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PointNest: Learning Deep Multiscale Nested Feature
Propagation for Semantic Segmentation of

3-D Point Clouds
Jie Wan , Ziyin Zeng , Qinjun Qiu , Zhong Xie , and Yongyang Xu

Abstract—3-D point cloud semantic segmentation is a funda-
mental task for scene understanding, but this task remains chal-
lenging due to the diverse scene classes, data defects, and occlu-
sions. Most existing deep learning-based methods focus on new
designs of feature extraction operators but neglect the importance
of exploiting multiscale point information in the network, which is
crucial for identifying objects under complex scenes. To tackle this
limitation, we propose an innovative network called PointNest that
efficiently learns multiscale point feature propagation for accurate
point segmentation. PointNest employs a deep nested U-shape
encoder–decoder architecture, where the encoder learns multiscale
point features through nested feature aggregation units at different
network depths and propagates local geometric contextual infor-
mation with skip connections along horizontal and vertical direc-
tions. The decoder then receives multiscale nested features from
the encoder to progressively recover geometric details of the ab-
stracted decoding point features for pointwise semantic prediction.
In addition, we introduce a deep supervision strategy to further
promote multiscale information propagation in the network for
efficient training and performance improvement. Experiments on
three public benchmarks demonstrate that PointNest outperforms
existing mainstream methods with the mean intersection over union
scores of 68.8%, 74.7%, and 62.7% in S3DIS, Toronto-3D, and
WHU-MLS datasets, respectively.

Index Terms—3-D point cloud, deep supervision (DS), multiscale
feature propagation, semantic segmentation.
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I. INTRODUCTION

W ITH the rise of smart cities, more and more emerging
applications, such as robotics [1], autonomous driving

[2], and 3-D urban modeling [3], pose an increasing demand
for accurate 3-D semantic information to perform precise 3-D
scene analysis and interpretation. Due to recent advancements
in sensor technology, 3-D point cloud data collected by the
laser scanning equipment can provide remarkable details when
describing large-scale urban scenes, making it increasingly
valuable for urban studies. As a basic research topic for 3-D
scene understanding, 3-D point cloud semantic segmentation
can deliver significant semantic insights of scene objects by
categorizing every point within the point cloud. However, unlike
2-D image pixels organized in the ordered grids, 3-D point
cloud is disordered and unequally distributed across a large-scale
3-D space. Besides, scene objects in the point cloud display
variations in structure and size, and they may encounter severe
occlusions, and diverse overlaps or data defects. The aforemen-
tioned objective factors bring a great challenge for 3-D point
cloud semantic segmentation.

In the last few years, deep learning network models have
gained popularity in 3-D point cloud semantic segmentation
due to their powerful capacity of feature learning and parameter
sharing [4]. Many novel or enhanced methods have been put
forward successively, including projection-based methods [5],
[6], [7], voxel-based methods [8], [9], [10], and point-based
methods [11], [12], [13], [14], [15]. In contrast to projection-
based methods and voxel-based methods, point-based methods
circumvent the need for data conversion procedures, such as
point cloud projection and voxelization, which allows deep
learning networks to be applied directly on the raw point cloud.
PointNet [11] directly learned per-point features on the irregular
3-D point cloud data, achieving end-to-end point cloud semantic
segmentation for the first time. However, PointNet lacks con-
sideration of local feature extraction on the point cloud, thus
limiting its ability to handle details and generalize to complex
scenes. To this end, most of the follow-up methods begin to focus
on designing the advanced feature extraction operators to capture
the local geometric structures and details from the point cloud to
improve performance. For example, PointNet++ [12] designed
multiple set abstraction modules to hierarchically aggregate dis-
criminative point features from different subregions. RandLA-
Net [15] proposed a residual aggregation block to capture local
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Fig. 1. Schematic illustration of down-sampling operations in the encoder
of network. (N, d) denotes the number of input points and feature channels,
respectively.

distinctive features of every point by increasing its receptive
fields. Moreover, to improve the processing efficiency of large-
scale scene 3-D point clouds, many existing methods typically
adopt multiple down-sampling operations in the encoder of net-
work, as depicted in Fig. 1, to progressively reduce the number
of input points. Although these methods have shown promising
overall segmentation results, some small or occluded objects that
consists of few points are still hard to be accurately segmented.
The main reasons for this may lie in two aspects: 1) some small
or occluded objects (i.e., the road marking and the telegraph
pole denoted by red circles in Fig. 1) are usually attached to or
overlapped with the adjacent objects that share similar colors or
structures, which can easily make the network confuse them in
the lack of necessary detailed and contextual information and
2) as shown in Fig. 1, some details of object boundaries and
structures are lost during the point sampling process, causing
the networks more difficult to distinguish small or occluded
objects with limited sampled point information. To address the
above issues, we not only construct a fundamental point cloud
feature extraction operator but also introduce a novel network
architecture to effectively exploit multiscale feature propagation
and achieve highly accurate semantic segmentation of 3-D point
clouds.

In fact, multiscale feature propagation is already extensively
utilized in most of 2-D segmentation networks, typically with
the image feature pyramid [16], [17] and spatial pyramid pooling
[18], [19]. It is noteworthy that most existing 3-D segmentation
networks for large-scale point clouds [12], [15], [20], [21], [22],
generally employ a U-shape encoder–decoder network archi-
tecture, which is derived from the classical 2-D segmentation
network of U-Net [23], to exploit multiscale point features
gathered from the encoder to enrich the geometric details of
decoding features with skip connections. However, the normal
U-shape encoder–decoder network architecture only allows the
integration of the same-scale encoded features with the corre-
sponding decoding features at each layer through the simple skip
connection, it fails to achieve effective cross-scale information
interaction to fully leverage multiscale geometric point features
that are essential for distinguishing objects with diverse sizes
in complex scenes. Motivated by the advances in 2-D image
segmentation [24], we refine the normal encoder–decoder archi-
tecture to a nested U-shape architecture (NUA) and ingeniously
apply it in 3-D semantic segmentation for large-scale point
clouds.

In this article, a nested U-shape encoder–decoder deep neural
network, namely PointNest, is proposed to perform multiscale
point feature propagation for 3-D point cloud semantic segmen-
tation. The encoder of PointNest learns and propagates point
features with nested feature aggregation blocks, each of which
captures local complex geometric structures of each point in
a graph-like local region. The multiscale geometric features
learned from the nested blocks between encoder and decoder are
then horizontally and vertically concatenated by compact con-
nections to enhance cross-scale information interaction, which
helps to handle occlusions and boost robustness of network to the
complex scene variances. Our primary contributions are outlined
below.

1) A refined local feature aggregation module of RandLA-
Net is employed as the basic feature aggregation unit
(FAU) to capture local significant geometric features of
every point by expanding the receptive field through two
stacked graph convolution operations.

2) A nested U-shape network architecture is constructed to
enable the extracted multiscale point features to be fused
and propagated across different depths to collect more ge-
ometric details and contextual information for the accurate
pointwise semantic prediction.

3) A deep supervision (DS) strategy is introduced to super-
vise multiscale output predictions to accelerate multiscale
point feature propagation in the whole nested network
architecture for the efficient network training and further
performance improvement.

II. RELATED WORKS

A. Point Cloud Semantic Segmentation Based on Deep
Learning

Recent deep learning-based methods have achieved outstand-
ing performance in point cloud semantic segmentation. The
pioneering work of PointNet [11] directly learned per-point
global features for semantic segmentation by utilizing shared
multilayer perceptrons (MLPs) and the symmetrical function.
However, PointNet handled every point independently without
considering the local structures of point clouds, which makes it
sensitive to noise and limits its applicability in complex scenes.
To overcome it, the subsequent PointNet++ [12] adopted a
hierarchical feature learning framework to extract multilevel
local features with multiple sampling and grouping operators,
but it is still hard to recognize fine-gained local patterns without
considering relations between each point and its neighbors. To
this end, some works [25], [26], [27] built a local graph-like
structure for every point and simultaneously applied an attention
mechanism [28] on its neighboring points, which promotes
the extraction of local geometric features. Despite the above
methods have shown satisfying segmentation performance on
simple 3-D shapes and small-scale point clouds, most of them
are unable to be applied on large-scale point clouds due to the
intensive computational complexity of their network architec-
ture designs. To achieve the efficient segmentation of large-scale
point clouds, SPG [29] converted the raw point clouds into super
graphs before utilizing deep neural network to conduct pointwise
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prediction. PCT [30] took a different approach by preprocessing
the large point clouds into regular voxels, while Boulch et al. [7]
applied CNNs on multiple projected 2-D view images derived
from the large-scale point cloud. To circumvent the need for
computational preprocessing, an end-to-end U-shape network
architecture that is generally utilized in 2-D image segmentation
[31] has been introduced. This U-shape point cloud network
architecture allows for sampling input points layer by layer to
perform feature learning and propagation for pointwise semantic
prediction.

B. Multiscale Feature Learning Based on U-shape Network
Architecture

In the U-shape 2-D image segmentation network [23], [24],
[32], the encoder reduces the size of input images with multi-
ple pooling operators to learn and propagate multiscale pixel
features along the encoder path. The decoder path then re-
stores the feature resolution of encoded images for pixelwise
semantic prediction. The middle skip connections are added
to allow the decoder to access high-resolution features from
the encoder. Based on the U-shape network architecture, many
works are devoted to utilizing multiscale features for 2-D image
semantic segmentation. PANet [32] constructed a bottom–top
connection path to efficiently propagate multiscale features with
better localization from shallow to deep layers. U-Net++ [24]
rebuilt the network architecture of U-Net [23] by embedding
nested convolution blocks in different layers and using densely
connected skip connections to propagate multiscale features
along horizontal direction. As far as 3-D semantic segmentation
for large-scale point clouds, most existing methods [12], [15],
[20], [21], [22] adopt a normal U-shape network architecture that
utilizes simple skip connections to fuse same-scale point features
between the corresponding encoding and decoding layers. They
are limited in their ability to integrate cross-scale information
from encoding and decoding layers at different network depths.
This limitation hinders the capturing of contextual geometric de-
tails necessary for accurate segmentation under complex scenes.
To enhance the ability cross-scale information interaction of the
normal U-shape network, GADH-Net [33] introduced a dense
hierarchical network architecture to achieve cross-scale feature
fusion. Nie et al. [34] constructed a pyramid architecture to
allow multiscale point information to propagate freely through
upward and downward links between layers. RFFS-Net [35]
employed a multilevel decoder in the network architecture to
fuse cross-scale point features from the encoder with directed
skip connections. Besides, some researchers combined different
designed feature extractors to gather multiscale information
to improve the network performance. Most feature extractors
obtain multiscale point features by expanding receptive fields.
PointWeb [36] proposed an adaptive feature adjustment module
to adaptively weight the neighbors of each point and expand
its receptive field according to the density of points. PointSIFT
[37] introduced an orientation-encoding unit to learn and fuse
multiscale features from the neighbors of eight directions.
In addition, some works constructed multiscale graph struc-
tures and leveraged graph convolutional operations to obtain

multiscale features. MSGCNN [38] developed a multiscale
graph convolution operator to realize multiscale feature extrac-
tion over the lattice structure of point clouds. DenseKPNET [39]
proposed a multilevel feature extraction module, which consists
of dense connection-based graph convolution operators with
multiscale kernel points to acquire discriminative contextual
semantic information. Different from above multiscale feature
learning methods, we perform efficient multiscale feature learn-
ing based on a novel nested U-shape network architecture in this
study.

III. METHODOLOGY

In this section, the overview of the network architecture that
learns and fuses deep multiscale point features with nested
FAUs is first presented. Then, the details of the basic FAU
are described. Finally, a DS strategy for the network training is
illustrated.

A. Nested U-Shape Network Architecture

The proposed PointNest adopts a nested U-shaped network
architecture with nested FAUs that are successively connected
between the encoder and decoder paths at different depths. As
illustrated in Fig. 2, the raw point cloud is first input into a
shared fully connected layer to learn per-point feature. Then, the
learned point features are further processed by several encoding
and decoding layers to obtain abstract semantic features along
a U-shape encoder–decoder path.

Along the encoder path, each layer combines an FAU
to gather rich local geometric detailed information of
every point, and a random sampling operation to de-
crease the spatial resolution of point features. After
each encoding layer, a part of points is preserved (i.e.,
(N→N/4→N/16→N/64→N/256→N/512), whereas the point
feature channel is increased to (8→16→64→128→256→512)).
Symmetrically, the decoder path restores the spatial resolution
of encoded features through the nearest neighbor interpolation
and supervises multiscale output predictions in a bottom-to-top
manner. Finally, two shared fully connected layers are intro-
duced to generate semantic prediction labels of input points (N,
nclass), each of which belongs to a specific class.

In particularly, as illustrated in Fig. 3, each FAU propagates
and receives multiscale features from its preceding blocks across
different feature resolutions. Define the output features of a
block in PointNest as Fi,j, where i and j represent the depth and
width of current layer, respectively, so the learned features of the
each block at second layer can be denoted as (1) shown at the
bottom of the next page, whereΨ[,] is the feature concatenation,
FA() is feature aggregation in the block, and DS() and US() are
the down sampling and up sampling, respectively.

Compared with the normal U-shape network architecture,
as described in Fig. 4(a), our proposed network architecture
further inserts nested blocks at different depths, as shown in
Fig. 4(b). In our nested U-shape network architecture, the hi-
erarchical point information collected along the encoder path
can be horizontally propagated to the corresponding decoding
layers through skip connections between nested blocks, so that
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Fig. 2. Diagram of the nested U-shape network architecture. (N, d) below the block denotes the number of input points and feature channels, respectively.

Fig. 3. Diagram of second layer nested blocks in PointNest.

multiscale geometric details can be fully reused and fused for
point cloud semantic segmentation. Besides, the vertical con-
nections denoted by down-sampling and up-sampling arrows are
added to enhance cross-scale information interaction. Notably,
in our NUA, small-scale point features (i.e., F1,1 and F2,1)
generated in the lower network depths generally contain rich
geometric details (e.g., shape and boundary information) of
objects in the point cloud, whereas large-scale point features
(i.e., F4,1 and F5,1) contain more abstracted semantic informa-
tion. Therefore, the cross-scale information interaction is crucial
for integrating small-scale geometric details and large-scale
semantic information during feature encoding, which helps to

Fig. 4. Comparison with the normal U-shape network architecture. (a) Normal
U-shape network architecture. (b) Our nested U-shape network architecture.

achieve accurate semantic prediction of objects at point level in
complex scenes.

B. Feature Aggregation Unit

Although the down-sampling operations used along the en-
coder path can progressively reduce the size of input points to
improve the efficiency of feature extraction, detailed geometric
information can be lost as the spatial resolution of point fea-
tures decreases, which is particularly problematic for incomplete
and small objects with sparse points in the scene. To alleviate

Fi,j =

⎧⎨
⎩
ψ[DS(Fi−1,j)] i = 2, j = 1
ψ [FA(Fi−1,j),DS(Fi−1,j),US(Fi+1,j−1)] i = 2, j = 2 or 3
ψ [FA(Fi−1,j),DS(Fi−1,j),US(Fi+1,j−1), Fi,1] i = 2, j = 4

(1)
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Fig. 5. Diagram of the FAU.

the negative impact caused by the down-sampling operation, a
refined local feature aggregation module of RandLA-Net [15]
is employed as the basic FAU of our proposed PointNest to
capture local rich geometric features over multiscale sampled
points. As illustration in Fig. 5, the FAU mainly consists of two
stacked graph convolution modules (GCMs). In each GCM, 3-D
coordinates (x, y, z) are repetitively introduced and processed
together with the input point features for the local feature
aggregation. Moreover, inspired by the DenseNet [40], we re-
place the residual connection utilized in the original module of
RandLA-Net with a dense skip connection (DSC) positioned
behind a shared MLP layer. This modification enables the FAU
to concatenate all the outputs from two stacked GCMs, thereby
further enhancing point feature propagation and improving the
representation of local complex structures.

The details of GCM are illustrated in Fig. 6, which contains
two key steps: local graph construction and graph attention
pooling (GAP). Given an input point cloud set H = {h1, h2,
…, hN} and its corresponding point features SH = {s1, s2, …,
sN} �RN×d. In the step of local graph construction, for each
input point hi, the GCM first uses a k nearest neighbor algorithm
to search its k-top adjacent points hK = { hij �RN×3 | j =
1,2, …,k} and its corresponding neighboring point features sK
= {sij �RN×d | j = 1,2, …,k} in a 3-D coordinate space. Then,
for every point hi and its k nearest neighboring points hK, the
local graph Gi is implicitly built in feature space as follows:

Gi = (Vi, Ei)

Vi =
{
sij ∪ si ∈ RN×d|j = 1, 2, . . . , k

}
Ei =

{
eij = sij − si ∈ RN×d|j = 1, 2, . . . , k

}
(2)

where Vi and Ei are the node set and edge set, respectively, in
the local graph Gi, - is the element subtraction, and eij is the
edge feature calculated by the directed feature distance between
the reference point si and its jth neighboring point feature sij.

Simultaneously, the relative position encoding (RPE) fol-
lowed by a shared MLP is introduced to get local relative features
sr

ij of the reference point hi by attending its neighboring point
hij, which can be denoted as follows:

sri = MLP ([hi, hj , (hij − hi), ||hij − hi||]) (3)

where hi and hij are the 3-D coordinate points with x-y-z feature
channels, [,] is the feature concatenation, ||·|| is the calculation
of Euclidean distance, and - is the same as described in (2). It is
noteworthy that the local relative features contain rich coordinate
information, which can be integrated to assist the network to
improve the performance. Then, each edge feature eij of the
reference point hi in the local graph is further combined with
the corresponding relative feature sr

ij to obtain the enhanced
edge feature e∗ij as follows:

e∗ij =
[
eij , s

r
ij

]
(4)

where [,] is the same as described in (3).
The step of GAP is utilized to aggregate each enhanced

edge feature e∗ij of the reference point hi to extract its local
discriminative geometric feature from the local graph. To this
end, the powerful attention mechanism [28] is incorporated in
the graph pooling to enable the network concentrate on the most
important part of each enhanced edge feature and capture more
significant neighboring features. To formulate the step of the
GAP, given the set of enhanced edge features E∗ij = {e∗i1,
e∗i1, …, e∗ij}, the shared activation function σ (·) followed by
a Softmax classifier is first introduced to the learn attention score
αij of each enhanced edge feature as follows:

αij = Softmax

(
exp

(
σ
(
e∗ij ,W

))
∑k

j=1 exp
(
σ
(
e∗ij ,W

))
)

(5)

where W�R1×d is the learnable matrix. Then, each enhanced
edge feature e∗ij is multiplied with the corresponding learned
αij and further aggregated as follows:

s∗i =
k∑

j=1

(
e∗ij · αij

)
(6)

where s∗i is the aggregated features of the reference central point
hi in a local graph and · is the dot product. Through a weighted
summation process on edge features in the local graph, the most
important neighboring features are selected and fused into the
reference central point, which enhances its distinguishability.

To further illustrate the capability of the proposed feature
aggregation block, we visualize its process of local feature
extraction on input point clouds in Fig. 7. In Fig. 7, the red point
denotes the reference point feature, the dotted arrow denotes
the direction of information flow, and dotted circles denote the
receptive field of each input point. As seen from Fig. 7, the
red central point receives local geometric details and contextual
information from its k neighboring points after the first GCM
and then its information perception range can be expended to
k2 neighboring points after the second GCM. Therefore, by
stacking two GCMs to process each input point in a local
graph, more useful neighboring information can be collected
in a larger receptive field through the point feature propagation
and aggregation.

C. Deep Supervision

To introduce the DS strategy [41] for the network training,
the proposed PointNest adds 1 × 1 convolution layer followed
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Fig. 6. Details of GCM in the basic FAU.

Fig. 7. Graphic illustration of local feature extraction in the basic FAU.

Fig. 8. Diagram of the DS in PointNest.

by a weighted cross entropy loss function (LWCE) behind each
block along the decoder path, as shown in Fig. 8. The final loss
is calculated by using the output predictions from all depths so
that each branch can be concurrently optimized through back
propagation during the network training. In order to promote
multiscale information propagation and obtain abstracted se-
mantic information for pointwise prediction, a DS loss function
(LDS) is constructed to efficiently supervise the network training
at different depths. The reference LWCE is denoted as follows:

LWCE = −
∑Ns

i
wiyi log(xi) (7)

wi =

∑nclass
m=1Nm

Nm + ε
(8)

where Ns is the number of total sample points, xi and yi are the
per-point prediction vector and ground truth vector respectively,
wi is the class balance coefficient of the ith sample point, nclass

is the number of categories, Nm is the number of sample points
belonging to the mth category, and ε is a constant coefficient
used to avoid minimal denominator and set to 0.02 in this study.

Based on the LWCE, the proposed LDS can be denoted as
follows:

LDS = L1
WCE + μ ·

D∑
d=2

Ld
WCE (9)

where μ is an adjustment factor introduced to balance the two
loss items, D is the number of the network layers and set to 5
in this study, L1

WCE is the output loss after the FAU (F1,5) at
network layer 1, and Ld

WCE is the output loss from the units (i.e.,
F1,5) at deeper network layer d. Different from the normal cross
entropy loss function LCE used only at network layer 1 in most
existing methods [11], [14], [15], the proposed LDS leverages an
LWCE to handle class imbalance and further applies it in other
intermediate network depths to incorporate and backpropagate
the auxiliary multiscale supervision information for the efficient
network training.

IV. EXPERIMENTS

In order to comprehensively verify the effectiveness of our
proposed method, extensive experiments are performed on two
large-scale urban point cloud datasets. Besides, ablation studies
and analysis are also conducted to investigate the impact of
different network designs and hyperparameter settings on the
network performance.

A. Description of Datasets

S3DIS dataset [42]: This dataset comprises six indoor areas,
totaling 271 rooms, and covering a combined area of 6020 m2.
It contains approximately 215 million labeled points, each with
3-D coordinates (XYZ), 3-D spectral information (RGB), and
3-D normalized location information, divided into 13 categories.
During the experiment, the sixfold cross validation strategy [15]
is used for network training and testing. The network input
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TABLE I
QUANTITATIVE RESULTS WITH DIFFERENT METHODS ON S3DIS DATASET (AREA 5) (%)

consists of both the 3-D spatial coordinates (XYZ) and the 3-D
spectral information (RGB) information from the point cloud
data.

Toronto-3D dataset [43]: This dataset is comprised of approx-
imately 80 million points and is divided into four distinct areas,
covering nearly one kilometer of outdoor environments. Each
point in the dataset is labeled into eight categories and contains
3-D spatial coordinates (XYZ) and 3-D spectral information
(RGB). During the experiment, the area 2 of the dataset is
used for testing while others for training. Only the 3-D spatial
coordinates (XYZ) information of point cloud is used as the
network input.

WHU-MLS dataset [44]. This dataset is collected by the
mobile LiDAR scanner in the campus of Wuhan University,
China. It consists of approximately 7.3 million points. Each
point with 3-D spatial coordinates (XYZ) is manually labeled into
seven categories. During the experiment, the dataset partitioning
method for network training and testing refers to [44]. Only the
3-D spatial coordinates (XYZ) information of point cloud is used
as the network input.

B. Implementation Details and Metrics

The proposed deep neural network in this study was developed
on the open-source Tensorflow platform. During the stage of
network training, the learning rate was established as 0.01 and
the number of epochs as 100. To address the GPU memory
limitations in different ablation experiments, the batch size was
adjusted accordingly. During the stage of network testing, the
trained network with best performance was used for the per-
point semantic prediction on the testing data. To enable parallel
training, a fixed set of 40 960 sampled points was fed into the
network. All experiments were carried out on a single NVIDIA
RTX3080Ti GPU, and the neighbor search range k of every point
was set to 16.

To measure the performance of network in a quantitative man-
ner, three standard semantic segmentation evaluation metrics
[43] are adopted in this study, including per-class intersection
over union (IoU), mean intersection over union (mIoU) for all
classes, and overall accuracy (OA), which are calculated as
follows:

IoU =
TP

TP + FP + FN
(10)

mIoU =
1

nclass

nclass∑
i=1

IoUi (11)

OA =
TP
ntotal

(12)

where nclass is the number of categories, Ntotal is the total
number of samples, and TP, FN, and FP are the number of true
positives, false negative samples, and false positive samples,
respectively.

C. Experiment Results and Analysis

Results on S3DIS dataset: Tables I and II give the quantitative
comparison of PointNest with other mainstream methods. In
terms of the area 5, the proposed PointNest has achieved the
highest value for mIoU (68.8%), which are 6.4% and 1.9%
higher than RandLA-Net and NeiEA-Net, respectively. Mean-
while, our network also outperforms others in per-class IoU for
most segmented objects, such as walls, chairs, and boards. In the
test of sixfold cross validation result, the pyramid architecture
proposed by Nie et al. [34] yields the highest value of mIoU,
and the proposed PointNest with the NUA also achieves a
considerable overall segmentation accuracy, demonstrating the
effectiveness of our proposed method.
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Fig. 9. Visual comparison with different methods on the S3DIS dataset.

Fig. 9 presents a visual comparison of results achieved by
DGCNN, RandLA-Net, BAF-LAC, NeiEA-Net, and our pro-
posed PointNest. As shown in Fig. 9, our PointNest obtains
more accurate semantic segmentation results that are more
closely aligned with the ground truth, and the majority of scene
objects are well segmented. Whereas the compared DGCNN
yields incomplete and discontinuous segmentation especially in
the regions marked by red boxes. It struggles with accurately
distinguishing objects with angular structures, such as chairs and
tables, and fully extracting plane structures, such as windows,
doors, and columns. This can be attributed to the limited network

architecture of DGCNN, which hinders its ability to extract
multiscale point features, resulting in suboptimal segmentation
performance. Although RandLA-Net and BAF-LAC employ
the standard U-shaped network architecture to hierarchically
learn multiscale point features for efficient point segmentation
and achieve relatively satisfactory performance, they still lack
rich geometric details to produce accurate and complete results.
NeiEA-Net showcases proficient segmentation outcomes at ob-
ject boundaries by integrating local discriminative features and
entire neighboring points. However, it falls to fully extracting
plane structures, which include elements, such as doors and
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TABLE II
QUANTITATIVE RESULTS WITH DIFFERENT METHODS ON S3DIS DATASET

(SIXFOLD CROSS VALIDATION) (%)

columns, attributed to its deficiency in incorporating overarching
structural information. By contrast, our PointNest stands out
from the other methods by introducing a novel NUA that effec-
tively gathers multiscale geometric information from input point
clouds. This allows the network to capture complete structure
features of scene objects in cluttered indoor scenes, and thus
resulting in more accurate segmentation results.

Results on Toronto-3D dataset: Table III gives the quantitative
comparison between the proposed PointNest and other repre-
sentative methods. We can observe that our network exhibits
superior performance on OA (97.0%) and mIoU (74.7%), sur-
passing RandLA-Net by 2.6% and 3.3%, respectively. Moreover,
our proposed PointNest outperforms most of the other methods
in terms of per-class IoU, particularly in some small-scale cate-
gories, such as road marking, utility line, and pole.

Fig. 10 presents a visual comparison of DGCNN, RandLA-
Net, BAF-LAC, NeiEA-Net, and our proposed PointNest. As
seen in Fig. 10, the proposed PointNest performs significantly
better alignment with the ground truth and produces fewer
classification errors than the other two methods particularly in
the subregions indicated by the red boxes. It becomes apparent
that DGCNN struggles with segmenting small or incomplete
objects with sparse points, including telegraph pole, road mark-
ings, and broken-down cars. This is potentially due to the fact
that these smaller objects are often attached to or overlapped
by other categorical objects that share similar geographical
distributions and topological features and they lack distinct
boundaries. Although RandLA-Net, BAF-LAC, and NeiEA-Net
achieve satisfying segmentation performance on most objects,
the multiple down-sampling operation leads to a shortage of
rich geometric details, which makes them difficult to differen-
tiate between road markings and the road. By contrast, upon
observing the qualitative results, our PointNest outperforms the

compared methods in segmenting small or incomplete objects
and showcases remarkable resistance to nearby interference
under complex scenes.

Results on WUH-MLS dataset: Table IV gives the quantitative
comparison between the proposed PointNest and other advanced
methods, including DGCNN, RandLA-Net, BAF-LAC, and
NeiEA-Net. As given in Table IV, the OA (93.0%) and mIoU
(62.7%) obtained by the proposed method are higher than those
other comparative methods.

Fig. 11 presents a qualitative comparison of DGCNN,
RandLA-Net, BAF-LAC, NeiEA-Net, and the proposed
PointNest. As marked in the black boxes in Fig. 11, some of the
smaller objects, such as pedestrians, are incorrectly classified
by the comparative models. In addition, these models struggle
to precisely and completely segment larger objects, such as
buildings. By contrast, the scene objects are correctly classified
by our PointNest, despite they vary in size and shape. Owe to
the local discriminative feature extraction and multiscale feature
propagation capability of the proposed PointNest, the spatial
context of the scene objects is effectively characterized. Objects
depicted in Fig. 11, including lamps within vegetation, cars
with incomplete shapes, and fences under trees, are accurately
classified by our method despite they are partially occluded.
This robustly showcases the effectiveness of the proposed
method.

D. Ablation Studies

In this section, we conduct extensive ablation studies to
investigate the impact of different network design choices on
the performance of our proposed PointNest. All the ablated
experiments are conducted on the area 5 of the S3DIS dataset.

Ablation study for the main component of network: To verify
the effectiveness of the PointNest, several ablation experiments
are carried out on its three main components including FAU,
NUA, and DS. In the ablation experiments, the FAU can be
replaced by the local feature aggregation module of RandLA-
Net, whereas the NUA can be replaced by the normal U-shape
architecture, and the DS can be replaced by the normal training
manner with cross entropy loss function. Note that the DS is
based on the use of the NUA, and removing the NUA will also
remove the DS.

Table V quantitatively illustrates the results of the ablation
study for main components of PointNest. As given in Table V,
the removal of the basic FAU in model a2 resulted in a small
decline in semantic segmentation performance, with the mIoU
score dropping by 3.8%. When compared with the model a3, the
mIoU score of model a4 delivered an increase of 2.8%, this is
mainly because the nested connections between the basic blocks
in the NUA promote the multiscale information propagation for
the performance improvement. In contrast, the proposed model
a5 with full components achieved best performance with the
mIoU score of 68.8%, thereby demonstrating the effectiveness
of its main components.

Fig. 12 presents the visual comparison of PointNest with
different components. The segmented areas marked by the red
circles indicate that both models a1 and a2 failed to obtain
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TABLE III
QUANTITATIVE RESULTS WITH DIFFERENT METHODS ON TORONTO-3D DATASET (AREA 2) (%)

Fig. 10. Visual comparison with different methods on the Toronto-3D dataset.
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Fig. 11. Visual comparison with different methods on the WHU-MLS dataset.

Fig. 12. Visual comparison of PointNest with different components.
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TABLE IV
QUANTITATIVE RESULTS WITH DIFFERENT METHODS ON WHU-MLS DATASET (%)

TABLE V
ABLATION STUDY FOR MAIN COMPONENTS OF POINTNEST

smooth boundaries for plane structures, such as the door and
board, due to the lack of considering local contextual relation-
ship between neighboring points in the local feature aggregation
module of RandLA-Net. However, it should be noted that even
model a3 was unable to achieve a complete segmentation of
the door, board, and clutter, and its segmentation boundaries
were relatively rough. Due to the adoption of NUA, the model
a4 is able to gather more intricate geometric details, thereby
enhancing the boundary segmentation. In contrast, the proposed
model a5 achieved high-quality segmentation results by lever-
aging both NUA and DS.

Ablation study for the design strategy of the basic unit: To fur-
ther validate the effectiveness of the designed FAU in PointNest,
several ablation experiments are conducted on its three design
strategies, including RPE, DSC, and GAP.

Table VI gives the quantitative results of the ablation study
for different design strategies of FAU. As seen from Table VI,
models b2–4 suffered a significant decline in segmentation per-
formance due to the lack of RPE. The primary reason for this
is that the RPE provides important relative position information
that significantly enhances the local geometric feature repre-
sentation of every input point. When compared with model b1,
model b5 performs significantly better, owing to its effective
utilization and propagation of point features under the effect
of DSC. Furthermore, model b6 also enhances performance
by leveraging GAP to perform reliable and robust neighboring
feature aggregation on each input point. In contrast, the proposed

TABLE VI
ABLATION STUDY FOR DIFFERENT DESIGN STRATEGIES OF FAUS

TABLE VII
ABLATION STUDY FOR DIFFERENT CONNECTION MODES

model b7 yields the best overall performance with full of design
strategies in FAU.

Ablation study for the connection mode of network architec-
ture: To further showcase the effectiveness of the proposed NUA
of PointNest, several ablation experiments are performed on its
different connection modes. The ablated networks with different
connection modes are presented in Fig. 13.

As given in Table VII, due to the absence of information
interaction between the cross layers, the use of only horizontal
links in the nested blocks of model c1 results in the gradual loss
of significant geometric detail information during the multiscale
feature propagation process. Hence, model c1 delivered the
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Fig. 13. PointNest with different connection modes. (a) PointNest c1. (b) PointNest c2. (c) PointNest c3. (d) PointNest c4.

Fig. 14. PointNest with different connection modes. (a) PointNest d1. (b) PointNest d2. (c) PointNest d3. (d) PointNest d4.

poorest performance with a low mIoU score of 38.5%. Despite
the inclusion of downward links, model c2 was still unable to
achieve satisfying results due to the limited point information
increment caused by the successive down-sampling operations.
By incorporating both horizontal and upward links, the model
c3 can propagate and receive more multiscale point information
as the resolution of point features gradually increases during
the successive up-sampling operations. Therefore, it obtains a
relative considerable result. In contrast, our proposed model c4
comprehensively incorporates all types of links to sufficiently
capture geometric details through cross-scale up-sampling and
down-sampling operations, thereby enhancing the recognition
ability of complex objects and obtaining the best segmentation
performance.

Ablation study for the network depth: In order to explore the
impact of network depth on the performance of PointNest, sev-
eral ablation experiments are performed on its different network
depths. All ablated networks are set as: PointNest with depth 2
(d1), PointNest with depth 3 (d2), PointNest with depth 4 (d3),
and PointNest with depth 5 (d4). The ablated networks with
different network depths are shown in Fig. 14.

Table VIII gives quantitative results of ablation study for dif-
ferent network depths. As can be seen in Table VIII, the score of
mIoU shows an increasing trend as the network depth increases.
This is mainly because the feature learning ability of the network
is enhanced with an increase in depth. Furthermore, model d4
still achieves a satisfying performance when the network depth is
set to 4. It is worth noting that the number of parameters in model
d3 is only about a quarter of that in model d4. Our proposed
model d4 achieves the highest mIoU score of 68.8% when the
network depth is set to 5. Due to the computational memory
limitation, we are unable to perform ablation experiments on
the network with deeper depths.

TABLE VIII
ABLATION STUDY FOR NETWORK DEPTH OF POINTNEST

TABLE IX
RESULTS OF POINTNEST WITH DIFFERENT LOSS FUNCTIONS

E. Loss Function Analysis

To further verify the effectiveness of the proposed deep su-
pervision loss function LDS, several representative loss functions
are selected to perform comparative experiments on the S3DIS
dataset, including the LCE loss, the LWCE loss, and LCE+DS

loss.



9064 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 15. Training process of PointNest with different loss functions. (a) Training loss value curve. (b) Training mIoU value curve.

TABLE X
DIFFERENT MODEL SIZE AND EFFICIENCY COMPARISON

Table IX gives the quantitative comparison of the proposed
method with different loss functions. As given in Table IX,
PointNest with our proposed LDS loss outperforms the second-
best method by 3.3% in the mIoU score. PointNest utilizing
either LCE or LWCE, solely oversees the output prediction
signal from the nested blocks in the first layer. This method,
however, falls short of fully harnessing the output predictions
from intermediate layers to effectively enhance the ultimate
prediction outcomes throughout the network training process.
Consequently, this limitation leads to a decline in the overall
performance.

Fig. 15 further presents the visual comparison of the training
process of PointNest with different loss functions. As seen from
Fig. 15(a), when the network training reaches approximately 20
epochs, the use of LCE+DS and our proposed LDS loss with DS
strategy results in a faster convergence speed compared with
the other two loss functions. However, their final loss values are
unable to reach lower levels as they calculate multiscale output
predictions, and their initial loss values are already high. Simul-
taneously, as depicted in Fig. 15(b), our proposed LDS loss yields
a more rapid increase in mIoU value when the network training
progresses to approximately 20 epochs, which further demon-
strates the effectiveness of the proposed LDS loss function.

F. Computation Efficiency Analysis

To analyze the computation requirements and efficiency of
the PointNest, we quantified the number of trainable network

parameters and calculated the floating-point operations (FLOPs)
that measures the complexity of network. Besides, we counted
total inference time of the testing samples on the S3DIS dataset.

As given in Table X, although DGCNN consumes the lowest
memory requirement of only 1.84M parameters, it demands a
peak processing load of 6.79×108 FLOPs and yields poorest per-
formance. In contrast, the proposed PointNest consumes modest
computational resources but achieves best overall performance.
Despite having the lowest model complexity, the inference time
of the network testing using our proposed model is the longest,
as it involves frequent addition and concatenation operations
in the nested block, leading to increased memory access time.
Furthermore, due to the variations in network architecture im-
plementation, it is not possible to compare the inference time of
DGCNN with other methods that have been tested consistently.

V. CONCLUSION

In this study, we propose a novel nested U-shape deep
network, PointNest, for semantic segmentation of 3-D point
clouds in both indoor and outdoor environments. The proposed
PointNest utilizes horizontal and vertical connections to link up
the basic FAUs at different layers. The nested U-shape network
architecture facilitates the propagation and fusion of supervised
multiscale information from the encoder path to the decoder
path, which enables the network to comprehensively exploit hi-
erarchical geometric features and further enhance the cross-scale
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information interaction for the accurate pointwise prediction.
Both quantitative and qualitative experimental results reveal
that the proposed PointNest can effectively leverage multiscale
information to distinguish complex objects within point clouds.
Besides, the ablation studies and analysis on different network
designs and choices show substantial improvements in perfor-
mance. Our proposed method can directly process large-scale
point clouds and has the potential to provide valuable 3-D seman-
tic information for various real-world applications, such as urban
planning, 3-D semantic map construction, and environmental
monitoring.

In the future, we will continue to work on the refinement of our
proposed nested U-shape network architecture and try to reduce
the computational resource consume with the model pruning
technology. By using fewer critical nested units and relatively
lower network layers to achieve a more lightweight network
for the efficient point cloud semantic segmentation. Moreover,
the weakly supervised semantic segmentation on point cloud
is another research direction, which can realize the semantic
prediction of large-scale point clouds with a small number of
manually labeled point samples and contributes to the network
model migration.
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