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SqUNet: An High-Performance Network for
Crater Detection With DEM Data

Yagqi Zhao

Abstract—Identification of craters plays an essential role in
planetary exploration. This article proposes a new neural network,
called Square U-Net (SqUNet) for automatic detection of craters
using digital elevation model (DEM) images of lunar and Mars. The
SqUNet uses an embedded U-Net architecture, which includes an
encoding and a decoding structure, to replace the traditional con-
volution module. This kind of structure can significantly improve
the feature learning ability. Moreover, a skip link is added inside
the embedded U-Net structure to retain the feature information of
the original map. We compare our SqUNet model with six other
state-of-the-art crater detection models through experiments. The
experiments show that the SqUNet can effectively improve the
recall rate and the precision of detection. Our model can not only
discover new craters but also improve the accuracy of crater seg-
mentation. In addition, the testing results on the Mars DEM dataset
have also demonstrated the strong generalization and robustness of
the SqUNet network model. It holds significant potential for various
applications, providing valuable support for lunar exploration and
geological research.

Index Terms—Crater detection, deep learning, planetary
exploration, U-Net.

1. INTRODUCTION

UNAR craters are the dominant features on the lunar
L surface, and provide essential information about lunar mor-
phology and its evolution. The distribution of craters provides
valuable clues to reveal the aging process of geological structures
[1], and is also one of the important factors for landing-site
selection of lunar probes [2], [3], [4]. The traditional methods
[1], [5] rely on planetary scientists to manually mark the craters
one by one on the remote sensing images of the lunar surface,
which is very time-consuming and labor-intensive. It is also
challenging to cover all areas of the lunar surface. Therefore,
a high-performance and high-precision method for automatic
detection of craters is very necessary.

Currently, some automatic detection methods for lunar craters
was developed. These methods can be divided into two cate-
gories: 1) Methods based on the optical images, such as Hough
transform [6], genetic algorithm [7], pattern recognition [8],
and other methods. 2) Methods based on the digital elevation
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model (DEM) images, such as machine learning methods [10],
morphological methods [11], and convolutional neural networks
[12], [13]. Since the optical images are easier to obtain and
have higher resolution than DEM images, most crater detection
methods are based on optical images. However, optical images is
often disturbed by unconstrained factors such as solar illumina-
tion, while the complexity of the terrain on the planetary surface
increases the degree of lighting interference. As a result, this
further complicates the detection of impact craters [9]. However,
the appearance of craters in DEM images is not affected by the
direction of incoming sunlight, which makes it easier to train the
model for crater detection. This article will use the DEM images
to detect lunar craters.

With the popularity of computer vision, deep learning has
been widely used in crater detection tasks. Deep learning al-
gorithms based on convolutional neural networks (CNNs) have
achieved great success in both the segmentation and detection
tasks of remote sensing images [14], [15]. For example, Long
et al. [16] introduced the fully convolutional neural network
(FCN) to solve the pixel-level segmentation problem to perform
end-to-end image segmentation tasks, which was superior to
other algorithms at that time. The FCN uses the upsampling de-
convolution method to restore the pixel-level output feature map.
Ronneberger et al. [17] proposed a classical encoder-decoder
network U-Net, which consists of an encoder path to capture
the high-level semantic features and a corresponding decoder
path to achieve the accurate restoration of segmentation targets.
The skip connections between layers can improve the segmen-
tation performance of the images and overcome the problems of
gradient disappearance and network degradation.

In recent years, there have been numerous advancements in
the field of target segmentation networks. The DeepLabv3+
proposed by Chen et al. [18] has solved many problems that
traditional image segmentation methods face, such as edge
aliasing, noise, and rough segmentation results. In addition, due
to its high efficiency and high accuracy, DeepLabv3+ can be
applied to many computer vision tasks, such as object detection,
scene understanding, and autonomous driving. Some researchers
have also applied DeepLabv3+ to medical image segmentation
tasks, achieving good results. Li et al. [19] proposed the A2-FPN
model, which utilizes multiscale feature extraction and adaptive
pooling operations for semantic segmentation of high-resolution
remote sensing images, to achieve more accurate classification
results. Chen et al. [20] proposed a novel medical image segmen-
tation model called TransUNet, which combines the advantages
of Transformer and UNet and exhibits better performance and
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generalization ability. TransUNet provides important references
and inspirations for the research and application in the field
of medical image segmentation. Swin-UNet proposed by Cao
et al. [21] is a semantic segmentation model based on Swin
Transformer. It combines the advantages of both UNet and Swin
Transformer [22], and processes feature maps in a hierarchical
manner, significantly reducing computational complexity and
the number of parameters while improving segmentation ef-
ficiency. Swin-UNet has achieved excellent segmentation re-
sults on multiple public datasets. These network models have
overcome limitations of traditional methods and achieved re-
markable performance and wide-ranging applications. However,
these models have not yet been applied to the segmentation of
lunar craters. We will further explore their effectiveness within
the context of lunar crater analysis.

In addition to the aforementioned advanced target witnessed
the emergence of several competitive network models. These
models have made significant contributions to the domain of
lunar crater segmentation, providing our innovation with new
perspectives and avenues to explore. Silburt et al. [12] trained a
CNN architecture that included a U-Net model for edge segmen-
tation and a template matching algorithm for crater extraction.
They successfully discovered about 45% of new craters in the
test dataset of lunar DEM images. The model was also migrated
to detect the impact craters on the Mercury surface and correctly
identify about 70% of craters. However, the U-Net network
layers they used are relatively shallow, resulting in insufficient
learning ability for feature maps and poor segmentation ability
for crater contours. Lee [23] used the U-Net model trained on the
lunar DEM images by Silburt to test the DEM images of Mars,
and achieved a recall rate of 67% and a precision of 78%. To
improve the recall and precision of crater identification, Wang et
al. [24] proposed a new CNN structure based on U-Net, called
Effective Residual U-Net (ERU-Net), which uses the residual
convolution blocks instead of traditional convolutional blocks.
Their model achieved 81.2% recall and 75.4% precision for
crater identification on the training dataset of 30 000 DEM im-
ages of the lunar surface. Mao et al. [25] combined a complemen-
tary strategy with the U-Net detecting lunar impact craters. Their
work underscores the merits of integrating multiple techniques
and data sources, showcasing the potential of this approach in
augmenting the accuracy and reliability of lunar crater detection
tasks. Jia et al. [26] proposed an automated algorithm named
Nested Attention-Aware U-Net (NAU-Net) based on UNet++
architecture and attention networks for the detection of lunar im-
pact craters. Their network employs nested intensive attention-
aware connections and profound supervision, achieving 79.1%
recall and 85.6% precision on the lunar DEM image dataset. Wu
et al. [27] proposed a simplified full-scale skip connected UNet
termed SUNet3+ to achieve fast and accurate crater detection
on Mars surface with DEM data. The proposed architecture
achieved a recall rate of 82.2% and an accuracy of 84.9%.

The aforementioned algorithms for lunar crater detection
made some minor modifications to U-Net architecture, such
as adding extra convolutional layers or utilizing pretrained en-
coders. These modifications have get relatively good segmenta-
tion output for lunar crater detection. However, they still fail to

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

effectively capture the complex features of the craters, and the
precision and performance is still limited.

To improve the recall and precision of crater detection, we
explore a new embedded U-Net structure, called Square U-Net
(SqUNet), which uses an embedded U-Net architecture instead
of the traditional convolution module. The encoding structure
and decoding structure are used in each embedded U-Net struc-
ture, to greatly enhance the capability of extracting multilevel
features. At the same time, a skip link is added in the output
part to retain the original feature map information. The main
contributions of this article are as follows.

1) A high-performance crater detection network—SqUNet.
SqUNet uses an encoding and decoding structure instead
of the traditional convolution module, which enables the
network to refine features at different levels, so that the
recall and precision of lunar impact crater detection is
significantly improved.

2) We developed an efficient workflow for end-to-end crater
detection on DEM data.

3) We validated the effectiveness of the U-Net module
through ablation studies.

4) The high performance of SqUNet is verified by comparing
with six other state-of-the-art algorithms. The experimen-
tal results showed that SqUNet had the highest recall
(87.5%) and precision (80.7%), and the smallest error for
identifying lunar craters.

5) We showed generalization of SqUNet to Martian crater de-
tection, proving its applicability to other planetary bodies.

The rest of this article is organized as follows. In Section II, we
describe the methodology, including data pre-processing meth-
ods, network structure, and crater extraction algorithms in detail.
In Section III, we conducted experimental comparisons between
SqUNet and other state-of-the-art semantic segmentation algo-
rithms. We also compared SqUNet with several advanced algo-
rithms specifically designed for crater detection. Furthermore,
validation experiments were performed on the Mars dataset to
evaluate the performance of SqUNet. Section IV provides some
discussion and analysis. Finally, Section V concludes this article.

II. METHODOLOGY

A. Data Preparation

In this work, the downsampled DEM image is from the lunar
Orbiter Laser Altimeter on the lunar Reconstruction Orbiter
(LRO) and the Terrain Camera on SELENE lunar Orbiter. The
latitude range is —60-60 degrees, and the longitude range is
0-360°. This DEM (see Fig. 1) is a PlateCarree projection with
92160 x 30720 pixels and a resolution of 118 m/pix (256 pixels/
degree) [28].

We use two existing publicly available crater catalog datasets.
The first one is the global craters dataset with diameter larger
than 20 km labeled by Head et al. [1]. The second one comes
from the global crater dataset with diameter of 5-20 km, pro-
vided by Povilaitis et al. [5]. Both catalogs have relatively strict
or conservative artificial labels for craters. Each catalog contains
the longitude and latitude of the craters as well as their diameter
size. We combine the two datasets and call the combined catalog
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Fig. 1.

TABLE I
DATASET OF LUNAR CRATERS

Source Number of Craters ~ Diameter range
Head 4301 >20(km)
Povilaitis 19,335 5-20(km)

Head-LROC [29]. The crater statistics of the two datasets are
shown in Table I.

We randomly crop the merged images (catalog Head-LROC)
into square regions with minimum of 500 pixels (59 km) and
maximum boundaries of 6500 pixels (770 km), We downsam-
pled these images to 256 x 256 pixels to fit the network input
size. Then, the Cartopy Python package [30] is used to convert
these images to an orthographic projection to avoid noncircular
craters at high latitudes due to image distortion. Here, Ortho-
graphic projection treats the moon as a sphere and gradually
unfolds it from a single point to generate a map. In the process
of the orthographic projection conversion, the original image
often will become a nonsquare image. So we fill some zeros on
the boundary to make it a square image, such as the black bars on
the left images in Fig. 2. Finally a one-pixel-wide circle marks
the crater target in each corresponding label map. The radius
and center coordinates come from the physical location and
diameter of the craters in the Head-LROC directory. We focus
on the craters with radius of 5—40 pixels, and the corresponding
diameter is 2.304-23449.684 km.

With the abovementioned preparation, we randomly gener-
ated 30 000 training datasets, 3000 validation datasets, and 3000
test datasets. Each data set contains a cropped DEM image and
a corresponding label image. The position and size information
of the crater in the label image is also preserved.

B. SqUNet Network Structure

From the visual features of the crater data, it can be seen that
crater images do not have very complex texture features like
natural scene data. At the same time, crater detection is mainly
aimed at distinguishing craters and background images, which
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Fig. 2.

Cartopy processed pictures and the label maps.

is a typical binary classification recognition task. At present,
U-Net [17] is widely used in the target recognition task of binary
classification. Therefore, in the following crater detection task,
we perform the crater recognition based on the U-Net network.

As shown in Fig. 3, the entire network architecture consists
of an encoder (left) and a decoder (right), connected by multiple
layers of skip connections. The encoder extracts and encodes
features from the input image. These features contain the spatial
information about objects in the input image. In the encoder
part, we use a max pooling operation to downsample the output
feature map of each unit. The pooling size is 2 x 2, and the fea-
ture map size is reduced to half of the original size. The decoder
decodes the features obtained by the encoder into segmentation
masks. It usually contains upsampling layers to upscale the
feature maps to the same dimensions as the input image. In the
decoder part, a 3 x 3 deconvolution with stride 2 is used as an
upsampling layer to enlarge the size of the feature map.

In the U-Net network, the U-shaped encoding and decoding
structure plays a role in feature optimization for image features.
The multilevel feature maps of the encoder hold different levels
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Fig. 3. Network structure of SqUNet.

of feature information. Therefore, different levels of feature
maps are used to extract and represent the contextual information
at different levels of the image. Shallow feature maps typically
contain lower-level features, such as crater rims. These shallow
features can be used to learn about the shape of the crater. The
deeper feature maps usually contain higher level features, such as
the general information of craters, which can be used to identify
and classify objects. For most semantic segmentation tasks,
the encode—decode structures are commonly used to extract
rich multiscale spatial information, thus, further improving the
image segmentation effect. Therefore, in order to strengthen the
role of the U-Net encoder—decoder structure in the model, we
designed an embedded SqUNet structure based on the U-Net
network. It uses U-Net as the network skeleton, and uses an
embedded U-shaped encoding and decoding structure to replace
the traditional convolution module, as shown in the red arrow in
Fig. 3. The embedded U-Net, detailed in the low part of Fig. 3,
uses the encoding and decoding structure in each convolution
module to greatly optimize the learning ability.

Due to pooling calculations of the semantic segmentation
model, it is usually difficult for low-resolution feature maps to
fully restore the information of high-resolution feature maps
through upsampling calculations. The introduction of skip con-
nections plays a role in transferring feature maps and can opti-
mize the convergence ability of the network. Therefore, in the
embedded U-Net structure, we use the skip link to transfer the
feature map of the encoding part to the decoding part, so that the
original feature information of the crater image is supplemented,
the original feature map of the crater can be restored to the
greatest extent in the decoding part.

As shown in Fig. 3, each convolutional module is linked to
an embedded U-Net structure, which contains three convolu-
tional layers, a 2 x 2 maxpooling layer, and a 2 x 2 bilinear

32x32x896x2

64x64x448x2 128x128x224

32x32x896

> 3"3conv+BN+Relu

h:Height of the feature map
w:Wide size of the feature map
(here h=w)

c:Channel of the feature map
up(bilinear interpolation)

2"2MaxPooling

1

interpolation upsampling layer. Each convolutional layer has
filters, and each filter uses a 3 x 3 padded convolution followed
by the Rectified Linear Unit.

The network depth of the original U-Net is 5, and the number
of initial filters is 64. The SqUNet network for lunar crater
identification has a depth of 5 and an initial filter number of 112.
After the last convolution operation is completed, the number
of channels in the output feature map is adjusted to 1 through
a 3 x 3 convolution layer, and then the output is activated by a
sigmoid function to obtain the final output image.

C. Crater Extraction

Normalize a 256 x 256 pixel DEM image by subtracting the
mean and dividing by the standard deviation for each channel,
such that the output data follows a normal distribution with
a mean of 0 and a standard deviation of 1. Then, input the
normalized image into the SqUNet network for processing, a
crater edge segmentation map with 256 x 256 pixels will be
output, as shown in Fig. 4(c). Then, we will use the template
matching algorithm of scikit-image [31] to extract the posi-
tion and size of the crater from these segmented edges. The
threshold 0.1 is set to get a binary predicted target output. The
pixels with intensity greater than 0.1 are set to 1, and the rest
are set to 0. With the matching threshold of P,,, rings with
radius range of 540 pixels were iteratively generated using the
scikit-image match-template algorithm. The rings larger than
the matching threshold was classified as a crater. We evaluated
various metrics on the test dataset when the matching thresholds
P,, = 0.3 ~ 0.8, as shown in Table II. It can be seen that when
P, increases, the accuracy values increase, while the recall
values decrease. When P,, = 0.8, a high precision of 96.2%
is achieved, and the errors for Error;,, Error;,, and Error,. are



ZHAO AND YE: SqUNet: AN HIGH-PERFORMANCE NETWORK FOR CRATER DETECTION WITH DEM DATA 8581

(b) (© (d (©) ® (€] () () (O]

Fig.4.  Model performance comparision on test datasets. (a) Origin images. (b) Ground-truth labels from origin images. (c) Segmentation results from the SqUNet.
(d) Detection results of SqUNet. (e)—(j) Detection results with other networks. (Red circles: Missed craters, blue circles: correctly identified craters, green circles:

new craters).

TABLE II III. EXPERIMENT
RESULTS OF DIFFERENT PM ON THE TEST DATASETS
A. Experiment Set

Metric 03 0.4 0.5 0.6 0.7 0.8 ) ) )

This experiment is based on the PyTorch [32] framework.

Recall ~ 954% 934% 87.5% 728% 452% 15.9% PyTorch is an open source machine learning framework. It is

Precision 33.2% 60.1% 80.7% 89.1% 92.9%  96.2% easy to debug, has automatic differentiation, and a big commu-

nity. It is widely used in both academic research and industry

Flscore 49.3% 73.1% 82.8% 80.1% 60.8% 27.3% At { :
applications. The hardware operating system is ubuntu, and an

F2-score  69.4% 84.1% 852% 75.6% 504% 19.1% . . .

’ ’ ’ ’ ’ ’ NVIDIA GeForce RTX 3090 graphics card is used for training.
Erron, 13.5% 113% 89% 79% 76% 6.7% In model training, we use AdamW as the optimizer, the learning
Erron, 13.6% 119%  84%  82%  7.6%  62% rate is 0.001, the weight_decay is 0.0001, and the loss function is

set to cross-entropy loss. The number of iterations in the network
is set to epoch 10 and the batch size is 3. During the experiment,
The bold values indicate th iority of the results of 1 evaluati . S

© bo'c va ues Jdicale e superiority of the resuts of severa’ evauation we record and save the best model in the validation dataset, and

indicators when Py, = 0.5. i
use this model to evaluate on the test dataset.

Error, 10.4%  8.7% 6.8% 7.0% 6.6% 5.7%

the smallest. F1 provides a balance between precision and recall ~ B. Evaluate Metrics

Valu&'as.. The optimal F1 score is 82.8% when P, = 0.5, with Let P be the precision and R be the recall, which are calculated
precision at 80.7% and recall at 87.5%. The errors (Error;,, by Formulas

Error;,, and Error,.) are relatively small, with values of 8.9%,

8.4%, and 6.8%, respectively. F2 score emphasizes recall more, .
and the best F2 score of 85.2% is achieved when P,, = 0.5. P=T, /(T + F) 3
Therefore, P, = 0.5 is set in the following. R=T,/(T,+F,) 4)

The extracted craters is recorded as (x;, y;, 7;), and the marked

impact crater by experts is recorded as (Z, §/;, ;). The following  where T, are true positives, representing the correctly identi-
limitation can obtain the optimal F1-score: fied craters (blue circles in the figure), F), are false positives,
representing the craters that do not match the real craters in the
prediction result (green circles in the figure), and F, are false
(z; — iﬁj)2 + (y; — gj)ﬂ /[min (r;, pj)]Q <D, (1) negatives, representing missed craters (red circles in the figure).
Recall tends to be generally lower when the precision is higher,
abs (r; — ;) /min (r;, #;) < D,. (2) and vice versa. To balance precision and recall, we use another

parameter F-score (Fg), defined as

Here, D, , = 1.8 and D, = 1.0 are hyperparameters [12]. Fz=(1+pB%)xPxR/(B*xP+R). 3)
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TABLE III TABLE IV
ABLATION EXPERIMENTS ON EMBEDDED U-NET MODULE COMPARISON OF SQUNET AND OTHER SEGMENTATION MODELS
Embedded U-Net FPS  Recall Precision Fl-score F2-score Metric Swin-unet ~ Transunet DeeplabV3+ A2FPN  SqUNet
X 236 68.5% 75.8% 70.5% 68.9% Recall 44.6% 64.1% 56.4% 59.1% 77.8%
11 0, 0, 0, 0, 0,
W 253 74.4% 76.2% 74.2% 74.1% Precision 83.9% 77.9% 80.5% 78.3% 79.1%
— — . Fl-score 55.6% 68.5% 64.3% 674%  784%
The bold values indicate the superiority of the results of several evaluation
indicators after adding the embedded U-Net modules. F2-score 49.2% 66.5% 60.0% 62.1% 78.1%
Errom, 9.5% 10.5% 11.2% 10.9% 9.3%
Setto 5 =1 when‘ precision and Recall are equally important. Error, T04% T03% T02% 07%  99%
The formula for F1 is as follows:
Erron, 8.0% 8.4% 8.3% 8.2% 7.9%
Fy=2xPxR/(P+R). (6) FPS 321 345 309 325 255

In this experiment, a higher recall rate is more preferred
because more craters are expected to be found, and 5 = 2 is
set to obtain the F2 formula as follows:

F,=5xPxR/(4xP+R). 7

In addition to the essential evaluation indicators for crater
identification, the accuracy of the location and size of craters
is also an important indicator for evaluating models. The lati-
tude error (Error;,), longitude error (Error;,), and radius error
(Error,.) of the identified craters are calculated by the following
formulas:

Error;, = abs (lo, — loy) x 2/ (rp, + 1) (®)
Error;, = abs (lay, — lay) x 2/ (rp + 1) )
Error, = abs (1, —ry) X 2/ (rp + 1¢) (10)

where lo,, and lo, are the longitude values of the predicted crater
and the real crater, respectively. la, and la, are the latitude values
of the predicted crater and the real crater, respectively. 1, and
are the radius values of the predicted crater and the real crater.

To evaluate the speed of crater detection using neural network,
we introduced the concept of frames per second (FPS). FPS
refers to the number of picture frames that the model processes
per second and is used as a measure of time. A higher FPS value
indicates that the model is capable of detecting more pictures
per second, resulting in a faster detection speed. Therefore,
FPS serves as an indicator to assess the speed of the model’s
detection.

C. Quantify Analysis and Visualize Results

We use lunar DEM images to generate a small dataset, which
contains 3000 training datasets, 300 validation datasets, and 300
test datasets. To verify the performance of the embedded U-Net
module, we train 5 iterations on the small dataset. Table III shows
that the performance of detecting lunar craters has been signif-
icantly improved after adding the embedded U-Net modules,
although the detection speed was slightly reduced. For example,
the recall rate, f1 score, and 2 score increased by 5.9%, 3.7%,
and 5.2%, respectively, which validates the effectiveness of
the model.

We compared SqUNet with four other advanced target seg-
mentation networks, including Swin-unet [21], Transunet [20],
DeeplabV3+ [18], and A2-FPN [19]. The experimental results

are shown in Table IV. The experimental results show that
SqUNet has better overall performance than the other models,
which confirms that the U-Net’s encoder-decoder structure is
more suitable for segmenting lunar craters.

We choose six other competing models for comparison,
namely DeepMoon [12], ERU-Net [19], D-LinkNet [14],
UNet++ [33], NAU-Net [26], and SUNet3+ [27]. These
six network models are all relatively recent and competitive
architectures in the field of crater detection. Each of these
models has been meticulously designed and refined for the
specific purpose of crater detection. We set the initial number
of filters to 112 in this experiment, and all models use the same
dataset (30000 training datasets, 3000 validation datasets,
and 3000 testing datasets). Quantitative analysis effectively
demonstrates the effectiveness and robustness of the algorithm
proposed in this article. The comparison results are shown
in Table V. The experimental results show that the SqUNet
proposed in this article has a significant improvement in the
recall, and the improvement of Fl-score and F2-score proves
the high performance of the model. Compared with the other six
models, SqUNet has smaller values on the three indicators of
Error;,, Error;,, and Error,., indicating that the model proposed
in this study exhibits smaller errors in the location and size of
segmented craters compared to the real craters. This finding pro-
vides evidence for its higher accuracy. Therefore, the embedded
encoder—decoder structure in each feature extraction module can
strengthen the overall learning capability and multilayer feature
extraction ability, to get better performance of crater extraction.

At the same time, we performed a visual comparison, as
shown in Fig. 4. The red circles indicate missed craters, the
blue circles indicate correctly identified craters, and the green
circles indicate new craters. The first row of images indicate that
SqUNet network model successfully detects all the craters due to
its comprehensive feature extraction capability. In contrast, the
other six models have missed some craters. In the second row,
it is evident that SqUNet outperforms the other six networks in
discovering more new craters. This is mainly attributed to the
model’s adoption of a deeper network architecture, enabling it to
better capture small, blurry, or concealed craters. The third row
shows that SqUNet exhibits fewer missed craters. This indicates
that the model has a higher recall rate and accuracy. From the
fourth row, it can be seen that our network model surpasses



ZHAO AND YE: SqUNet: AN HIGH-PERFORMANCE NETWORK FOR CRATER DETECTION WITH DEM DATA

8583

TABLE V
COMPARISON OF DIFFERENT COMPETING MODELS ON LUNAR DEM DATASETS
Metric DeepMoon D-LinkNet ERU-Net UNet++ NAU-Net SUNet3+ SqUNet
Recall 78.1% 69.5% 81.3% 74.1% 76.4% 82.7% 87.5%
Precision 76.8% 71.7% 72.9% 81.7% 83.1% 82.9% 80.7%
Fl-score 77.4% 70.6% 76.9% 82.4% 79.6% 82.8% 82.8%
F2-score 77.8% 69.9% 79.5% 83.4% 77.7% 82.7% 85.2%
Erron, 9.3% 11.0% 9.0% 9.5% 9.6% 9.0% 8.9%
Errony, 9.1% 9.2% 7.7% 10.7% 10.0% 8.9% 8.4%
Error, 7.5% 9.2% 7.7% 9.6% 8.2% 7.4% 6.8%
FPS 29.3 16.7 13.14 18.0 27.0 11.2 25.9

The bold values represent the results of each evaluation indicator of SqUNet.

the other six in detecting overlapping or mutually inclusive
craters. This is mainly attributed to the enhanced U-shaped
encoder—decoder structure for extraction of multilayer features.

D. Generalization Experiment

In order to further verify the generalization ability of SqUNet,
we generated a small dataset using Mars DEM images. We
utilized the largest and most comprehensive Mars crater catalog
database, known as RH2012 [34], as the annotation labels. This
catalog comprises statistical data for 384 343 impact craters
with diameters exceeding 1 km. For each crater, the cata-
log includes corresponding latitude, longitude, diameter, and
other determinable relevant information. Since Martian craters
are primarily distributed within latitude 0°~60° and longitude
—30°~30°, we created the dataset within this region. The dataset
consisted of 3 000 training samples, 300 validation samples, and
300 testing samples. We trained SqUNet on the training dataset
for 10 iterations and evaluated its performance on the testing
dataset. As shown in Fig. 5, the results demonstrate that SQqUNet
trained on the small dataset of Mars DEM can identify 87.0%
of craters in the testing dataset with an accuracy of 84.8%, and
Fl-score = 85.9%, F2-score = 86.6%.

To further validate the robustness of our model, we utilized
the SqUNet network model to conduct crater detection in three
distinct regions on Mars: 1) Longitude (0~30°), Latitude
(0~30°); 2) Longitude (0-30°), Latitude (—30~0°); and 3)
Longitude (30~60°), Latitude (—30~30°). They are part of
the Arabia Terra, Noachis Terra, and Sabeaer Terra regions,
respectively. We randomly selected 300 DEM images from each
region and performed detection using the trained model. The sta-
tistical results of all DEM images are presented in Table VI. Our
SqUNet model achieved consistent results in the three regions,
with precision of 84.0%—84.6% and recall of 85.4%—88.5%.
The lower recall rate in the region with longitude 30-60 ° and
latitude —30-30° is primarily due to the complex terrain of
Sabeaer Terra, which includes numerous mountains and valleys.
However, even under these challenging geological conditions,
the model still ensures a recall rate of 85.4% for most impact
craters. For other regions, both precision and recall exceed 84 %,
further confirming the effectiveness of our model.

Lattude

Fig. 5. Crater prediction and extraction results on Mars DEM images (red
circles: Missed craters, blue circles: Correctly identified craters, green circles:
New craters.). (a) Ground-truth. (b) Segmentation results. (¢) Results on SqUNet.

TABLE VI
EVALUATE METRICS OF SQUNET IN FOUR REGIONS

lon(0~30)  lon(0~30)  lon(30~60)

Evaluate metric ~ 1at(0~30)  lat(-30~0) lat(-30~30)
Recall 86.5% 88.5% 85.4%
Precision 84.0% 84.6% 84.0%
Fl1-score 76.0% 68.8% 75.5%
F2-score 76.9% 67.7% 78.5%
Erron, 6.8% 6.9% 7.1%
Erron, 6.8% 6.8% 7.1%
Error, 5.7% 5.6% 6.0%
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Fig. 6. Crater prediction and extraction results on lunar DEM images (red
circles: Missed craters, blue circles: Correctly identified craters, green circles:
New craters). (a) Ground-truth. (b) Segmentation results. (c) Results on SQqUNet.

IV. DISCUSSION SECTION

In order to perform feature extraction effectively, we explored
an embedded U-Net network. Ablation experiments showed
that the embedded U-Net module significantly improved the
detection performance. We compared the network with the latest
four object segmentation methods and confirmed that SqUNet
is more suitable for feature extraction of lunar craters. Addition-
ally, we compared our model with six competing models that also
used the lunar DEM, and the test results further confirmed the
superiority of our network in detection performance, with higher
precision and recall rates than the other models. Furthermore,
tests on Mars also showed the generalization ability of our model
for detecting craters on different planets and its good potential
for practical applications.

Although we achieved good results in the design and detection
performance of the network model, some problems were still
found in the detection results, as shown in Fig. 6, which displays
some representative detection results on the lunar DEM test
datasets. It can be observed that although most of the craters
were successfully identified, there were still small parts of craters
missed (indicated by the red circles), and in the segmentation re-
sults, the existence of these missed craters can be seen, indicating
that a part of the craters was missed during the template matching
process, possibly due to too much overlap with adjacent craters
resulting in incomplete segmentation results. Therefore, how
to improve the template matching algorithm for incomplete
segmented crater extraction deserves further investigation.

At present, SQUNet has been able to detect craters to the
greatest extent, which can be used as a new basic algorithm for
crater detection. But SqUNet only uses a simple convolutional
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neural network, without combining some powerful feature ex-
traction frameworks, such as: resnet, senet, densenet, and swin
transformer. So we believe that the follow-up SqUNet combined
with some powerful feature extraction frameworks will have bet-
ter detection results for some craters with inconspicuous visual
features. In addition, the complexity of the SqUNet network
model is high and the detection speed is slow, so it is necessary
to further improve the network to realize the lightweight and fast
network model.

V. CONCLUSION

This article proposes a high-performance crater detection
method based on the U-Net. We use an embedded U-Net ar-
chitecture with an encoding and decoding structure to replace
the traditional convolution module. This way, we significantly
optimize the feature learning ability. At the same time, we add
a skip link inside the embedded U-Net, so that the original
feature information can be retained. Our experiments show
that the proposed SqUNet is effective and feasible for crater
identification from lunar DEM images. Our network achieves
better results on different accuracy metrics than other competing
models. In addition, the testing results on the Mars DEM dataset
have also demonstrated the strong generalization and robustness
of the SqUNet network model. This research can help lunar
researchers study lunar landform features more efficiently and
choose safer landing sites.

In our future work, we will try to migrate the network to other
planets, study a high-performance and high-precision model for
automatic detection and parameter extraction of craters, and
further analyze the characteristics of planetary geomorphology.

REFERENCES

[1] J. W. Head et al., “Global distribution of large lunar craters: Impli-
cations for resurfacing and impactor populations,” Science, vol. 329,
pp. 1504-1507, 2010.

B. Wu et al., “Topographic modeling and analysis of the landing site of

Chang’E-3 on the Moon,” Earth Planet. Sci. Lett., vol. 405, pp. 257-273,

Nov. 2014.

[3] B. Wu, J. Huang, and Y. Li, “Rock abundance and crater density in

the candidate Chang’e-5 landing region on the Moon,” J. Geophys. Res.

Planets, vol. 123, pp. 3256-3272, 2018.

B. Wu et al., “Landing site selection and characterization of Tianwen-

1 (Zhurong rover) on Mars,” J. Geophys. Res., Planets, vol. 127, 2022,

Art. no. e2021JE007.

[5] R. Z. Povilaitis, M. S. Robinson, C. H. van der Bogert, H. Hiesinger,
H. M. Meyer, and L. R. Ostrach, “Crater density differences: Exploring
regional resurfacing, secondary crater populations, and crater saturation
equilibrium on the Moon,” Planet. Space Sci., vol. 162, pp. 41-51, 2018.

[6] M. Galloway, J. Paxman, G. Benedix, T. Tan, M. Towner, and P. Bland,

“Automated crater detection and counting using the Hough transform and

canny edge detection,” in Proc. Workshop Issues Crater Stud. Dating

Planet. Surf., 2015, Art. no. 9024.

R. Honda, Y. Iijima, and O. Konishi, “Mining of topographic feature

from heterogeneous imagery and its application to lunar craters,” in

Progress in Discovery Science. Berlin, Germany: Springer-Verlag, 2002,

pp. 395-407.

S. Vijayan, K. Vani, and S. Sanjeevi, “Crater detection, classification and

contextual information extraction in lunar images using anovel algorithm,”

Icarus, vol. 226, no. 1, pp. 798-815, 2013.

[91 G. Salamuniccar and S. Loncaric, “Method for crater detection from
martian digital topography data using gradient value/orientation, mor-
phometry, vote analysis, slip tuning, and calibration,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 5, pp.2317-2329, May 2010,
doi: 10.1109/TGRS.2009.2037750.

2

—

[4

—_

[7

—

[8

—_


https://dx.doi.org/10.1109/TGRS.2009.2037750

ZHAO AND YE: SqUNet: AN HIGH-PERFORMANCE NETWORK FOR CRATER DETECTION WITH DEM DATA

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Q. Liu, W. Cheng, G. Yan, Y. Zhao, and J. A. Liu, “Machine learning
approach to crater classification from topographic data,” Remote Sens.,
vol. 11, 2019, Art. no. 2594.

M. Chen, D. Liu, K. Qian, J. Li, M. Lei, and Y. Zhou, “Lunar crater
detection based on terrain analysis and mathematical morphology methods
using digital elevation models,” IEEE Trans. Geosci. Remote Sens., vol. 56,
no. 7, pp. 3681-3692, Jul. 2018.

A. Silburt et al., “Lunar crater identification via deep learning,” Icarus,
vol. 317, pp. 27-38, 2019.

D. DeLatte, S. Crites, N. Guttenberg, and T. Yairi, “Automated crater
detection algorithms from a machine learning perspective in the con-
volutional neural network era,” Adv. Space Res., vol. 64, no. 8,
pp- 1615-1162, 2019.

Z. Lichen, C. Zhang, and M. Wu, “D-LinkNet: LinkNet with pretrained
encoder and dilated convolution for high resolution satellite imagery road
extraction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, 2018, pp. 192-194.

Y. Li, L. Du, and D. Wei, “Multiscale CNN based on component anal-
ysis for SAR ATR,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5211212.

E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 39,
no. 4, pp. 640-651, Apr. 2017.

0. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., 2015, pp. 234-241.

L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmenta-
tion,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 801-818.

R. Li et al., “A2-FPN for semantic segmentation of fine-resolution re-
motely sensed images,” Int. J. Remote Sens., vol. 43, no. 3, pp. 1131-1155,
2022.

J.Chenetal., “TransUNet: Transformers make strong encoders for medical
image segmentation,” 2021, arXiv:abs/2102.04306.

H. Cao et al., “Swin-Unet: Unet-like pure transformer for medical image
segmentation,” Comput. Vis. ECCV 2022 Workshops, vol. 13803, pp. 205—
218, doi: org/10.1007/978-3-031-25066-8_9.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp- 9992-10002, doi: 10.1109/ICCV48922.2021.00986.

C. Lee, “Automated crater detection on Mars using deep learning,” Planet.
Space Sci., vol. 170, pp. 16-28, 2019.

S. Wang, Z. Fan, Z. Li, H. Zhang, and C. Wei, “An effective lunar crater
recognition algorithm based on convolutional neural network,” Remote
Sens., vol. 12, 2020, Art. no. 2694.

Y. Mao, R. Yuan, W. Li, and Y. Liu, “Coupling complementary strat-
egy to U-Net based convolution neural network for detecting lunar
impact craters,” Remote Sens., vol. 14, no. 3, 2022, Art. no. 661,
doi: 10.3390/rs14030661.

Y. Jia, L. Liu, and C. Zhang, “Moon impact crater detection using
nested attention mechanism based UNet++,” IEEE Access, vol. 9,
pp. 44107-44116, 2021, doi: 10.1109/ACCESS.2021.3066445.

[27]

(28]
[29]

[30]

[31]
(32]

[33]

[34]

8585

Y. Wu, G. Wan, L. Liu, Y. Jia, Z. Wei, and S. Wang, “Fast and
accurate crater detection on martian surface using S/UN et 3+,” in
Proc. IEEE 6th Inf. Technol. Mechatron. Eng. Conf., 2022, pp. 683—687,
doi: 10.1109/ITOEC53115.2022.9734410.

LRO LOLA and Kaguya Terrain Camera DEM, [Online]. Available:
https://zenodo.org/record/1133969

“Catalog of two lunar crater datasets,” [Online].
https://github.com/silburt/DeepMoon/tree/master/catalogues
U.K. Met Office, “Cartopy: A cartographic Python library with a mat-
plotlib interface,” 2015. Accessed: Mar. 15, 2019. [Online]. Available:
http://scitools.org.uk/cartopy/index.html

S. Van der Walt et al., “Scikit-image: Image processing in Python,” PeerJ,
vol. 2, 2014, Art. no. e453.

N. Ketkar and J. Moolayil, “Introduction to pytorch,” in Deep Learning
With Python. Berlin, Germany: Springer-Verlag, 2021, pp. 27-91.

Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang, “UNet+4+:
Redesigning skip connections to exploit multiscale features in image
segmentation,” IEEE Trans. Med. Imag., vol. 39, no. 6, pp. 1856-1867,
Jun. 2020, doi: 10.1109/TMI1.2019.2959609.

S. J. Robbins and B. M. Hynek, “A new global database of Mars impact
craters > 1 km: 1. Database creation, properties, and parameters,” J.
Geophys. Res. Planets, vol. 117, 2012, Art. no. 2011JE003966.

Available:

Yaqi Zhao received the B.E. degree (Hons.) in com-
munication engineering from Zhengzhou University,
Zhengzhou, China, in 2021. She is currently working
toward the M.S. degree with the School of Informa-
tion Science and Technology in Fudan University,
Shanghai, China.

Her current research interests include planetary
target recognition and planetary topography.

-
-

Hongxia Ye (Senior Member, IEEE) received the
M.S. degree in electromagnetic theory and computa-
tional electromagnetics from Xi’an Jiaotong Univer-
sity, Xi’an, China, in 2003, and the Ph.D. degree in
electromagnetic wave scattering and remote sensing
from Fudan University, Shanghai, China, in 2007.
She is currently an Associate Professor with the
School of Information Science and Engineering, Fu-
dan University. She has authored more than 70 articles
and a book. Her research interests include wave prop-
agation and scattering, SAR imaging simulation, and

planetary remote sensing.


https://dx.doi.org/org/10.1007/978-3-031-25066-8_9
https://dx.doi.org/10.1109/ICCV48922.2021.00986.
https://dx.doi.org/10.3390/rs14030661
https://dx.doi.org/10.1109/ACCESS.2021.3066445
https://dx.doi.org/10.1109/ITOEC53115.2022.9734410
https://zenodo.org/record/1133969
https://github.com/silburt/DeepMoon/tree/master/catalogues
http://scitools.org.uk/cartopy/index.html
https://dx.doi.org/10.1109/TMI.2019.2959609


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


