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Abstract—Increasing food demands, global climatic variations,
and population growth have spurred the growth of crop yield driven
by plant phenotyping in the age of Big Data. High-throughput
phenotyping of sorghum at each plant and organ level is vital
in molecular plant breeding to increase crop yield. LiDAR (light
detection and ranging) sensor provides 3-D point clouds of plants
with the advantages of high precision, high resolution, and rapid
measurement. However, need to develop robust algorithms for
extracting the phenotypic traits of sorghum plants using LiDAR
3-D point cloud. This study utilized four 3-D point cloud-based deep
learning models named PointNet, PointNet++, PointCNN, and
dynamic graph CNN for the specific objective of the segmentation
of sorghum plants. Subsequently, phenotypic traits were extracted
using the segmentation results. Study plants sample were grown
under controlled conditions at various developmental stages. The
extracted phenotypic traits outcome has been validated through
the manually measured phenotypic traits of the sorghum plant.
PointNet++ outperformed the other three deep learning models
and provided the best segmentation result with a mean accuracy
of 91.5%. The correlations of the six phenotypic traits, such as
plant height, plant crown diameter, plant compactness, stem diam-
eter, panicle length, and panicle width were calculated from the
segmentation results of the PointNet++ model and the measured
coefficient of determination (R2) were 0.97, 0.96, 0.94, 0.90, 0.95,
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and 0.88, respectively. The obtained results showed that LiDAR
3-D point cloud have good potential to measure the sorghum plant
phenotype traits rapidly and accurately using deep learning tech-
niques.

Index Terms—3-D point cloud, deep learning, lidar technique,
phenotyping, sorghum.

I. INTRODUCTION

SORGHUM (Sorghum bicolor L. Moench) is essential in
providing nutrition to humans, especially in areas with

low rainfall. Under the influence of global climate change, the
world’s population is increasing while the area of arable land is
decreasing, placing unprecedented strain on food production and
farmers’ livelihood security. The study of plant growth processes
plays an important role in modern agriculture. Plant genotypic
and phenotypic techniques are important in accelerating breed-
ing programs to meet the growing food and energy needs [1].
Genotyping techniques are well developed, and the shortcom-
ings of “low efficiency” and “long-term” traditional breeding
methods based on human experience have been successfully
resolved [2]. The Phenotypic technique is a fast-growing field
of plant science, which is used to analyze and measure the
phenotype change in response to genotype and environment on
an organism. It helps in developing a high-throughput (HTP)
phenotyping platform, which can accelerate precise breeding
and hence improve the crop yields [3], [4].

Phenotypic data of high quality is essential to plant breed-
ers and scientists. Such as phenotypic measurements of traits
related to plant architecture are helpful for understanding the
relationship of genotype-phenotype-environment influenced by
plant architecture. A plant’s architecture refers to the sets of traits
that denotes the 3-D arrangement of plant organs [5], and it is
essential for determining their phenotyping [6]. Generally, mea-
surements of phenotypic traits associated with plant architecture,
such as plant height, crown diameter, plant compactness, stem
diameter, etc., are often manually collected. These manually
collected phenotypic traits are time-consuming, labor-intensive,
prone to human errors, inefficient, and subjective. As a re-
sult, there is often a scarcity of high-quality phenotypic data.
Therefore, it is crucial to develop an automated, precise, and
non-destructive technique for extracting features of phenotypic
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traits, especially at holistic and component plant levels, with
greater efficiency and precision.

The emergence of machine vision imaging methods has im-
mensely promoted the burgeoning of image-analysis-based HTP
phenotypic traits extraction [7]. Imaging-based phenotypic traits
extraction methods have been widely used to obtain the specific
morphological plant traits [8], rice panicle traits and detection
[9], root traits [10], yield-related traits [11], crop canopy cover
[12], crop plant growth and drought-responsive traits [13], and
plant disease detection [14]. Extensive reviews on the use of
image-based plant phenotyping for extraction of phenotypic
traits can be found in [15], [16], and [17]. These imaging-based
approaches can provide 2-D information with extremely high
spatial resolution at a reasonable cost. However, the limitations
of these imaging methods are the data obtained from images is
2-D and subject to illumination and occlusion induced by leaves
when collecting images from different directions [7]. Also, due
to the lack of a third dimension, these imaging techniques fail to
acquire volumetric and areal information [18]. Although stereo
images and multiple-view can rebuild the 3-D shape of a plant,
but the limitations of the image remain extant [19]. The image-
based 3-D construction worked well in a controlled condition,
but it lost volumetric and precise spatial data under a field envi-
ronment. It could not avoid the tradeoff between efficiency and
accuracy [20]. Therefore, imaging-based techniques still have
constraints in acquiring highly precise 3-D phenotypic traits. In
contrast, the 3-D active remote sensing technology called light
detection and ranging (LiDAR) enables recording of 3-D point
clouds, providing a comprehensive depiction of essential spatial
information and 3-D depth in millimeter detail. LiDAR has
been widely used in ecological studies and quantitative forestry
throughout the last few decades [21]. The widespread utilization
of 3-D LiDAR point cloud data in agricultural applications has
effectively addressed data occlusion and overlapping challenges.
This technology plays a crucial role in enabling high-precision
phenotyping in agriculture, exhibiting significant potential in
crop organ segmentation and phenotyping, and offering promis-
ing prospects for advancements in plant phenotyping [22], [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35].
Extensive investigation in LiDAR’s recent advances and future
prospects on plant phenomics for plant breeding and manage-
ment and applications in precision agriculture can be found in
[36] and [37]. Plant phenotypic studies based on LiDAR at plant
organ (i.e., leaf and stem) levels are still in the preliminary stage.
The lack of an accurate plant organ segmentation method and
automatic phenotypic trait extraction techniques for crops may
be the main bottleneck.

Over the last few years, the application based on computer
vision methods has made substantial progress in acquiring HTP
plant phenotype data [38], [39]. Images of soybean plants were
collected using an image-based HTP phenotyping platform, and
the performance of machine learning methods in segmenting
nonoverlapped and overlapped soybean plants was evaluated in
[40]. A comprehensive overview of the latest studies utilizing
deep convolutional neural networks in the field of plant pheno-
typing applications has been presented in [17]. Zhou et al. [41]
proposed a deep learning-based maize image analysis software

named Maize-IAS for HTP plant phenotyping. A thorough
review of the recent developments in deep learning applications
for HTP was presented in [42]. Recently, Cardellicchio et al. [43]
utilized single-stage detectors based on YOLOv5 to detect
tomato plants phenotyping traits. Extensive reviews on cur-
rent machine vision methods for plant trait classification and
estimation and 3-D computer vision techniques in food and
agriculture applications can be found in [44], [45], and [46].
These technologies make it easier to acquire phenotypic traits
such as plant color, morphology, texture, and structure efficiently
and accurately [47] and avoid the drawbacks of traditional plant
phenotyping procedures [48]. Fast data acquisition and 3-D
phenotyping have been made possible because of the rapid
advancements in sensor technology and the enhancement in
computing power [16], [49], [36]. For example, the 3-D plant
data have been acquired for phenotyping using depth cameras
[50], [51], LiDAR [23], and multiview imaging methods [32],
[52], [53]. And various phenotypic traits, including stem height,
leaf inclination, plant volume, and leaf area, can be extracted
using these technologies [54], [55], [28]. Segmenting a 3-D point
cloud data of a shoot to multiorgans at the individual or organ
plant level is one of the bottlenecks in 3-D plant phenotypic
investigations [6], [56], [57]. Several 3-D data segmentation
techniques are currently available for plants, most of which
primarily focus on individual [58] and population scales [59],
for instance, threshold-based [60], geometry-based [61], and
machine learning techniques [62]. These necessitate a lot of
manual interaction, particularly based on the geometry and
threshold approaches.

The segmentation results of plant phenotyping investigations
rely on the empirical parameters settings, which cannot han-
dle the huge amount of data processing [22]. Generally, most
existing 3-D data processing techniques for plants are tedious
and involve numerous manual interactions, which results in
accumulating a large amount of raw data. In addition, these
approaches limit the HTP resolution of the phenotypic indica-
tors useful to agronomists. Therefore, developing an accurate,
efficient, and noninvasive technique is essential to enhance
the HTP and automatic plant-to-organ segmentation of plant
3-D point cloud data [63], [64]. Machine learning-based algo-
rithms can automatically extract features from Big Data sets
[24], [65], especially deep learning techniques, which have
opened new possibilities for overcoming these issues [29], [66],
[67], [68], [69]. Deep learning approaches for 3-D plant data
processing and phenotypic measurements are challenging but
promising [64], [70]. Deep learning-based plant-organ segmen-
tation of 3-D point cloud is a relatively new emerging research
area, [47], [71], [72], [73], [69], [74], [75], [76]. So far, 3-D
point cloud-based deep learning has emerged as a promising
technique for achieving high-precision plant organ segmenta-
tion and phenotypic traits extraction from plant point cloud
datasets.

The objective of this research is the sorghum plant-organ
(stem-leaf-panicle) segmentation from LiDAR 3-D point
cloud data using four deep learning models, i.e., PointNet,
PoinNet++, PointCNN, and DGCNN. Subsequently, the
extraction of sorghum plant phenotype traits using the
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segmentation results. The accuracy assessment of the output was
carried out using manually measured information of sorghum
plants’ phenotypic traits. The main research contributions are
as follows:

1) A well-labeled sorghum point cloud dataset for stem-
leaf-panicle segmentation was built. The labeled dataset
contains 800 plant samples generated from 500 individual
sorghum plant point clouds through data augmentation
with manual labels under several growth periods covering
30 days.

2) Addressed the application of four deep learning models
mentioned above for automatically segmenting sorghum
plant organs (stem-leaf-panicle) from 3-D LiDAR point
cloud data.

3) Measured the six important sorghum plant phenotyping
traits such as plant height, plant crown diameter, plant
compactness, stem diameter, panicle length, and panicle
width from the segmented point clouds.

This research showcases the potential of 3-D deep learn-
ing models in achieving precise and efficient segmentation of
sorghum plant organs and phenotyping traits extraction, laying
the foundation for automated sorghum plant phenotyping tasks.

II. RELATED WORK

A. Point Cloud Segmentation and Phenotyping

The automatic segmentation of plant organs from accurate
point cloud data is essential to extracting high-precision phe-
notypic traits and high throughput. Conventional segmentation
methods such as the normal difference [77], octree algorithm
[78], and 3-D skeleton [22] typically employed hand-crafted
features for plant organ segmentation from 3-D LiDAR point
clouds data. To segment stem and leaf instances of individual
maize plants from LiDAR point cloud data, Jin et al. [22] intro-
duced a median normalized-vector growth algorithm. This algo-
rithm directly operated on point cloud data and was inspired by
various sources, including the L1-median algorithm, theory of
density-based spatial clustering of applications with noise, and
Newton’s first law. In paper [34] automatic method was proposed
for the segmentation of maize organs, encompassing skeleton
extraction, coarse segmentation using the extracted skeleton, and
fine segmentation relying on stem-leaf classification. In paper
[33] a robust method was presented that effectively achieved
the segmentation of maize organs and enabled the extraction
of maize architectural traits using LiDAR point clouds data.
Although these methods can manage plants with uncomplicated
structures through labor-intensive and meticulous parameter
tuning, however, they still exhibit limitations regarding their
ability to generalize and accurately segment various crop species
with distinct canopy structures and leaf shapes.

The recent advancements in 3-D-based deep learning methods
demonstrate significant potential in enhancing the generaliza-
tion and accuracy of plant organ segmentation [76], [79]. This
progress can be attributed to extracting complex plant structural
information from large-scale with high-dimensional point cloud
datasets, high-performance hardware, and advancements in neu-
ral network architectures [80]. Deep learning-based methods
utilize labeled point clouds data to learn the features and make

decisions simultaneously from an incorporated deep neural
network. This capability enables the optimization of feature
extraction and decision-making processes jointly, leading to
enhance overall segmentation performance. Many studies have
employed deep learning networks to extract significant point
cloud features essential for semantic and instance segmentation
of plant organs in recent years [18], [35], [68], [71], [75], [76],
[29], [81].

In paper [29], the combined deep learning (Fast R-CNN) and
regional growth methods were presented for the segmentation of
individual maize plants using point clouds obtained from terres-
trial LiDAR scanning. A voxel-based convolutional neural net-
work for the classification and segmentation of maize stems and
leaves have introduced by [71]. In [70], Boogaard et al. demon-
strated the potential of a deep learning-based segmentation
method for partially complete 3-D point clouds of cucumber
plants. In [67], Ao et al. proposed convolutional neural net-
works and a morphological characteristics-based approach for
the segmentation of stems and leaves of individual maize plants
in their natural growth conditions. Li et al. [68] introduced an au-
tomatic approach named DeepSeg3DMaize for the segmentation
of maize plants’ 3-D point clouds. DeepSeg3DMaize has utilized
high-throughput data acquisition techniques and deep neural net-
works to segment maize plant organs accurately and efficiently.
In [82] a plant point cloud segmentation network was proposed
named MASPC_Transform that was based on the separation of
multihead attention and position code techniques. Deep learning
networks PlantNet [76] and PSegNet [75] were designed for
the semantic segmentation of plant organs and leaf instance
segmentation using manually labeled points cloud dataset of
multiple plant species including tobacco, tomato, and sorghum.
Turgut et al. [74] evaluated the impact of synthetic rosebush
plant data on the performance of 3-D point-based deep learning
architectures and performed the real rosebush plants segmenta-
tion into their organs. A 3-D point-based deep learning network
called RoseSegnet was introduced by Turgut et al. [83], designed
explicitly for segmenting point clouds of rosebush plants into
their structural parts. Recently, Wang et al. [35] developed a
distance field-based segmentation pipeline to enable rapid plant
organ location and segmentation. Marks et al. [84] proposed
an approach for segmenting leaves from point clouds recorded
in real field conditions for plant phenotyping. Du et al. [79]
proposed a 3-D point cloud deep learning-based network plant
segmentation transformer and performed the rapeseed plants
semantic segmentation.

III. MATERIALS AND METHODS

A. Experimental Design and Data Acquisition

The experiments were conducted on sorghum plants. These
plants were grown in a growth chamber (greenhouse) at Chung-
nam National University, as shown in Fig. 1. A total of 140
well-planted sorghum samples were chosen and transplanted
into pots. The 3-D LiDAR points cloud of all study samples was
acquired using a Leica BLK360 Imaging scanner (Leica Geosys-
tems, Heerbrugg, Switzerland). The technical specifications of
the LiDAR system are shown in Table I.
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TABLE I
TECHNICAL SPECIFICATIONS OF LEICA BLK360

Fig. 1. Sorghum plants in green house.

Sorghum plants’ 3-D points cloud, and their manually mea-
sured phenotypic traits were acquired under indoor conditions.
After taking point cloud data and RGB images, plant phenotypic
traits were manually measured with standard techniques to
evaluate the performance of the approach. The ground truth data
was collected on the same day. Plant height was measured from
the stem emerging from the soil to the top position of the plant
using a measuring tape. The plant crown diameter was measured
using a measuring tape. Panicle length was measured from the
top position of stem to the top position of the panicle using
a measuring tape. The stem diameter and panicle width were
measured using a caliper at the stem section. 3-D LiDAR point
cloud data processing steps were developed for determining
plant organ segmentation and plant phenotypic traits. Fig. 2
expresses the overall workflow of the proposed approach.

B. Point Cloud Data Preprocessing

The irregularity of the point cloud data structure makes
point cloud analysis challenging [85]. Since raw point cloud
data contains some unwanted noise and artifacts, denoising
and downsampling were performed to enhance accuracy and
processing speed. The downsampling was performed to remove
the redundant points from the input point cloud data. The point
cloud density of each plant was reduced after downsampling.
It was observed that the downsampled point clouds retained
the phenotypic traits of study plants and were sufficient for
efficiently obtaining the plant phenotypic traits. The input point

cloud data was normalized after the downsampling. Feature scal-
ing or normalization is an essential preprocessing step in com-
puter vision-based algorithms because this encloses all features
within a common boundary without causing any information
loss. Annotating point clouds is crucial in applying deep learning
for plant organ segmentation since it labels the data and allows
for efficient model training. Annotating large-scale plant point
clouds point by point is a highly time-intensive process, and a
user-friendly annotation toolkit is presently lacking. Pointwise
annotation was conducted on input point clouds to prepare a
labeled dataset for segmenting different sorghum plant-organ.
Each sorghum plant’s leaf, stem, and panicle were manually
labeled in 0, 1, and 2, respectively, using the segment module
of the CloudCompare software [86] as illustrated in Fig. 3
(annotated point cloud). The proposed approach comprised the
following four sections:

1) point cloud data preprocessing and annotation;
2) deep learning-based plant organ (stem-leaf-panicle) seg-

mentation;
3) phenotypic traits extraction;
4) accuracy assessment.
Fig. 3 shows the illustration of the proposed approach.

C. Deep Learning Architectures Based on 3-D Point Cloud

In this study, four noteworthy deep learning models based on
3-D point clouds have been applied for the challenge of organ
(stem-leaf-panicle) segmentation of sorghum plants, those are
as follows:

1) PointNet [87];
2) PointNet++ [88];
3) PointCNN [89];
4) dynamic Graph CNN (DGCNN) [90].
The design parameters of the four networks, including the

number of features and layers and other hyperparameters like
the radii of local regions, were initially set in their default
settings for 3-D point cloud datasets that contain scenes of indoor
locations. The standard procedure for adjusting these parameters
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Fig. 2. Main steps of the proposed approach for plant phenotypic traits extraction.

Fig. 3. Illustration of the methodology workflow.
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Fig. 4. Architecture of the PointNet model for 3-D point cloud segmentation.

is to experiment with different settings on a validation set to
find the ones that perform the best. In this article, the default
architecture settings of all four models, including feature extrac-
tion at each layer and hyper-parameters, remained unchanged
during the plant organ segmentation. Plant self-similar and
multiscale characteristics must be considered while creating a
3-D point-based architecture to function well on plant data [74].
The architecture should support the network’s many fields of
receptivity in hierarchical order, and their sizes should be simple
to adjust to the scales of different plant structures. The salient
approaches of these deep learning architectures to the challenge
of encoding the 3-D point clouds’ local geometric structure
have been described in the following sections. The parameters
of the architectures that produced the best results have been
presented. Please refer to the source articles for more detailed
information on the architectures’ default structures and other
characteristics.

1) PointNet: In [87], Charles et al. proposed the first deep
neural network architecture called PointNet, which directly pro-
cesses the raw point cloud data as input. Each 3D point’s (x, y,
z) coordinates are transformed separately into high-dimensional
features by multilayer perceptrons (MLP) with shared parame-
ters. All the point features associated with fully connected MLPs
are summarized using a single maximum pooling operation. A
single global feature vector describes the input point cloud as
a result. Individual features based on points are concatenated
from this feature vector and processed by subsequent layers.
MLP layers with shared weights are employed to the concate-
nated features to determine the scores of a class for each point.
Fig. 4 shows the PointNet architecture for the segmentation of
3-D point cloud data. The PointNet architecture learns features
pointwise independently through several MLP layers and uses
a max-pooling layer to extract the global features. Since each
point in PointNet learns features independently, therefore the
final predictions are primarily influenced by the points’ loca-
tions rather than the organization of local geometric structures.
Furthermore, it cannot capture information about the local geo-
metric structures between the points.

2) PointNet++: In [88], Qi et al. proposed a hierarchical
network called PointNet++, which can capture the delicate
geometric structures from each point’s neighborhood. It was
designed to summarize the features based on the point at
different local scales rather than at a global level. The input
point clouds were divided into overlapping local areas, the real
PointNet architecture was employed in these areas, and a feature
vector was generated that captured the geometric structure of the
local neighborhood. The feature extraction and grouping were
done in a hierarchical order. The architecture of PointNet++ is
composed of two sorts of layers: 1) set abstraction (SA) layer
and 2) feature propagation (FP) layer. Sampling and grouping
are the two stages of the SA layer. The furthest point sampling
algorithm was used to select F representative points during the
sampling stage. A local neighborhood with a defined radius
R was generated around each representative point during the
grouping stage; consequently, local groups overlap. M points
were chosen at random to form a group in this neighborhood. The
PointNet architecture was employed in each group separately
to extract summarized features across all points in the group.
Feature vectors based on the group to the input point cloud’s
original points were propagated through the FP layers. Interpo-
lation from the features of a point’s nearest neighbors was used
to propagate features to that point. The PointNet architecture
was applied to revise the features of each point by integrating
interpolated and existing features from the SA stage. Fig. 5
shows the PointNet++ architecture for the segmentation of 3-D
point cloud data. The set abstraction layer takes anN × (d+ C)
matrix as input, where N denotes the number of sample points,
d is the dimension of the coordinates of the points, C is the
dimension of the point features, and K denotes the number of
points in the centroid points neighborhood.

3) PointCNN: In [89], Li et al. introduced a deep learning
architecture called PointCNN. This architecture was a gener-
alization of CNN that takes advantage of spatially local corre-
lation from point cloud data. A convolution operator defined
as X-Conv has been presented in PointCNN architecture. This
operator weights and permutes the neighbors’ feature of input
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Fig. 5. Demonstration of hierarchical feature learning PointNet++ architecture for 3-D point cloud segmentation.

Fig. 6. PointCNN architecture for 3D point cloud segmentation.

points before a standard convolution processes them. In the
X-Conv process, a transformation matrix of sized K ×K was
predicted for K nearest neighbors’ points with MLPs. Then the
standard convolution layers were employed for the transformed
features. The representative points were produced using the
farthest point sampling algorithm to define the wide-open fields
for convolution. And the features that emerged from the X-conv
operator were accumulated from these representative points.
When points were dilated by a factor and the X-conv operator
was applied hierarchically, then the resulting point features were
accumulated into fewer points and represented wider spatial
areas. An encoder-decoder structure was used to process the
point features for segmentation. Fig. 6 shows the architecture of
the PointCNN model for the segmentation of 3-D point cloud
data. The nearest neighbors number employed in convolution

was denoted by K, the sampled points number was denoted by
N, and the point dilation rate was denoted by D.

4) Dynamic Graph CNN (DGCNN): In [90], Wang et al. pro-
posed a deep learning architecture called DGCNN. It was
designed to incorporate the 3-D points’ local neighborhood
information directly within the network instead of an indi-
vidual grouping process performed by PointNet++. A graph
structure was used to represent a point’s local neighborhood.
Edge features were extracted using the EdgeConv technique to
encode the spatial correlation between the point and its K-nearest
neighbors. The MLPs employed for edge representations rather
than point locations were used to extract the edge features. In
contrast to CNN structures employed in conventional grids,
fixed graphs were not applied. In each layer, the K neighbor-
hoods of the point feature changed; therefore, the graphs were
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Fig. 7. Architecture of the DGCNN model for 3D point cloud segmentation.

updated. The geometrical closeness between nearest neighbor
points was considered only in the first layer of the architecture.
In the next layers, the edge representations were constituted
between nearest neighbors who were close to each other in the
feature space. However, that was advantageous in disseminating
information about the closeness in the feature space. The local
spatial grouping of a multi-scale hierarchy does not exist in
DGCNN. The structure of local geometry was only captured
at an extremely localized level, namely within a point’s nearest
neighbors. Fig. 7 shows the architecture of the DGCNN model
for the segmentation of 3D point cloud data.

D. Segmentation Performance Evaluation

The quantitative evaluation of each deep learning model’s seg-
mentation results for all predicted points was accomplished us-
ing the annotated ground truth data. The plant organ (stem-leaf-
panicle) segmentation result was examined for each sorghum
plant. Higher true positive (TPc), lower false positive (FPc),
and lower false negative (FNc) are generally associated with
high accuracy [91]. Where C ∈ {leaf, stem, panicle} was the
class of the organ part of a sorghum plant. Based on the confu-
sion matrix, the four often used evaluation indicators, including
recall (Re), precision (Pr), Intersection over Union (IoU), and
F1-score (F) were adopted to evaluate the plant organ segmen-
tation accuracy of each deep learning model. The segmentation
evaluation indicators can be defined as follows:

Re =
TPc

TPc + FNc
(1)

Pr =
TPc

TPc + FPc
(2)

IoU =
TPc

TPc + FNc + FPc
(3)

F =
2PrRe

Pr +Re
(4)

overall accuracy = total correctly segmented points
total points of each individual sorghum . (5)

E. Phenotypic Trait Measurement

The segmented plant organ (stem-leaf-panicle) points were
used to measure the phenotypic traits at individual sorghum plant
level. Six phenotypic traits were measured from the segmented
point clouds: plant height, crown diameter, plant compactness,
stem diameter, panicle length, and panicle width. There are
two types of morphological traits that can be identified in the
point cloud data: 1) holistic phenotypic traits and 2) compo-
nent phenotypic traits. Holistic phenotypic traits evaluate the
complete plant structure, like plant height, crown diameter, and
plant compactness. Component phenotypic traits examine the
individual plant organs, such as stem diameter, panicle length,
and panicle width. The sorghum plant height was calculated
using the difference between the maximum and minimum (plant
stem emerges from the soil) z—coordinate values of the point
clouds. Similarly, the panicle length was calculated using the
difference between the maximum and minimum z - coordinate
values of the segmented point clouds of sorghum panicles.
The plant height (H) and panicle length can be estimated using
the following equation:

H = zmax − zmin. (6)

The crown diameter of a sorghum plant was estimated using
the difference between the maximum and minimum x - coordi-
nate values of the point clouds. The crown diameter (Cd) can
be calculated as follows:

Cd = xmax − xmin. (7)
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Fig. 8. Phenotypic trait measurement (stem diameter and panicle width). (a) Original stems of sorghum. (b) Straight-line segment was fitted to the stem points
cloud using the least squares approach. (c) Original panicle of a sorghum. (d) Orthogonal projection of the sliced panicle points cloud with ellipse fitting.

The plant compactness of a sorghum plant was determined
through dividing plant crown diameter by plant height. The plant
compactness (Cp) can be calculated as follows:

Cp =
Cd

H
. (8)

Stem diameter was computed using the following steps:
1) A straight-line segment was fitted to the stem point clouds

using the least squares method, as shown in Fig. 8(a) and
(b). The line segment’s length was equivalent to the stem
height.

2) All projection distances from the stem points to the line
segment were calculated.

3) Determined the median of these distances.
4) Finally, used twice the median to compute the stem diam-

eter.
In the segmented sorghum panicle points cloud, because of

the semi-compact panicles’ morphology [see Fig. 8(c)], the
four slices of panicle with 1 cm thickness of each slice were
used for measurement of the panicle width. The panicle width
was estimated based on a roughly elliptical cross-section of
the panicle’s; hence the points cloud of each panicle slice was
orthogonally projected onto the Y–Z plane, as shown in Fig. 8(d).
An ellipse fitting operation was then applied to the projected
points cloud using built-in functions of the OpenCV library [92].

This function first finds the contour and then approximates an
ellipse by reducing the algebraic separation to its constraints
[93]. The fitted ellipse’s major axis represents the panicle width
along the elliptical cross-section’s major axis [see Fig. 8(d)];
therefore, the panicle width can be determined by averaging the
major axes of all the panicle slices’ ellipses.

F. Phenotypic Trait Extraction Evaluation

Linear regression analysis was carried out between the deep
learning segmentation model derived measurements and the
manual measurements for all extracted phenotypic traits. The
root-mean-square error (RMSE), mean absolute percentage er-
ror (MAPE), and coefficient of determination (R2) statistics
were calculated to examine the quantitative accuracy of extracted
phenotypic traits. RMSE estimates the variations between the
predicted and manually measured plant phenotypic traits. MAPE
measures the accuracy of a model and R2 assesses the linear re-
lationships between the predicted and manually measured plant
phenotypic traits. These statistical parameters were calculated
as follows:

RMSE =

√∑n
i=1 (xi − x̂i)

2

n
(9)
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Fig. 9. LiDAR 3-D point cloud data of a sorghum plant. (a) Raw data.
(b) Denoised data. (c) Input data.

MAPE =
1

n

n∑
i=1

∣∣∣∣xi − x̂i

xi

∣∣∣∣ (10)

R2 = 1−
∑n

i=1 (xi − x̂i)
2∑n

i=1 (xi − x̄)2
(11)

where n represents the total number of plants to be compared,
xi represents the values of manually measured and x̂i represents
the values of phenotypic traits predicted from the deep learning
segmentation model for the ith plant, and x̄ represents the mean
of manually measured results.

IV. RESULTS AND DISCUSSION

The raw input point cloud data as shown in Fig. 9(a) was
denoised using the statistical outlier removal tool in open3d.
The resultant denoised point cloud of a sorghum plant is shown
in Fig. 9(b) and the input data in Fig. 9(c).

A. Stem-Leaf-Panicle Segmentation

Four deep learning models (PointNet, PointNet++,
PointCNN, and DGCNN) have been tested to segment
sorghum plants to their organs (stem-leaf-panicle). The default
architecture settings, including feature extraction at each
layer, remained unchanged during the experiments. PointNet,
PointNet++, PointCNN, and DGCNN were trained with 100,
201, 100, and 20 epochs, respectively. The learning rate was
0.001 for PointNet, PointNet++, and DGCNN and 0.000001
for PointCNN. The batch size of the data was 8 for PointNet,
PointCNN, and DGCNN and 32 for PointNet++. All four
deep-learning models were trained using a manually labeled
dataset of 800 training samples generated from 500 sorghum
plants through data augmentation. A test set comprising
48 individual sorghum plants was utilized to evaluate the
segmentation results. The training time for the PointNet model
was approximately 2 h, with a prediction time of around 25
min for the testing set. Similarly, PointNet++ required around
3 h for training and about 30 min for predicting the testing set.
On the other hand, PointCNN took around 3 h and 15 min for
training, with a prediction time of approximately 30 min for the
testing set. Lastly, DGCNN took training time of around 3 h
and 35 min and about 45 min to predict the testing set. PointNet
and PointNet++ have relatively fast inference times because
these models were designed to process individual point clouds
independently. Similarly, PointCNN makes spatially local
correlations from point clouds; hence, it has relatively faster
inference times than DGCNN. In contrast, DGCNN considers

local neighborhoods of point clouds and builds a graph structure
to capture spatial relationships. Therefore, DGCNN involves
more complex computations than other models, which take
slightly longer inference times. The segmentation results were
carried out on a workstation with Intel (R) Xeon (R) Gold 6230
CPU @ 2.10 GHz × 80, 256 GB RAM, and 4 GPUs NVIDIA
RTX TITAN 24 GB per GPU.

The segmentation performance evaluation results using all
four deep learning models for 48 sorghum testing plants obtained
by quantitative indicators are shown in Table II. The PointNet
segmentation results of the sorghum plant testing data, the mean
recall, precision, F1-score, IoU, and accuracy for stem-leaf-
panicle segmentation were 93.7%, 84.0%, 88.3%, 80.2%, and
82.3%, respectively. Likewise, the PointNet++ segmentation
results of the test set, the mean recall, precision, F1-score, IoU,
and accuracy for stem-leaf-panicle segmentation were 94.9%,
94.2%, 94.8%, 90.7%, and 91.5%, respectively. Similarly, the
PointCNN segmentation results of the test set, the mean recall,
precision, F1-score, IoU, and accuracy for stem-leaf-panicle
segmentation were 94.2%, 91.3%, 92.5%, 86.9%, and 87.9%,
respectively. And the DGCNN segmentation results of the test
set, the mean recall, precision, F1-score, IoU, and accuracy
for stem-leaf-panicle segmentation were 93.3%, 88.4%, 90.7%,
83.6%, and 85.6%, respectively. The segmentation results of a
testing plant for all four deep learning models trained with 800
sorghum plants are shown in Fig. 10. Predicted output stem-leaf-
panicle segmentation results were correlated with an annotated
ground truth testing plant. The precise segmentation results of
PointNet++ and PointCNN revealed slight differences, while
PointNet and DGCNN showed considerable variations close to
the top part of a plant, where leaves grow out from the stem.
Fig. 11 visualized the sorghum plant organ (stem-leaf-panicle)
segmentation results obtained from deep learning segmentation
networks.

Sorghum plant organ (stem-leaf-panicle) segmentation is es-
sential for component plant phenotypic trait extraction from
LiDAR 3-D point cloud data. In most existing approaches, the
user defines thresholds and customized features, and empirical
rules are constructed to segment organs based on these thresh-
olds [22], [94]. The utilized four deep learning models in this
paper can directly segment plant organs from LiDAR 3-D point
cloud data that contains numbers of sorghum plants of differ-
ent shapes and sizes. Instead of using user-defined thresholds
and empirical rules, these models segment the plant organ by
point-based networks. The used models for stem-leaf-panicle
segmentation may be preferable to existing methods because
they have automatically estimated the acceptable results without
requiring time-consuming threshold calibration. An approach to
extracting features on multiple scales is essential to account for
intra-class size differences, including disparity in stem diameter
or panicle length and width, and intra-class geometric discrep-
ancy, including a wide range of curvature on the leaves. The
complex plant structure significantly impacts local parts vari-
ability, which accompanies different parts close to one another.
Therefore, the training dataset must be able to consider various
local geometric phenomena, including stems, touching leaves
and panicles.
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TABLE II
ACCURACY ASSESSMENT OF FOUR DIFFERENT 3D POINT-BASED DEEP LEARNING NETWORKS FOR STEM-LEAF-PANICLE SEGMENTATION OF THE TESTING SET

Fig. 10. Sorghum plant segmented using the deep neural networks trained
with annotated sorghum plants. (a) Ground truth. (b) PointNet. (c) PointNet++.
(d) PointCNN. (e) DGCNN.

The theoretical contributions of all employed four deep learn-
ing models for the segmentation of 3-D LiDAR point clouds are
as follows.

1) PointNet consists of its ability to process unordered point
clouds, learn global features independently, utilize shared-
weight MLPs, and incorporate a segmentation network.

Fig. 11. Visualization of a sorghum plant organ (stem-leaf-panicle) segmen-
tation results obtained using the four deep neural networks: (a) PointNet.
(b) PointNet++. (c) PointCNN. (d) DGCNN.

2) PointNet++ lies in its hierarchical point cloud processing,
the introduction of SA and FP modules for local and
global feature learning, and its adaptive feature learning
mechanism. These contributions enable PointNet++ to
capture complex geometric structures accurately.

3) PointCNN comprises its order-independent convolutional
operator, adaptive neighborhood learning, feature re-
weighting, and point-wise learning and prediction. These
contributions enable PointCNN to process unordered
point clouds effectively, capture local geometric informa-
tion, emphasize informative features, and produce accu-
rate segmentation.

4) DGCNN incorporates its EdgeConv operations to capture
local geometric structures by constructing a local neigh-
borhood dynamic graph and learning pointwise. These
theoretical contributions have advanced the field of deep
learning-based segmentation and enabled accurate and
efficient segmentation of sorghum plants organ from 3D
LiDAR point cloud data.

This study performed four notable deep learning models
(i.e., PointNet, PointNet++, PointCNN, and DGCNN) for the
sorghum plant organ segmentation with different plant heights,
leaf numbers, and semi-compact panicles morphology. Out of
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Fig. 12. Comparison of extracted sorghum plant phenotypic traits using PointNet++ deep neural network segmentation model and manually measured values.
(a) Plant height, (b) plant crown diameter, (c) plant compactness, (d) stem diameter, (e) panicle length, and (f) panicle width.

these four models, PointNet++ gave the best part segmentation
result. However, the PointNet++ segmentation findings have
slightly diverged from the ground truth labeled point clouds,
generally at the stem-leaf junctions and upper leaf clusters.
PointNet model, at the point level, generated 83.2% maximum
and 81.3% minimum stem-leaf-panicle segmentation accuracy
with a mean accuracy of 82.3%. Similarly, the PointNet++
model estimated 92.5% maximum and 90.4% minimum seg-
mentation accuracy, with a mean accuracy of 91.5%. While the
PointCNN model calculated 88.3% maximum and 87.4% min-
imum segmentation accuracy, with a mean accuracy of 87.9%.
Likewise, DGCNN measured 86.7% maximum and 84.5%

minimum segmentation accuracy, with a mean accuracy of
85.6%. The sorghum plant-organ segmentation performance
of the three deep learning models (PointNet++, PointCNN,
DGCNN) was promising because they have given more than
85% segmentation mean accuracy. In this study PointNet++
model gave more accurate segmentation result as compared
to PointCNN and DGCNN; therefore, PointNet++ model’s
segmentation results were opted for phenotyping traits measure-
ments but may also use the PointCNN and DGCNN models
for segmentation and phenotyping traits extraction based on
the complexity of point cloud data and the number of train-
ing samples. It may require careful hyperparameter tuning to
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achieve optimal results. To determine the most appropriate 3D
deep learning model for plant-organ segmentation, the specific
characteristics of point cloud data, such as point density and
objects’ complexity, are essential. Overall, plant organ segmen-
tation results propound that the PointNet++ model is robust
for various sorghum plants with variable plant heights, growth
cycles, leaf counts, and panicles. Although, the PointNet++
segmentation model still has several drawbacks, particularly in
segmenting the upper leaf clusters. Because, despite manual
observation, determining the topmost point of the sorghum stem
is difficult. Thus, a certain amount of model segmentation error
of the clusters of the top leaf and estimation of the stem height
should be tolerable [68].

B. Phenotypic Trait Extraction

The accuracy evaluation of the extracted phenotypic traits
based on the PointNet++ segmentation results was compared to
the manually measured trait values. Fig. 12 shows the extracted
validation results of six phenotypic traits (i.e., plant height,
plant crown diameter, plant compactness, stem diameter, panicle
length, and panicle width) for the 48 sorghum testing plant sam-
ples. At sorghum plant level, the estimated R2 of plant height,
plant crown diameter, and plant compactness were 0.97, 0.96,
and 0.94, respectively. The estimated RMSE of plant height,
plant crown diameter, and plant compactness were 1.07, 1.58,
and 0.03 cm. The estimated MAPE of plant height, plant crown
diameter, and plant compactness were 2.92, 3.76, and 1.88. At
sorghum stem level, the estimatedR2, RMSE and MAPE of stem
diameter were 0.90, 0.67 mm, and 7.34, respectively. At sorghum
panicle level, the estimated R2 of panicle length, and panicle
width were 0.95 and 0.88, respectively. The estimated RMSE of
panicle length, and panicle width were 0.37 and 0.63 cm. And the
estimated MAPE of panicle length, and panicle width were 1.11
and 5.76. Extracted phenotypic trait results correlation between
the manual measurements for stem diameter, and panicle width
were medium, and plant height, plant crown diameter, plant
compactness, and panicle length correlations were high.

All the extracted phenotypic traits depend on the point cloud
segmentation results at the plant level. Linear regression analysis
ofthe extracted phenotypic traits revealed that the correlation of
stem diameter (R2 = 0.90) and panicle width (R2 = 0.88)were
slightly lower than the other four parameters. In the case of stem,
the obtained slightly lower correlation result may be due to the
dissimilarity of the stem diameter size from bottom to top and
the segmentation results at the stem-leaf junctions. Similarly
in the case of panicle, the attained slightly lower correlation
result may be due to the dissimilarity of the panicle width
from bottom to top and the semi-compact panicles morphology
[95]. The system-derived plant height, plant crown diameter,
plant compactness, stem diameter, panicle length and panicle
width of sorghum plants were well correlated with the manual
measurements because the estimated R2 were 0.97, 0.96, 0.94,
0.90, 0.95, and 0.88, respectively. The high correlation between
system-derived phenotypic traits with manual measurements
validates the accuracy and utility of our approach for extracting
phenotypic traits.

V. CONCLUSION

This article presents four 3-D point cloud-based deep learning
models (i.e., PointNet, PointNet++, PointCNN, and DGCNN)
for the segmentation of sorghum plants into their stems, leaves,
and panicles. Subsequently, the six-sorghum plant phenotypic
traits were extracted using the segmented point clouds. The
annotated 3-D point cloud dataset was used for training the deep
learning networks. The segmentation results indicate that the
performance of the PointNet model was average. With a mean
accuracy of 91.5%, the PointNet++ model produced the best
segmentation results. This accomplishment of the PointNet++
segmentation model may be because of its simplicity in esti-
mating the hierarchical local region’s size needed to feature
extraction at multi-scales. The PointCNN and DGCNN models
produced good segmentation results. However, defining local
regions for extraction of features by K-neighborhood of points is
less realistic for modeling the geometry of a plant. Since the ideal
K for each scale will rely on the density of the point and the plant
part structure’s size of the 3-D point cloud. Six phenotypic traits
have been measured precisely (i.e., plant height, plant crown
diameter, plant compactness, stem diameter, panicle length, and
panicle width) using the segmentation results of the PointNet++
model for 48 sorghum plant testing samples. Moreover, the R2

values for all the phenotypic traits were between 0.88 to 0.97.
The sorghum plant phenotypic traits extraction results show that
the 3-D point cloud based PointNet++ deep learning segmen-
tation model is well suited for measuring the traits investigated
in this study.
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