–infrared remote-
sensing object detection datasets (DroneVehicle [13] and
VEDAI [43]). In addition, to demonstrate the generality and
effectiveness of our method, we also conduct experiments on
two RGB–infrared pedestrian detection datasets (LLVIP [44]
and KAIST [45]). In the next, we would describe the details of
these four datasets.

DroneVehicle is a recently proposed RGB–infrared remote-
sensing object detection dataset, providing oriented bounding-
box annotations with five object categories (i.e., car, freight car,
truck, bus, and van). The training, validation, and test sets contain
17 990, 1469, and 8980 RGB–infrared image pairs, respectively.

VEDAI is a popular RGB–infrared vehicle detection dataset
in aerial imagery with nine vehicle categories (i.e., car, truck,
pickup, tractor, camper, ship, van, plane, and other).

LLVIP is a challenging RGB–infrared pedestrian detection
dataset, comprising 12 025 training images and 3463 test images.

KAIST is a popular multispectral pedestrian detection dataset.
Following the state-of-the-art methods [35], [37], [46], our

method is trained on the annotations provided by [46] and tested
on the improved test annotations [32].

B. Evaluation Metrics

For the DroneVehicle dataset, we follow [13] and report
results by utilizing the standard mean average precision (mAP)
with an intersection over union (IoU) threshold of 0.5.

For the VEDAI dataset, we follow [15], [43] and adopt the
tenfold cross-validation protocol. The standard mAP with an
IoU threshold of 0.5 is chosen as the evaluation metric.

For the LLVIP dataset, we follow [37] and report results
by using the COCO-style average precision AP [47] that is
computed with averaged across IoU thresholds from 0.5 to 0.95
and with an interval of 0.05.

For the KAIST dataset, we use the standard log-average miss
rates [48] as the performance metric, which has lower values for
better detection performance.

C. Implementation Details

We utilize two popular PyTorch [49] based object detection
toolboxes MMRotate1 [50] and MMDetection2 [51] to imple-
ment our method. We train our model on two NVIDIA GeForce
RTX 3090 GPUs and set the batch size to 2 per GPU. For all
experiments, the backbone networks used in our method are
pretrained on the ImageNet dataset [52]. During the training
stage, we train the model for a total of 12 epochs. At the 8th and
11th epochs, we decay the learning rate by a factor of 10.

On the DroneVehicle dataset, we follow [13] and remove the
white border of the images. In addition, the image size is set
to be 640× 512 during both the training and test. The oriented
bounding-box annotations on the infrared modalities are utilized
to train and test our model.

On the VEDAI dataset, we set the image size to 1024× 1024
for both training and testing.

On the LLVIP dataset, the image size is set to be 1280× 1024
for both the training and test stages.

On the KAIST dataset, we use an image size of 640× 512
for both training and testing stages.

We set the other experimental settings (such as learning rates
and optimizer) by following the default settings in MMRotate
and MMDetection.

D. Results on DroneVehicle

Baseline comparison: First, we demonstrate the effects of our
proposed modules: CLC module and CGC modeling module on
the DroneVehicle val set in Table I. For a fair comparison, the
detector used for all methods in Table I is RotatedRetinaNet, and
the backbone network is ResNet50. We utilize the elementwise
addition as the baseline method for feature aggregation. The
baseline achieves an mAP score of 65.0%. By integrating the
CLC module, which aligns and aggregates the RGB and in-
frared features adaptively, we observe an improvement of 2.1%,
resulting in an mAP score of 67.1%. In addition, the introduction
of the CGC module, which enriches the cross-modal global

1[Online]. Available: https://github.com/open-mmlab/mmrotate
2[Online]. Available: https://github.com/open-mmlab/mmdetection

https://github.com/open-mmlab/mmrotate
https://github.com/open-mmlab/mmdetection
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TABLE I
ANALYZING THE IMPACTS OF OUR PROPOSED CLC AND CGC MODULES ON

THE DRONEVEHICLE VAL SET

TABLE II
ANALYZING THE IMPACTS OF STAGES IN CGC ON THE DRONEVEHICLE VAL SET

TABLE III
COMPARISON OF THE PROPOSED METHOD WITH THE BASELINE IN TERMS OF

INFERENCE SPEED

contextual information, improves the detection accuracy from
65.0% to 66.9% mAP. Our novel CLGNet combining the CLC
module and the CGC module provides a significant gain of 2.6%
in mAP over the baseline. These experimental results serve as
evidence to demonstrate the effectiveness of our proposed CLC
and CGC modules.

Impacts of the integrating CGC module at different stages:
Here, we conduct experiments to analyze the impacts of inte-
grating the CGC module at different stages of backbone network
ResNet on the DroneVehicle val set, and the results are given in
Table II. We consider four situations: Stage 3 (i.e., conv3_x in
ResNet), Stage 4 (i.e., conv4_x in ResNet), Stage 5 (i.e., conv5_x
in ResNet), and the combination of the above stages. It can be
observed that integrating our CGC module at any single stage
can improve the detection accuracy. Additionally, integrating
our CGC at all of Stage 3, Stage 4, and Stage 5 simultaneously
can achieve higher detection accuracy than integrating our CGC
module at a single stage. Therefore, we choose to integrate
our CGC module at all three stages due to the better detection
performance.

Computational complexity analysis: Here, we examine the
computational complexity of our CLGNet. Table III presents the
inference speed comparison between our CLGNet and the base-
line feature fusion method (elementwise addition). The measure-
ments in Table III are tested on a single NVIDIA RTX3090 GPU.
To ensure a fair comparison, both our CLGNet and the baseline
are integrated into the RotatedRetinaNet with ResNet50. When
the input resolution is set to 640× 512, compared with the
baseline, our CLGNet can obtain absolute gains of 2.6% and

TABLE IV
COMPARISON [IN AVERAGE PRECISION (%)] WITH DIFFERENT FEATURE

AGGREGATION METHODS ON THE DRONEVEHICLE VAL SET

3.1% on the DroneVehicle val and test sets, respectively, while
only reducing the speed by 1.2 FPS. It can be concluded that the
proposed CLGNet obtains improved detection accuracy albeit
with a slight increase in computational burden.

Comparison with the single-modal global context method:
We compare our CLGNet with the single-modal global context
method GCNet [41]. GCNet is widely recognized as one of
the leading approaches to capture global context by model-
ing long-range dependencies. Instead of utilizing our proposed
CGC modeling module, we employ the GCNet on the RGB
and infrared backbone networks, individually. The experimental
results are given in Table IV. It can be observed that compared
with GCNet, our CGC improves the detection accuracy from
65.7% to 66.9% in terms of detection accuracy on the Dron-
eVehicle val set. The superior detection performance dues to
the following main reason: The GCNet only captures global
contextual information within each modality separately, leading
that the extracted global contextual information is suscepti-
ble to being influenced by variations in illumination. On the
contrary, our CGC effectively models the global context by
exploring the complementary information between RGB and
infrared modalities. This enables us to capture discriminative
global contextual information that remains robust regardless of
illumination variations. The experimental results demonstrate
the importance of exploring the complementary information
between RGB and infrared modalities when extracting global
contextual information.

Robustness on different detectors: Here, we integrate
our CLGNet into different popular detectors: Rotated Reti-
naNet [20], oriented RCNN [27], rotated faster RCNN [17], RoI
transformer [6], KFIoU RetinaNet [30], and rotated ATSS [53].
To ensure a fair comparison, all methods except for the detectors
utilize the same backbone (ResNet50) and experimental settings.
The results are presented in Table V. Compared with the baseline
feature fusion method (elementwise addition), integrating our
CLGNet into oriented RCNN, rotated faster RCNN, rotated
RetinaNet, KFIoU RetinaNet, and rotated ATSS achieves the
absolute gains of 1.7%, 2.9%, 3.1%, 2.0%, and 2.3% in terms of
detection accuracy, on the DroneVehicle test set. Additionally,
integrating our CLGNet into the above detectors outperforms
integrating the baseline feature fusion method into these detec-
tors with a significant margin on the DroneVehicle val set. The
experimental results provide evidence of the effectiveness and
versatility of our CLGNet.

Comparison with other feature fusion methods: We compare
with our CLGNet with two recent attention-based feature aggre-
gation methods (i.e., CMAFF [15] and CSSA [54]). The results
are given in Table V. It can be observed that compared with
other feature fusion methods, our CLGNet obtains consistent
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TABLE V
COMPARISON [IN AVERAGE PRECISION (%)] OF OUR METHOD WITH

DIFFERENT DETECTORS AND DIFFERENT FEATURE FUSION MANNERS ON THE

DRONEVEHICLE VAL AND TEST SETS

TABLE VI
STATE-OF-THE-ART COMPARISONS [IN TERMS OF DETECTION ACCURACY (%)]

ON THE DRONEVEHICLE VAL AND TEST SETS

improvements on all detectors, demonstrating the superiority of
our CLGNet.

Comparison with the state-of-the-art methods: Here, we con-
duct experiments to compare our proposed with the state-of-the-
art methods UA-CMDet [13] on the DroneVehicle val and test
sets. The results are given in Table VI. The result of UA-CMDet
is obtained by using the official code provided by the authors,
and the detection accuracy is higher than the result reported
in the original article. This improvement is from the updating
made by the authors in the processes of data annotation and
data preprocessing in the realized code.3 For a fair comparison,
we implement our CLGNet based on the code provided by
UA-CMDet and utilize the same experimental settings (data
processing process, learning schedule, optimizer, etc.) as the
UA-CMDet. In addition, the detector of UA-CMDet is based
on RoI-transformer [6] to guarantee the fairness, we also chose
the RoI-transformer as the detector for our CLGNet. It can be
observed that our CLGNet outperforms UA-CMDet [13] with
consistent improvements of 2.3% and 1.2% on the val and test

3[Online]. Available: https://github.com/SunYM2020/UA-CMDet

TABLE VII
COMPARISON [IN AVERAGE PRECISION (%)] OF OUR METHOD WITH OTHER

FEATURE FUSION MANNERS BY INTEGRATING THEM INTO FASTER RCNN ON

THE VEDAI DATASET

TABLE VIII
COMPARISON [IN AVERAGE PRECISION (%)] OF OUR METHOD WITH THE

STATE-OF-THE-ART FEATURE FUSION MANNERS BY INTEGRATING THEM INTO

VARIOUS DETECTORS ON THE LLVIP TEST SET

sets, respectively, demonstrating the superiority of our proposed
CLGNet.

Qualitative comparison: Fig. 5 illustrates a qualitative com-
parison of the input and output feature maps of our proposed
CLC module. It can be observed that the input feature maps
contain irrelevant information. After the feature aggregation, the
aggregated features (the output of our CLC module) significantly
enhance the discrimination of object regions from the back-
ground, thereby resulting in improved detection accuracy. The
qualitative comparison demonstrates that our CLC can reduce
the irrelevant information by aligning and aggregating the RGB
and infrared features adaptively.

E. Results on VEDAI

Here, our CLGNet is compared with the following recent
feature aggregation methods: elementwise addition (baseline)
CMAFF [15] and CSSA [54]. To ensure fair comparisons, we use
faster RCNN as the detector for all feature aggregation methods.
The results are reported in Table VII. Our CLGNet achieves an
average precision of 80.2%, which is higher than other feature
aggregation methods.

F. Results on LLVIP

Here, we conduct experiments on the challenge RGB–infrared
pedestrian detection dataset LLVIP [44]. The results are given
in Table VIII. The detection performance of concatenation and
DCMNet are reported in [37]. Compared with the elementwise
operations (i.e., concatenation), integrating our CLGNet into

https://github.com/SunYM2020/UA-CMDet
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Fig. 5. Visualizations of the input and output feature maps of our CLC module.

RetinaNet [20], Cascade RCNN [55], and Reppoints [29] detec-
tors yields improvements of 3.5%, 2.9%, and 2.3% in terms
of average precision, respectively. The main reason for the
improved performance of our CLGNet is attributed to its ability
of capturing enriched global contextual information, aligning the
spatial position between modalities, and balancing the modality
importance.

In addition, integrating the state-of-the-art method DCM-
Net [37], which performs multimodal feature aggregation uti-
lizing dynamic cross-modal modules that effectively mine local
and nonlocal complementary information between modalities,
into RetinaNet, Cascade RCNN, and Reppoints achieves AP
scores of 58.9%, 61.5%, and 58.7%, respectively, as shown in
Table VIII. Integrating out CLGNet into these detectors provides
a superior detection accuracy of AP scores of 60.4%, 62.5%, and
59.9%, compared with DCMNet, respectively. It demonstrates
that, compared with DCMNet, our CLGNet mines local and
nonlocal complementary information more effectively, leading
to superior detection accuracy.

To sum up, the experimental results on the LLVIP dataset
show that integrating our CLGNet into different detectors yields
improvements in the detection accuracy across various types
of detectors, including single-stage, two-stage, and anchor-free
detectors, demonstrating the generality and superiority of our
method.

G. Results on KAIST

We compare our method with the following recent state-
of-the-art methods: ACF [45], halfway fusion [32], IAF-
RCNN [56], IATDNN+IAMSS [57], CIAN [34], MSDS-
RCNN [33], AR-CNN [46], MBNet [35], BAANet [58], and
UFF+UCG [59]. The results are given in Table IX. We choose
the RetinaNet as the detector. It can be observed that our method
outperforms the state-of-the-art methods on the All, Day, and
Night sets. Among the existing methods, the UFF-UCG [59]
reports log-average miss rates of 7.89%, 8.18%, and 6.96%
on the All, Day, and Night sets, respectively. Our CLGNet
achieves superior results with log-average miss rates of 6.67%,

TABLE IX
COMPARISON OF THE PROPOSED AANET WITH THE STATE-OF-THE-ART

METHODS IN TERMS OF THE LOG-AVERAGE MISS-RATE ON THE KAIST
TEST SET

7.48%, 4.80% on the All, Day, and ıNight sets, respectively.
The results on the KAIST dataset show the superior and general
performance of our CLGNet.

V. CONCLUSION

We have proposed the CLGNet as an effective feature aggre-
gation network for RGB–infrared remote-sensing object detec-
tion. The CLGNet comprises a CLC module and a CGC model-
ing module. The CLC module employs a calibration convolution
and an SAM to adaptively align and aggregate multimodal fea-
tures by reducing spatial misalignment and effectively handling
irrelevant information. The CGC module effectively captures
global contextual information by exploring complementary in-
formation between RGB and infrared modalities, regardless of
the illumination level being high or low. We conduct extensive
experiments on one RGB–infrared remote-sensing object de-
tection benchmark and one RGB–infrared pedestrian detection
benchmark. The experimental results demonstrate that integrat-
ing CLGNet into various detectors can consistently improve de-
tection accuracy, highlighting the effectiveness and superiority
of our CLGNet.
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