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Forest Volume Estimation Method Based on
Allometric Growth Model and Multisource

Remote Sensing Data
Yanjie Wu , Zhihui Mao , Lijie Guo , Chenrui Li , and Lei Deng

Abstract—The accurate forest volume is crucial for forest man-
agement, but rapid, large-scale, and high-accuracy estimation is
still challenging. We proposed a method of coupling allometric
growth model and multisource data for forest volume estimation
(CAMFVe). First, the diameter at breast height (DBH) estima-
tion model is constructed by terrestrial laser scanning (TLS) and
airborne laser scanning (ALS) to obtain more accurate measured
volume. Second, the spectral attributes of Landsat and structural
attributes of ALS are extracted and upscaled onto the 30-m plot
scale, and the optimal attributes for volume estimation are selected.
Third, the model of CAMFVe is constructed and applied to obtain
the volume of study area. Finally, the applicability of CAMFVe
is evaluated under four forest growth environments (different
canopy closure and slope categories), and the accuracy is compared
with multiple linear regression (MLR), random forest (RF), and
support vector machine (SVM). The results show the following.
First, the DBH estimation model by TLS and ALS improves the
DBH calculation accuracy of ALS with a 2.058 cm reduction in
RMSE. Second, the mean of canopy height (Hmean) and enhanced
vegetation index (EVI) are identified as the optimal structural and
spectral attributes, respectively. Third, the model constructed by
Hmean and EVI consistently achieves higher accuracy for most
forest growth environments, and the addition of spectral attribute
improves volume estimation accuracy with a 10.152% reduction
in RMSE compared with the Hmean-based model. Fourth, com-
pared with MLR, RF, and SVM, CAMFVe offers higher accuracy,
requires fewer parameters, and is simpler and more efficient. Our
proposed method, based on allometric growth model and utilizing
vegetation index instead of DBH, provides a solution for large-scale
and high-accuracy volume estimation by combining spaceborne
light detection and ranging and optical satellite images.

Index Terms—Allometric growth model, forest volume, tree
height, UAV light detection and ranging (LiDAR), vegetation index
(VI).
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I. INTRODUCTION

FORESTS are the largest carbon pool in terrestrial ecosys-
tems, and fully exploiting the carbon sequestration po-

tential of forests is crucial to the improvement of human
ecological environment and sustainable economic development
[1], [2]. Forest volume is the basic data source for biomass and
carbon sink estimation [3], [4]. Large-scale and high-accuracy
estimation of forest volume is a prerequisite for improving
forest quality and maximizing forest ecosystem functions and
carbon sequestration potential. It is of great significance to
forest management, carbon balance, and ecosystem monitoring
research [5], [6]. Traditionally, forest volume is obtained by
direct harvesting or allometric growth model, such as the volume
table method [7], [8]. The direct harvesting method has high
accuracy, but it is destructive and not suitable for large-scale
spatial continuous volume estimation [9]. The allometric growth
model method is to establish a regression equation with physical
meaning between the volume obtained by harvesting and the
stand characteristics, such as diameter at breast height (DBH)
and tree height (H), obtained by artificial ground measurement,
and then input the stand characteristics, such as DBH and H, into
the equation to obtain the volume [10]. Especially, the allometric
growth model constructed by DBH and H has high accuracy
(R2 > 0.9) and is widely used [11]. However, the acquisition of
DBH and H is time-consuming and laborious, making it difficult
to obtain the spatial distribution and dynamic change of large
area forest resources timely and accurately [12], [13]. How to
realize large-scale and high-accuracy forest volume estimation
is an active field of research.

Over the past 30 years, the rapid development of remote
sensing and information technology has made it possible to
dynamically and accurately monitor forest resources and quickly
map large areas. The existing studies have attempted to estimate
large-scale forest volume through different remote sensing data
and modeling methods [14], [15], [16]. Optical remote sensing
generally establishes a regression model between the measured
forest volume and remote sensing indices, such as normalized
difference vegetation index (NDVI) and enhanced vegetation
index (EVI) to provide a spatially continuous forest volume by
analyzing the pixel brightness value of satellite images [17],
[18], [19]. However, depending on the forest growth environ-
ments, the estimation accuracy may be limited to 10%–50%
[20] and may be affected by saturation effects [21]. Although
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optical images can capture the spectral heterogeneity of forest
stands composed of different species, they cannot penetrate
the canopy and, therefore, cannot provide information on the
vertical structure of the forest. This may result in high estimation
uncertainty in dense and multilayer canopy areas [22], [23].

Light detection and ranging (LiDAR) is an active remote
sensing technology that has developed rapidly over the past
decade. It can obtain both horizontal and vertical structure
information of forests at the same time, and the obtained point
cloud can be used to accurately estimate tree height, DBH, crown
diameter (CD), and other structural attributes [24], [25]. LiDAR-
derived structural attributes (H, DBH, etc.) can be combined
with allometric growth models to achieve high-accuracy forest
volume calculation in a certain range or used in conjunction
with field measurements to estimate forest volume through
regression models with higher accuracy than optical remote
sensing [26]. Airborne laser scanners (ALS) can obtain H with
high accuracy [27]. However, due to the limitations of echo
frequency and intensity, it is difficult for LiDAR to penetrate
the canopy to obtain tree trunk point clouds in areas with dense
forest canopy. As a result, the accurate DBH information cannot
be obtained [28]. Terrestrial laser scanners (TLS) have been
proven to be an effective way to obtain high-accuracy DBH
[29], [30] with an error not exceeding 1 cm, but the accuracy
of H needs to be improved. The feature-level fusion of ALS
and TLS may be able to achieve high-precision forest volume
calculation within a certain range. However, due to the high
level of automation, precision of instruments, and high cost of
data acquisition in LiDAR, the acquisition of ALS and TLS
data is still limited by the spatial extent and it is difficult to
achieve large-scale regional coverage or high-frequency access
[31]. The existing spaceborne LiDAR systems, such as the
global ecosystem dynamics investigation (GEDI) onboard the
international space station [32] and the advanced topographic
laser altimeter system onboard the ice, cloud, and land eleva-
tion satellite-2 (ICESat-2) [33], can acquire a wide range of
height-related data without the limitation of spatial extent, but
DBH data are still not widely available. Moreover, due to the
inability of lasers to obtain spectral information of vegetation,
LiDAR has low accuracy in distinguishing and classifying tree
species [30], [34].

To further improve the estimation accuracy of forest volume,
collaborative modeling of optical images and LiDAR has been
proposed [35], [36], [37], which can provide both spectral and
structural information, thus improving the volume estimation
accuracy. For example, the authors in [35] and [38] found
that the fusion of optical images and LiDAR can improve the
accuracy of forest volume estimation by 5%–20%. However, the
existing studies simply input them into regression models, such
as multiple linear regression (MLR), random forest (RF), and
support vector machine (SVM) [35], [37], [39]. These machine
learning methods have complex principles and typically require
a large amount of field measurement data and multiple variables
to establish the corresponding relationship between volume and
various variables. Moreover, feeding more variables into the
regression model may lead to collinearity problems and does
not necessarily improve accuracy [40].

In summary, the allometric growth models constructed by
DBH and H have high accuracy, but DBH and H are difficult
to obtain in a large range. Spaceborne LiDAR systems, such as
GEDI and ICESat-2, have made height-related attributes easier
to obtain, but DBH is still difficult to obtain on a large scale [41],
[42]. DBH, in essence, is an attribute representing the constant
and irreversible characteristics of tree growth, and it is related to
the metabolic rate of trees [43]. The spectral attributes of optical
images can reflect the metabolic rate and the heterogeneity of
trees [44], [45], which may be able to replace DBH and improve
the accuracy of volume estimation. Therefore, we assume that
the fusion of optical and LiDAR multisource data based on the
allometric growth model may be able to achieve large-scale and
high-accuracy forest volume estimation.

In this article, we aim to propose a method of coupling
allometric growth model and multisource data for forest volume
estimation (CAMFVe), this is, the DBH in allometric growth
model is replaced by the spectral index of optical images and the
H is provided by canopy height obtained from LiDAR, realizing
large-scale and high-accuracy forest volume estimation using
remote sensing. To evaluate the CAMFVe method, we obtained
ALS and TLS data covering four forest growth environments in
Chengde City, then calculated and extracted forest volume and
canopy height data. Combining canopy height data of LiDAR
and the spectral index of optical images, the forest volume
estimation model based on an allometric growth relationship was
constructed. Finally, to evaluate the accuracy and applicability,
the model by the CAMFVe method was compared with MLR,
RF, and SVM models. We believe that the proposed method can
realize large-scale and high-accuracy forest volume estimation,
especially through the fusion of spaceborne LiDAR data and
optical satellite images.

II. MATERIALS

A. Study Area

The study area is located in Chengde City, Hebei Province,
China (40°12′-42°37′N, 115°54′-119°15′E), with a temperate
continental monsoon climate. The annual average temperature
is 9.0 °C, the average annual precipitation is 402.3–882.6 mm,
and the terrain is dominated by middle and low mountains and
hills. Covering an area of 3.95 × 106 ha, Chengde was selected
as a National Forest City in 2017, with rich forest resources and a
forest coverage rate of 48%. The dominant tree species are Larix
principis-rupprechtii, Picea asperata, and Betula platyphylla.

First, according to different canopy closures and terrain
slopes, the forest of Chengde City was roughly classified into
four types of forest growth environments using satellite im-
ages. According to the preliminary classification results, seven
sites are selected in Chengde City [see Fig. 1(a)], with Larix
principis-rupprechtii [see Fig. 1(c)] as the main tree species.
Each site covers an area of 5–9 ha, with a total of 45.36 ha. The
location, tree height, tree density, canopy closure, and terrain
slope of each site varies, ensuring the representativeness of
the proposed method. Two canopy closure categories (moderate
and dense canopy closure having a canopy closure gradient of
0.4–0.6 and 0.6–0.8, respectively) [46], [47] and three slope
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TABLE I
SUMMARY OF VEGETATION AND TERRAIN CONDITIONS OF THE SEVEN SITES

Fig. 1. Study area. (a) Geographic location of the study area. (b)ALS of seven
sites displayed in RGB. (c) Larix principis-rupprechtii.

gradient categories (flat, gentle, and moderate slope having a
slope gradient of 0°–5°, 5°–15°, and 15°–30°, respectively) are
identified [46], [48]. According to canopy closure and slope
class, the study area is divided into four forest growth environ-
ments [see Fig. 1(b)], namely moderate canopy closure and flat
slope (site7), moderate canopy closure and gentle slope (site1,
site2, and site6), moderate canopy closure and moderate slope
(site3), and dense canopy closure and flat slope (site4 and site5).
The vegetation and terrain conditions of the seven sites are shown
in Table I, where a plot corresponds to a Landsat pixel with a size
of 30 m× 30 m. The number of plots is computed by the number
of the Landsat pixel contained in each site. The area is the sum
area of the plots in each site. The tree height is the average
height of all individual trees in each site, and the individual tree
height is calculated using the difference between the highest
Z values recorded from the point cloud data and the digital
elevation model (DEM) height. The tree density is the ratio of
the number of trees obtained by individual tree segmentation to
the area of the site. The canopy closure is the ratio of the number

Fig. 2. Data acquisition. (a) DJI M300 RTK multirotor UAV and L1 sensor.
(b) Trimble R8 and stonex X300. (c) Sphere.

of vegetation canopy point clouds in the site to the total number
of point clouds in the site, ranging from 0 to 1. The slope is
calculated according to the DEM, which is converted from the
extracted ground points.

B. ALS Data Acquisition and Processing

ALS data were acquired using DJI M300 multirotor UAV
equipped with L1 sensor [see Fig. 2(a)] in July 2022, seven
sites were acquired in total. The ALS system is equipped with a
built-in RTK module, with a horizontal positioning accuracy
of 10 mm + 1 ppm and a vertical positioning accuracy of
15 mm + 1 ppm. The L1 is capable of achieving high-precision
positioning, with a ranging accuracy of 3 cm@100 m. The speci-
fication of the LiDAR is summarized in Table II. The UAV flight
height is 80 m, the flight speed is 3.5 m/s, the side overlap rate
is 80%, and the average point cloud density is 1851.14 pts/m2.

ALS data were processed by ground point detection, point
cloud normalization and high vegetation detection, individual
tree trunk segmentation, and feature parameter extraction. First,
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TABLE II
SPECIFICATIONS OF LASER SCANNING SYSTEMS

TABLE III
PARAMETER SETTINGS IN TLS AND ALS DATA PROCESSING

the points were separated into clusters using the segmentation
algorithm based on smooth surface growth. The point cloud was
filtered and the ground point was identified by the progressive
densification filtering method of irregular triangular network,
and the normalized digital surface model (CHM) was generated.
Based on the normalized height of CHM, high vegetation was
detected. Then, the individual tree parameters were extracted
by point cloud segmentation method. The specific parameter
settings of point cloud processing are shown in Table III. The
results of individual tree segmentation based on ALS are shown
in Fig. 3, where each of the four forest growth environments
shows a 50 m× 50 m typical plot. As can be seen from Fig. 3, the
ALS-based individual tree segmentation works well, and almost
all individual trees are extracted accurately. Finally, the location
of each extracted trunk (LocALS) is combined with the tree
height (HALS), the crown diameter (CDALS), and the diameter
at breast height (DBHALS) of ALS to form the ALS features
dataset, which contains 23 245 trees. All the above processes
are implemented in point cloud automata (PCA) v4.2.9.

Fig. 3. Individual tree segmentation results of ALS and TLS. Note that
M&F, M&G, M&M, and D&F represent the moderate canopy closure and
flat slope, moderate canopy closure and gentle slope, moderate canopy closure
and moderate slope, and dense canopy closure and flat slope, respectively.
ALS-based individual tree segmentation results show the crown distribution
of individual trees after segmentation basing ALS, and TLS-based individual
tree segmentation results show the trunk distribution of individual trees after
segmentation basing TLS.

Fig. 4. Flowchart for forest volume estimation using CAMFVe.

C. TLS Data Acquisition and Processing

At the same time of ALS acquisition, TLS data were obtained
using the Stonex X300 laser scanner [see Fig. 2(b)]. A total of
seven blocks of TLS data were fetched, one for each site. Stonex
X300 is a pulsed three-dimensional (3-D) laser scanner for
precise measurement and rapid acquisition of massive 3-D point
cloud data in complex environments. The accuracy and distance
of measurement are±4 mm@50 m and 300 m, respectively. The
data were obtained in a fine mode with an average point cloud
density of 2928.98 pts/m2.
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TABLE IV
DESCRIPTION OF THE COLLECTED LANDSAT IMAGES

Trimble R8 [see Fig. 2(b)] was used to measure the geographic
coordinates of the TLS base station and sphere [see Fig. 2(c)],
and the single station orientation method [49] was employed
to the TLS data for registration with ALS. The point cloud
processing of TLS is similar to ALS but with different parame-
ters. The specific parameter settings are shown in Table III. The
results of individual tree segmentation based on TLS are shown
in Fig. 3, where each of the four forest growth environments
shows a 50 m × 50 m typical plot. As can be seen from Fig. 3,
the TLS-based individual tree segmentation works well, and
almost all individual trees are extracted accurately. Finally, the
location of each extracted trunk (LocTLS) is combined with the
diameter at breast height of TLS (DBHTLS) to form the TLS
features dataset, which contains a total of 1741 trees. All the
above processes are implemented in PCA v4.2.9.

D. Landsat Data Acquisition and Processing

For each study site, we downloaded the Landsat 8/9 Col-
lection2 level1 Tier1 images from July to August 2022 with
less than 5% cloud cover from USGS.1 Two Landsat images
were selected, which covered the study area and met the time
and space requirements for conducting research. The specific
information of images is shown in Table IV. Then, the images
were processed by radiometric calibration, atmospheric correc-
tion, mosaic, clipping, etc. Finally, the Landsat images and the
acquired ALS data were georegistered using the artificial ground
objects in the images as the control points, which allows for a
reasonably accurate matching between the trees of ALS data and
the pixels of Landsat images.

III. METHODS

A. Coupling Allometric Growth Model and Multisource Data
for Forest Volume Estimation

In this article, we proposed a method of coupling vegetation
index (VI) with allometric growth model for forest volume
estimation. The specific form of the proposed method is given
as follows:

Vplot = a∗(VI)b(H)c (1)

where Vplot is the forest volume of the plot, VI is the optimal VI
on the plot scale, H is the optimal canopy height parameter on
the plot scale, and a, b, and c are the model coefficients to be
obtained.

1[Online]. Available: https://earthexplorer.usgs.gov/

TABLE V
STRUCTURAL ATTRIBUTES AND SPECTRAL INDICES EXTRACTED FROM ALS

AND LANDSAT

We explored the feasibility of CAMFVe method mainly from
the following steps (Fig. 4). The first step is to construct the DBH
(DBHopt

ALS) estimation model of ALS to obtain the DBHopt
ALS of

the study area by using the diameter at breast height of TLS
(DBHTLS) as a reference. Then, DBHopt

ALS and tree height of
ALS (HALS) are input into the allometric growth model (binary
volume equation). Thus, more accurate individual tree volume
and plot volume in the study area are obtained. The second
step is to use the upscaling aggregation method to extract the
spectral and structural attributes (Table V) on the 30-m plot scale,
and the best spectral and structural attributes for forest volume
estimation are selected. The third is to build a forest volume
estimation model coupling VI with an allometric growth model
and apply it to the study area.

1) Calculation of Plot Volume by TLS and ALS: Calculation
of plot volume by TLS and ALS is the first step of CAMFVe
method, which includes three steps. First, the feature-level fu-
sion of TLS and ALS is realized by spatial join [28]. Second,
using DBHTLS as the reference, the DBH estimation model is
constructed. Third, the model is applied to the entire ALS region,
and DBHopt

ALS and HALS are the inputs into the allometric growth
model to obtain accurate individual tree volume and plot volume
in the study area.

a) Feature-level fusion through spatial join: The trunk
locations (LocTLS and LocALS) of georeferenced TLS and ALS
are very close, and the feature-level fusion of the two can be
achieved through spatial join. In this study, the maximum search
radius of spatial join is set as 2 m according to the tree trunk
location distribution of the two datasets. As a result, 1741 groups
of HALS, CDALS, and DBHTLS were obtained, i.e., 1741 trees
were tallied.

b) Construction of DBH estimation model: Since the laser
cannot directly penetrate the forest canopy when the stand is

https://earthexplorer.usgs.gov/
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dense, DBHALS obtained by ALS is not accurate enough, so
the DBH of ALS is usually estimated using tree height and
canopy diameter. In this article, an MLR model for DBHopt

ALS
estimation is constructed using DBHTLS as a reference and
CDALS and HALS as dependent variables. R2 and RMSE are
used as indicators to evaluate the accuracy of the model. Total
70% of the data are used for training and 30% for verification.

c) Calculation of individual tree and plot volume: The
constructed DBH estimation model is applied to ALS to obtain
more accurate DBHopt

ALS. DBHopt
ALS and HALS are input into the

allometric growth model [50] of Larix principiss-rupprechtii,
and the accurate individual tree volume is obtained

Vtree = 0.00005741∗D1.77035219∗H1.12503045 (2)

where D is the stem diameter at breast height in cm, H is the
tree height in m, and Vtree is the individual tree volume in m3.

The study area is divided into 30 m × 30 m sampling plots
according to Landsat pixels, with a total of 504 plots. Given
that the volume of trees is primarily contributed by the trunk,
the center position of the trunk is used as the actual position of
individual trees for matching to the pixels of Landsat images.
Individual tree volumes are upscaled and aggregated onto 30-m
plots using the zonal statistic tool in the ArcGIS Pro software
(Esri, Inc.). Finally, the volume of each plot is calculated as the
ratio of the total volume of all individual trees in the plot to the
area of the plot and is used as the ground truth (field measurement
data) in the following model construction and verification.

2) Extraction and Selection of Structural and Spectral
Attributes: Four structural attributes and six spectral indices
(Table V) are extracted and upscaled onto 30-m plots from ALS
and Landsat using the zonal statistic tool in the ArcGIS Pro
software (Esri, Inc.).

The canopy height-related parameters Hmax, Hmin, Hmean,
and Hstd are the maximum, minimum, average, and standard
deviation of all individual tree heights in each 30 m × 30 m
plot. These attributes can represent the vertical distribution of
the canopy (Hmax, Hmin, Hmean) and explain the complexity
and heterogeneity of the vertical structure of the canopy (Hstd)
[38]. Structural parameters, such as NDVI and EVI, are sensitive
to forest volume and biomass, which can effectively measure
vegetation growth and are widely used in volume estimation
[52], [53], [54], [55], [56].

Owing to the heterogeneity of forest stands, the optimal struc-
tural and spectral parameters differ across study sites. Simple
regression models are implemented to test the ability of each
variable to predict volume in the seven study sites with R2

as an evaluation indicator. In order to construct a general and
robust model suitable for different forest growth environments
and stand characteristics, the cumulative R-squared [51] is used
to select the optimal structural and spectral parameters. The
parameter with the highest cumulative R2 in different study
sites is selected as the optimal parameter, which is used for
the construction and verification of subsequent forest volume
models.

3) Construction of Volume Estimation Model: With the plot
volume as the dependent variable and the optimal structural and
spectral parameters as the independent variable, Levenberg–
Marquardt [57] is used as the global optimization algorithm

to find the most suitable model parameter values for (1). The
stratified random sampling method is used to sample the plot
volumes, the optimal structural, and spectral parameters data.
Total 70% of the plots are randomly selected for training to
construct a volume estimation model, and 30% are verified for
model accuracy.

B. Validation

To evaluate the performance of the proposed CAMFVe
method, the accuracy is evaluated from two aspects: DBH esti-
mation model accuracy and volume estimation model accuracy.

For the accuracy of the DBH estimation model, DBHopt
ALS

estimated by the DBH estimation model, constructed by TLS
and ALS, is compared with DBHALS directly extracted by ALS,
using DBHTLS as a reference. R2, RMSE, mean, maximum
(max), minimum (min), standard deviation (std), and mean
absolute error (ME) of DBHopt

ALS and DBHALS are calculated
and statistically analyzed

R2 = 1−
∑n

i = 1 (yi − ŷi)
2∑n

i = 1 (yi − ȳ)2
(3)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
(4)

RRMSE =
RMSE

ȳ
× 100% (5)

ME =
1

n

n∑
i = 1

| yi − x̄ | (6)

where n is the number of testing plots; yi and ŷi represent the
measured and predicted volume in plot i, respectively; and ȳ is
the mean of measured volume.

For the accuracy of volume estimation model, with the mea-
sured volume as reference and R2, RMSE, and RRMSE as
evaluation indicators, the estimation accuracy of volume esti-
mation model in all sites and four forest growth environments
is evaluated using 30% validation plots. GEDI and Landsat 8/9
data are used to apply the model to the entire Chengde city.
And the accuracy evaluation of the volume estimation results in
Chengde City is conducted using the data of the overlapping part
of the GEDI footprints data in 30% of verification plots. Finally,
to evaluate the accuracy of the proposed CAMFVe method, the
volume estimation accuracy of CAMFVe is further compared
with the commonly used machine learning regression methods,
including MLR, RF, and SVM. In keeping with the proposed
method, the three machine learning regression models are also
trained and validated using the same plot data.

IV. RESULTS

A. Results Accuracy of DBH Estimation Model

Three DBHs obtained in different ways are shown in Fig. 5.
The X-axis is the tree ID, and the y-axis represents the DBH
value. DBHTLS (black), extracted from TLS, is used as a refer-
ence due to the high accuracy, and the Tree IDs are arranged in
ascending order according to the DBHTLS value. DBHALS (red)
is obtained directly from ALS, and DBHopt

ALS (blue) is calculated
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Fig. 5. DBH of 536 trees extracted by TLS and ALS.

using the DBH estimation model of (7). The corresponding
statistics of R2, RMSE, mean, std, and so on of the three DBHs
are shown in Fig. 5

DBHopt
ALS = 0.3132 ∗HALS + 0.3751 ∗ CDALS + 11.26. (7)

It can be seen from the reference (DBHTLS) that the DBH of
trees in the study area varies greatly from 12.11 to 37.296 cm.
Both DBHALS and DBHopt

ALS have certain deviations and the
deviations have certain rules. When DBHTLS is between 12.11
and 26.343 cm, DBHALS is seriously overestimated and under-
estimated. When the DBHTLS is between 26.343 and 37.296 cm,
DBHALS is seriously underestimated. When DBHTLS ranges
from 12.11 to 16.274 cm, DBHopt

ALS is slightly overestimated.
When DBHTLS is between 16.274 and 19.621 cm,DBHopt

ALS has
the best estimation effect. When DBHTLS range from 19.621 to
37.296 cm, DBHopt

ALS is slightly underestimated. The estimation
accuracy of DBHopt

ALS (RMSE = 4.071 cm and ME = 0.388 cm)
is much higher than that of DBHALS (RMSE = 6.129 cm and
ME = 1.357 cm). Compared with DBHALS, DBHopt

ALS has a
better estimation effect, with a 33.578% reduction in RMSE
and 71.408% in ME.

B. Selection of Structural and Spectral Attributes

The R2 values from simple regression models based on dif-
ferent parameters in all study sites are shown in Fig. 6.

For structural attributes, Hmean performs best across all sites
in estimating volume, with the highest cumulative R2 (4.154).
Hmean performs best on all sites except site1 (moderate canopy
closure and gentle slope). The estimation accuracy of Hmax,
Hmin, and Hstd varies in different sites. Hmean, Hmax, and Hmin

are the parameters that characterize the vertical distribution of
canopy height. Hmean and Hmax perform best in site3 (moderate
canopy closure and moderate slope), and Hmin performs best
in site7 (moderate canopy closure and flat slope). Hstd, which
represents vertical structural complexity and heterogeneity of

Fig. 6. Stacked bar plots of the R2 values from simple regression models based
on different parameters in all study sites.

Fig. 7. Data distribution of (a) spectral parameter (EVI), (b) structural param-
eter (Hmean), and (c) plot volume in different forest growth environments.

canopy distribution, performs best in site5 (dense canopy closure
and flat slope).

For spectral attributes, EVI performs best across all sites in
estimating volume, with the highest cumulative R2 (1.966). EVI
performs best on all sites except site2 and site6 (moderate canopy
closure and gentle slope). All parameters perform best in site1
(moderate canopy closure and gentle slope). Except EVI, R2 of
all other parameters are lowest in site5 (dense canopy closure and
flat slope). EVI is not only suitable for sparse vegetation but also
suitable for dense vegetation compared with other VIs, which is
because EVI reduces the influence of “saturation effect.”

Since Hmean and EVI show the best overall performance
across all sites, they are used to construct models in CAMFVe.
Furthermore, the EVI, Hmean, and plot volume distribution his-
tograms of four different forest growth environments are shown
in Fig. 7.

The EVI, Hmean, and volume of the four forest growth envi-
ronments present a normal distribution, and there is a substan-
tial gradient among different forest growth environments. The
distribution of EVI (0.940–2.511), Hmean (2.915–20.380 m),
and plot volume (0.308–312.372 m3/ha) demonstrates that the
sites we selected could well represent forests in different growth
environments.

C. Performance of the Proposed Method

The volume estimation models for all plots and four different
forest growth environments are shown in Table VI, and the
scatter plots of measured and predicted volume of all plots and
different forest growth environments by the CAMFVe method
are shown in Fig. 8.

It can be found that our proposed method has achieved good
prediction accuracy in all plots and different forest growth
environments, and models based on specific forest growth en-
vironments are more accurate than the model of all plots. The
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TABLE VI
SUMMARY OF VOLUME ESTIMATION MODELS FOR FOUR FOREST GROWTH

ENVIRONMENTS

Fig. 8. Measured and predicted volume from CAMFVe for all plots and
different forest growth environments.

CAMFVe method achieved the highest R2 in moderate canopy
closure and moderate slope, the lowest RMSE in moderate
canopy closure and flat slope, and the lowest R2 and the highest
RMSE in dense canopy closure and flat slope. The canopy
closure class (Moderate) remains unchanged, the steeper the
slope, the higher the R2, but the higher the RMSE, and the lower
the estimation accuracy. With slope class (Flat) unchanged, the
lower the canopy closure, the higher the R2, the lower the RMSE,
and the higher the estimation accuracy. At moderate canopy
closure sites, the predicted and measured volumes are all around
the 1:1 line. At dense canopy closure sites, the proposed method
also does not produce large overestimates and underestimates in
areas with low and high volumes.

Fig. 9 shows the volume of the study area estimated by the
CAMFVe method for each site and the GEDI transit area of
Chengde City, with a spatial resolution of 30 m. Fig. 10 shows
the scatter plot between the measured volume and the volume
estimated by GEDI and Landsat.

Fig. 9. Volumes of the study area estimated by CAMFVe. (a) Volume of
Chengde city estimated by rh98 of GEDI and EVI of Landsat. (b) Volume of
site1–7 estimated by Hmean of ALS and EVI of Landsat.

Fig. 10. Scatter plot between the measured volume and predicted
volumeGEDI.

It can be seen that our method is suitable for different sites
and is sensitive to both high and low volume. Compared with the
measured volume, the R2 and RMSE of the predicted volume,
estimated by the canopy height of GEDI and spectral attribute
of Landsat, are 0.668 and 34.103 m3/ha, respectively. Therefore,
the proposed CAMFVe method can realize large-scale and high-
accuracy forest volume estimation, especially through the fusion
of spaceborne LiDAR data and optical satellite images.

D. Comparison With Existing Methods

Fig. 11 and Table VII present scatter plots and validation
statistics for volume estimation using different model scenarios
for different forest growth environments, respectively.
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Fig. 11. Comparisons between measured volume and predicted volume by
using different model scenarios for different forest growth environments.
(a) Predicted volume is estimated only by EVI data. (b) Predicted volume is
estimated only by Hmean data. (c) Predicted volume is estimated by combining
EVI with Hmean using the CAMFVe method.

In combination with Fig. 11 and Table VII, it can be found
that, compared with the methods using only structural or spectral
information, the forest volume obtained by CAMFVe has higher
R2 and lower RMSE. For different forest growth environments,
the addition of spectral parameter EVI improves the estimation
ability compared with Hmean-based model, especially moderate
canopy closure and moderate slope, with R2 increasing by 0.116
and RMSE decreasing by 20.170%. For all data, our method
has a better estimation accuracy (a reduction of 28.502% in
RMSE) than the Hmean-based model. The estimation ability
of the model using only spectral attributes is poor, and the
scatter plot between the measured and predicted volume is very
scattered. The distribution of points after the fusion of structural
attributes using the CAMFVe method is more compact, and the
estimation accuracy is greatly improved (see Fig. 11). In general,
using the spectral information as an auxiliary, the RMSE of
volume estimation can be reduced by 10.152% (see Table VII).

It can be seen from Table VII that compared with MLR, RF,
and SVM methods, CAMFVe has better volume estimation abil-
ity. For all plots, CAMFVe has the highest accuracy compared
with all other methods except MLR_All parameters (R2 higher
0.011 and RMSE lower 0.847% than CAMFVe) and RF_All
parameters (R2 higher 0.047 and RMSE lower 3.663% than
CAMFVe). For different forest growth environments, except
MLR_All parameters for moderate canopy closure and gentle
slope, and dense canopy closure and flat slope, the R2 is 0.004
and 0.128 higher than CAMFVe, and the RMSE is 1.838% and
3.633% lower than CAMFVe, respectively. For all other forest
growth environments and all methods, CAMFVe method has the
highest accuracy. It can be seen that our method can improve
the estimation accuracy in most forest growth environments.
In addition, the CAMFVe method only uses two parameters
as predictive variables. Compared with MLR, RF, SVM, and
other machine learning methods, CAMFVE method requires
fewer parameters, has higher accuracy, and is simpler and more
efficient.

V. DISCUSSION

There are two challenges in large-scale and high-accuracy for-
est volume estimation: First, obtaining large-scale forest struc-
tural and spectral information simultaneously; second, whether
sufficient measurement data can be obtained [24], [42], [58].
To address these limitations, based on the allometric model, we

TABLE VII
VALIDATION STATISTICS FOR VOLUME ESTIMATION USING DIFFERENT MODEL

SCENARIOS FOR DIFFERENT FOREST GROWTH ENVIRONMENTS

coupled VI and structural attributes at the satellite pixel scale to
achieve large-scale and high-accuracy forest volume estimation.

A. Calculation of Plot Volume by TLS and ALS

Traditionally, the forest volume is usually calculated by in-
putting the tree height and DBH into the allometric growth
model, but the tree height and DBH are difficult to obtain in
a large range. The traditional manual measurement method is
time-consuming and laborious. The wide application of UAV
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LiDAR makes it possible to obtain forest structural attributes,
such as tree height and DBH quickly and in a wide range.
ALS can obtain H with high accuracy [27], but accurate DBH
information cannot be obtained [28]. Guo et al. [28] directly
extract DBH from ALS through software, and the accuracy is
not high. There are also some studies that estimate the DBH
through the H and/or CD, but the accuracy is still not satisfactory
[59], [60]. TLS has been proven to be an effective way to obtain
high-accuracy DBH with an error not exceeding 1 cm [29], [30],
but the accuracy of H needs to be improved. There are studies on
high-precision fusion of TLS and ALS to obtain accurate DBH
and H [61], [62], which is highly accurate but difficult to be
applied in a wide range due to complex processing. In this article,
feature-level fusion of TLS and ALS is performed using spatial
join, and DBH estimation model of ALS is constructed based
on DBHTLS. Finally, we use DBHTLS as a reference, which is
currently the most effective means of obtaining high-accuracy
DBH on a large scale to verify the accuracy of the DBH estima-
tion model. With DBHTLS as the reference, the RMSE and ME
of DBHopt

ALS are 4.071 cm and 0.388 cm, respectively. Compared
with DBHALS extracted directly from ALS, DBHopt

ALS reduced
RMSE by 33.578% and ME by 71.408%. This is consistent
with the result of Guo et al. [28]. By using the spatial join and
feature-level fusion method of ALS and TLS, we do not need
a large number of measured DBH as training data, but only
need to perform simple feature-level fusion of TLS and ALS,
which can achieve accurate DBH estimation based on the tree
height and crown width of ALS so as to obtain accurate volume
data in ALS region. With the continuous improvement of laser
measurement and technology, the accuracy of TLS to obtain
DBH will increase, and the accuracy of the DBH estimation
model will also increase accordingly.

B. Large-Scale Volume Estimation by VI Instead of DBH

By coupling VI and allometric growth model, the CAMFVe
method uses VI instead of DBH to estimate forest volume. In the
process of model construction, the cumulative R2 is used to select
the optimal structural and spectral parameters. And we found
that for different forest growth environments, Hmean is the best
structural attribute for volume estimation, which is consistent
with Yang et al.’s article [51]. No matter whether the stand
is homogeneous or not, Hmean can reflect the forest structure
and stand growth [63]. In addition, we found that EVI has the
best performance in different forest growth environments, which
is inconsistent with the best performance of NDVI [64]. The
cumulative R2 is susceptible to the influence of a particular
sample point and does not necessarily indicate that EVI is
superior to NDVI. Therefore, in order to verify the feasibility
of the cumulative R2 method, all plots were used to analyze
the correlation between the six spectral parameters and forest
volumes. And it was found that EVI was the optimal spectral
parameter, which is consistent with the cumulative R2 method.
In further analysis, we found that this is because the canopy
closure of our study area ranges from 0.457 to 0.738, and the
grades are both moderate and dense. NDVI will be affected by
“saturation effect” at high canopy closure, and the estimation

accuracy will be reduced. EVI is an improvement relative to
NDVI, which reduces the influence of vegetation “saturation
effect” [64]. It is not only suitable for sparse vegetation but also
suitable for dense vegetation compared with other VIs.

By fusing optimal structural and spectral attributes, our
method achieves good results. For the generalized model con-
structed by all plots, the R2 of our method reaches 0.666 and the
RRMSE is 43.588%. For different forest growth environments,
the accuracy is different, with R2 ranging from 0.508 to 0.960
and RRMSE ranging from 21.974% to 35.510%. This is mainly
caused by the different forest canopy closure and slope cate-
gories of different sites. EVI reflects the spectral characteristics
of the forest canopy. When the canopy closure is high, EVI is also
affected by “saturation effects” slightly, and the difference of sat-
uration effect is different for different canopy closure categories.
H reflects the average growth condition of trees in the plot, but
the extraction accuracy of H is affected by the change of slope. It
is difficult to obtain the accurate forest volume using structural
or spectral attributes alone for forests with complex structures.
Our method couples the structural and spectral attributes based
on the allometric growth model, and the RRMSE is reduced by
28.502% compared with the Hmean-based model. This is mainly
because the added spectral attribute provides information on the
spectral heterogeneity of forest canopy, which can reflect the
diversity of forest volume.

MLR, RF, and SVM are commonly used machine learning
models for forest volume estimation [35], [37], [39]. Compared
with these machine learning methods, our CAMFVe method
has a higher volume estimation accuracy. This indicates that it
is feasible to estimate the volume based on the allometric growth
model coupling structural and spectral attributes. However, the
results of RF and MLR using all variables for all plots are slightly
better than our method (R2 increased by 0.011 and 0.047, and
RMSE decreased by 0.847% and 3.663%, respectively). This
may be due to the combination of multiple variables, but this
leads to the invisibility of the model and complexity of the
method. In addition, these machine learning methods require
many parameters as input data, which may cause collinearity
problems [40] and may not necessarily improve the accuracy
of volume estimation. Compared with these machine learning
methods, our method is more convenient to fit and can provide
explicit calculation formulae, which is more suitable for large-
scale and rapid forest volume estimation.

C. Uncertainty and Outlook

The CAMFVe method is simple and robust, which provides
a fast and high-accuracy method to obtain a large range of for-
est volume using remote sensing. Existing spaceborne LiDAR
(GEDI and ICESat-2, etc.) provides nearly global coverage,
uniform distribution, and high-density ground sampling foot-
prints that can be used to obtain canopy height data. In addition,
the existing optical remote sensing satellites, such as Landsat,
Sentinel-2, and GF-2, can catch forest heterogeneity well. In
the future, images with higher spatial and spectral resolution,
different VIs, and spaceborne LiDAR can be combined for
volume retrieval at regional and global scales.
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However, there are still some limitations in this study. One of
the shortcomings of our method is that the accurate registration
of ALS and Landsat images is required; otherwise, the model
accuracy will be affected. In this article, although we used
artificial ground objects to perform accurate registration of ALS
and Landsat images, due to the significant difference in spatial
resolution between the two, the registration accuracy still needs
to be improved. In the future, with the improvement of more and
better registration methods, the accuracy of our model will be
correspondingly higher. The study area of this article is Chengde
City, Hebei Province. The main tree species in Chengde city is
Larix principis-rupprechtii, and the predominant terrain consists
of medium–low mountains and hills. Therefore, in our study
area, the main tree species is Larix principis-rupprechtii, the
slope categories include only flat, gentle, and moderate, and
the canopy closure categories include only moderate and dense.
The applicability of this method has not been verified for other
tree species, canopy closure, and slope categories. More tree
species, canopy closure, and slope categories can be explored
in the future. In addition, since GEDI provides footprint data,
this article only utilizes the combination of GEDI footprints and
Landsat data in 2022 to apply the CAMFVe method to Chengde
City. As a result, the volume results are not spatially continuous.
In future research, GEDI, ICESat-2, and other data sources can
be combined to generate spatially continuous canopy height
data, which can then be integrated with spectral attributes from
optical satellite images to obtain spatially continuous volume
data.

VI. CONCLUSION

In this study, a forest volume estimation method based on an
allometric growth model combining VI of optical images and
canopy height of LiDAR is proposed. To explore the applica-
bility of the method, the volume estimation model based on
the allometric growth model, combining the canopy height of
ALS and the VI of Landsat, is constructed with reference to the
volume calculated jointly by ALS and TLS. The applicability of
the model is evaluated under different forest canopy closure and
slope categories, and the accuracy is compared with MLR, RF,
and SVM methods. The results show that the DBH estimation
model constructed by TLS and ALS can improve the DBH
calculation accuracy of ALS with a 2.058 cm reduction in
RMSE, which can realize the high-accuracy DBH calculation
of ALS. The Hmean and EVI are the optimal structural and
spectral attributes for different forest growth environments. The
CAMFVe method is applicable to almost all forest growth envi-
ronments. Compared with the Hmean-based model, the addition
of spectral attribute improves the estimation accuracy of volume
with a 10.152% reduction in RMSE. Furthermore, the CAMFVe
method outperforms RF, SVM, and other machine learning
methods, offering higher accuracy, requiring fewer parameters,
and being simpler and more efficient. The proposed method,
based on an allometric growth model and utilizing VI instead
of DBH, enables large-scale and high-accuracy forest volume
estimation, particularly through the fusion of spaceborne LiDAR
data and optical satellite images. In the future, we can integrate

more spaceborne LiDAR and optical satellite images to conduct
larger scale, higher accuracy, and spatially continuous volume
estimation studies.
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