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Crowdsourcing Experiment and Fully Convolutional
Neural Networks for Coastal Remote Sensing of

Seagrass and Macroalgae
Brandon Hobley , Michal Mackiewicz , Julie Bremner , Tony Dolphin , and Riccardo Arosio

Abstract—Recently, convolutional neural networks and fully
convolutional neural networks (FCNs) have been successfully used
for monitoring coastal marine ecosystems, in particular vegetation.
However, even with recent advances in computational modeling
and data acquisition, deep learning models require substantial
amounts of good quality reference data to effectively self-learn
internal representations of input imagery. The classical approach
for coastal mapping requires experts to transcribe in situ records
and delineate polygons from high-resolution imagery such that
FCNs can self-learn. However, labeling by a single individual limits
the training data, whereas crowdsourcing labels can increase the
volume of training data, but may compromise label quality and
consistency. In this article, we assessed the reliability of crowd-
sourced labels on a complex multiclass problem domain for es-
tuarine vegetation and unvegetated sediment. An interobserver
variability experiment was conducted in order to assess the statis-
tical differences in crowdsourced annotations for plant species and
sediment. The participants were grouped based on their discipline
and level of expertise, and the statistical differences were evaluated
using Cochran’s Q-test and the annotation accuracy of each group
to determine observation biases. Given the crowdsourced labels,
FCNs were trained with majority-vote annotations from each group
to check whether observation biases were propagated to FCN per-
formance. Two scenarios were examined: first, a direct comparison
of FCNs trained with transcribed in situ labels and crowdsourced
labels from each group was established. Then, transcribed in situ
labels were supplemented with crowdsourced labels to investigate
the feasibility of training FCNs with crowdsourced labels in coastal
mapping applications. We show that annotations sourced from dis-
cipline experts (ecologists and geomorphologists) familiar with the
study site were more accurate than experts with no prior knowledge
of the site and nonexperts, with our results confirming that biases
in participant annotation were propagated in FCN performance.
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Furthermore, FCNs trained with a combined dataset of in situ and
crowdsourced labels performed better than FCNs trained on the
same imagery with in situ labels.

Index Terms—Convolutional neural network (CNN),
crowdsourcing, deep learning (DL), multispectral, remote sensing.

I. INTRODUCTION

COASTAL ecosystems, such as wetlands, estuaries, and
coral reefs, represent dynamic and important nurturing

habitats for a wide variety of plants, fish, shellfish, and other
wildlife [1]. With growing concerns over climate change, these
coastal areas will be subject to changing atmospheric and ocean
temperatures, sea levels, ocean chemistry, weather patterns, and
the increased demands of a growing global population. This
emphasizes the need to create and act on strategies that maintain
a sustainable balance of coastal ecosystem health while also
effectively managing the use of resources that are derived from
these ecosystems [2], [3].

In coastal monitoring, remote sensing has provided a major
platform for ecologists to assess and monitor sites in many
applications [4], [5]. Satellite imagery can provide global to re-
gional observations at regular sampling intervals with successful
applications for coastal management [2]. However, this avenue
of data acquisition often struggles with cloud contamination,
oblique views, costs for data acquisition, and coarse resolution
relative to the often narrow features of interest that stretch along
the coast [6]. The shift to uncrewed aircraft systems (UASs) and
commercially available cameras tackles the latter issues as it
resolves coarse satellite resolution (typically 2–30 m) by collect-
ing several overlapping very high resolution (VHR) images and
stitching sensor outputs together using Structure from Motion
(SfM) techniques to create high-resolution orthomosaics [7], [8]
(commonly less than 0.1 m).

Parallel to the advancements in data acquisition, computer
vision (CV) has also improved over the past decade with deep
learning (DL) [9] and the introduction of convolutional neural
networks (CNNs) [10]. These methods have surpassed previous
state-of-the-art results in a wide variety of CV applications [10],
[11], [12]. Traditionally, supervised machine learning (ML)
methods can be defined by two separate components: feature
extraction and model training. Instead, CNNs learn hierarchical
abstract representations of input imagery in a self-learning fash-
ion, which in effect combines feature learning and supervised
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classifier training in one optimization [9]. Fully convolutional
neural networks (FCNs) are an adaptation of CNNs that perform
per-pixel classifications and enable contextual features to be
extracted within a wide receptive field while also preserving
the spatial origin of these features to produce a fine-grained
and spatially explicit segmentation of the object [11], [13]. This
is appropriate for remote sensing mapping applications, where
aerial imagery can be segmented into meaningful sets of classes
in order to delineate objects or species of interest [14], [15], [16],
[17], [18], [19].

This said, even with the advent of UASs and FCNs to map
coastal environments, the quantity and quality of data labels
is a pivotal concern in many real-world scenarios because DL
models perform best with large, labeled, training datasets [9],
[20]. In remote sensing, reference observations (FCN training
data) are often acquired in situ, which involves high logistic
efforts, potential inaccuracies due to geolocation errors as well
as sampling and observation bias [21], [22]. Moreover, the
volume of data generated with UAS imagery may cover a
substantial spatially continuous area with respect to the real
world, yet the ratio between the area covered via in situ sur-
veying and the total area covered in imagery is often relatively
small [16], [23]. Methods, such as transfer learning [24], data
augmentation [25], and semisupervision [26], [27], can provide
tools for FCNs to self-learn if there are limited amounts of
labeled data, as is often the case for environmental monitoring.
However, an alternative for efficient in situ data collection is
visual identification and delineation of training data directly
from orthomosaics [28], [29], [30]—possible in UAS imagery
because the resolution is sufficiently high that even features
as small as 10 × 10 cm can often be accurately identified
and labeled. Further to this, crowdsourced labels can provide
an even more cost-effective alternative to laborious labeling
procedures from aerial imagery involving individual domain-
specific experts with studies showing that aggregated labels can
provide better quality generalization in ML modeling, which
draw parallels with field of expert frameworks and ensemble
learning [31], [32].

Remote sensing applications have also leveraged the use of
crowdsourced labels to supplement aerial imagery datasets in
a variety of manners [33]. Commonly, web-based applications
prompt participants to classify binary tasks with known GPS
information for accurate geolocation. This has led to successful
workflows that combine DL and crowdsourcing for several study
sites: Guatemala, Laos, and Malawi using MapSwipe [34]; the
Missing Maps humanitarian project using OpenStreetMap [35];
settlements in Nigeria, Somalia, Pakistan, and Afghanistan using
Tomnod platform [36]; and for crop mapping in South East
India using Plantix [37]. Furthermore, coastal surveying has also
leveraged crowdsourced annotations for DL applications of litter
mapping on the shores of Xabelia beach in Lesvos, Greece [38],
and shoreline change mapping in two open-coast sandy beaches
located within the Sydney metropolitan area [39].

These studies focus on combining crowdsourced labels with
DL models on binary problem domains to avoid ambiguity for
participants and erroneous labeling [33]. In contrast, coastal
mapping requires the identification of multiple feature classes,

some of which are superficially similar depending on the situa-
tion (e.g., sand and mud, seagrass, and filamentous algae).

In this article, we tackled the problem of deriving crowd-
sourced training data for estuarine vegetation and unvegetated
sediment ecosystems at Budle Bay (Northumberland, U.K.).
We performed an interobserver experiment of crowdsourced
annotations on a complex multiclass problem domain that in-
cludes intertidal coastal species, such as seagrass, saltmarsh,
and macroalgae. The experimental population consisted of 12
participants split into 3 groups based on their discipline and level
of expertise in habitat mapping. The experiment was analogous
to crowdsourcing labeled data in remote sensing applications as
participants were prompted to classify predetermined points.
Our experimental setup comprised two sets of points: a set
whereby the true semantic value of each human annotation was
known according to an in situ survey of the study site conducted
by the U.K. Centre for Environment, Fisheries and Aquaculture
Science (Cefas) and U.K. Environment Agency (EA), and an
extra set of points created through expert photointerpretation to
balance class distribution (see Section II-D).

The analysis of our interobserver variability experiment uses
Cochran’s Q-test to assess the statistical differences of crowd-
sourced annotations from each group. Furthermore, the an-
notation accuracy and a per-class analysis of crowdsourced
annotations were used to assess for any potential observation
biases.

Given the annotations from the interobserver experiment, the
feasibility of FCNs trained with crowdsourced annotations was
investigated in two scenarios: First, four FCNs were trained
with different versions of labeled data on the same imagery.
Three FCNs were trained with labels based on majority-vote
annotations from each participant group in the interobserver
experiment and the other FCN was trained with transcribed
labels from the in situ survey. This scenario allows for a di-
rect performance comparison for FCNs trained with in situ
labels and crowdsourced labels, and evaluates whether biases
in crowdsourced annotations were propagated in FCN perfor-
mance. The second scenario investigates the feasibility of sup-
plementing transcribed in situ labels with crowdsourced labels
using two FCNs. For this scenario, one FCN was trained with
the set of points, as described in Section II-D, whereas the
other FCN was trained with a combination of transcribed in
situ labels and crowdsourced labels on the same imagery. Con-
sequently, we list the following contributions in the proposed
article.

1) Discipline experts (ecologists and geomorphologists) fa-
miliar with the study site were more accurate than experts
with no prior knowledge of the site and nonexperts.

2) FCNs trained with crowdsourced labels from discipline
experts familiar with the site had comparable performance
to FCNs trained with in situ labels.

3) FCNs trained with a combined labeled set of in situ labels
and crowdsourced labels were more accurate than FCNs
trained with in situ labels on the same imagery.

The rest of this article is organized as follows. Section II-B
and C details the study site. Section II-E describes the exper-
imental setup and Section II-F describes the FCN model and
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Fig. 1. Distribution of tags recorded during the in situ survey (left) and the full set of points to be annotated, comprising the in situ points plus those determined
using expert photointerpretation (right).

parameter training. Section III-A and B presents the results of
the interobserver experiment and FCN experiments, and Section
IV-A–C presents the analysis and discussion of the interobserver
and FCN experiments. Finally, Section V concludes this article.

II. METHODS

A. Study Site

The research focused on Budle Bay, Northumberland, U.K.
(55.625◦N, 1.745◦W). Budle Bay is a large (c. 300 ha) estuarine
embayment with a single tidal inlet [40], [41], [42]. Sinuous
and dendritic tidal channels are present within the estuary, and
bordering the channels are areas of seagrass and various species
of macroalgae. The tidal range varies between 1 and 4 m for
the majority of the year and the estuary is fully drained on low
spring tides.

B. Image Collection

Full details of the data collection can be found in [23].
Fig. 1 displays a VHR orthomosaic of Budle Bay created from
the Cefas and EA RPA survey in September 2017 using Agisoft’s
MetaShape [43] and SfM. SfM techniques rely on estimating
intrinsic and extrinsic camera parameters from overlapping im-
agery [44]. A combination of appropriate flight planning in terms
of altitude and aircraft speed, and the camera’s field of view
are important factors for producing good quality orthomosaics.
For this work, a MicaSense RedEdge3 multispectral camera
was used to capture the site. The camera consisted of five
narrow-band filters for red (655–680 nm), green (540–580 nm),
blue (459–490 nm), red edge (705–730 nm), and near-infrared
(800–880 nm) channels at a ground sampling distance of ap-
proximately 8 cm.

The resulting VHR orthomosaic was orthorectified using
GPS logs of camera positions and ground control markers
spread out across the site. This process ensured that the mosaic
was well aligned with respect to the real world and ecologi-
cal features present within the coastal site. The orthomosaic
had 32 647×26 534 pixels in five image bands. For ease of
processing, the orthomosaic was split into 24 nonoverlapping

tiles of 6000×6000 pixel images with each image containing
geographic information for further processing.

C. In Situ Survey and Class Domain

The accompanying ground survey identified 13 ecological
classes grouped into background sediment, algae, seagrass, and
saltmarsh.

Classes defining background sediment were rock, gravel,
mud, and sand. The in situ measurements of unvegetated sedi-
ment were predominately in the presence of water and moisture.
However, as parts of the orthomosaic included dry sand, an
extra sediment class was added through photointerpretation (16
polygons). Two heuristics for delineating dry sand polygons
were defined: first, the spectral reflectance of sand varies with
the presence of surface moisture and presents higher reflectance
intensity for patches of dry sand [45]. Therefore, polygons were
delineated by examining bright unvegetated areas in Fig. 1.
Second, each generated polygon was cross checked with the
topographic digital surface model (DSM) to ensure that the
patches of dry sand only occur if the surface level was raised.

Algal classes include microphytobenthos, Enteromorpha sp.,
and other macroalgae (inc. Fucus sp.). Finally, the coastal vege-
tation classes were seagrass and saltmarsh. Thus, a total of seven
classes were listed as follows.

1) Background sediment: dry sand and other bareground.
2) Algae: microphytobenthos, Enteromorpha, and other

macroalgae (including Fucus).
3) Seagrass: Zostera noltii and Zostera angustifolia merged

into a single class.
4) Other plants: saltmarsh.
The in situ survey recorded 108 geographically referenced

tags with the percentage cover of all listed ecological features
within a 300-mm radius. The percentage cover was estimated
in quadrat sampling fashion [46], [47]. For each in situ mea-
surement, the class value with maximum percentage cover was
chosen as the label.

D. Class Distribution

The class distribution of in situ measurements was not
balanced, which may add cognitive bias and, consequently,
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skew results in human annotations for the experiment [48].
Recognizing biases during crowdsourced data collection efforts
is an important step to countering the effect these may impose
on model training and is an enabling factor for algorithmic
fairness [49]. Therefore, a set of points from the in situ survey
were combined with extra points added through expert photoin-
terpretation (by the lead author) in order to balance the class
distribution for the experimental setup. From the original set
of 108 in situ points, a balanced set of 53 points was chosen
(the remaining 55 in situ points were used for FCN performance
evaluation, see Section III-B). Then, added points through pho-
tointerpretation were based on class-dependent heuristics.

First, no extra points for dry sand were added, as the set of
photointerpreted polygons covered a substantial area to generate
enough points for both the experiment and FCN testing. Other
bareground was a sediment class that comprised wet sediment
features, such as wet sand and mud. Selected points presented
dark brown or gray color rugged texture and low-elevation values
relative to the rest of the site. Generally, added points were
sampled within a close vicinity of known in situ records. But,
this was not considered an important factor for other bareground
points as long as color, texture, and elevation within a 300-mm
(6×6 image patch) radius was consistent.

Vegetation classes were split into three sets: algae, seagrass,
and saltmarsh. The geolocation of extra points for vegetation
classes was always within the vicinity of known in situ points to
establish a baseline for comparing color and texture.

Saltmarsh points were found to be easily identifiable due to
slight elevation changes in the DSM but also because coastal
saltmarsh occupies the interface between land and sea [50].
Therefore, saltmarsh points were mostly present on estuary
borders. Identifying points for both species of intertidal seagrass
was dependent on the following texture and color features:
both species occur in mixed beds of waterlogged depressions
between free-draining hummocks dominated by Zostera noltii
and presented sparse leaves with light yellow green or green
color [51], [52], [53].

Microphytobenthos are microscopic organisms that inhabit
the upper millimeters of illuminated wet sediments, typically
appearing only as a subtle greenish shading [54]. Identifying
extra points for microphytobenthos was only possible within
very close vicinity of known in situ points, with color (greenish
shading) used as the identifier. Extra points for Enteromorpha
sp. had to present bright green color, while other macroalgae
(inc. Fucus), with a similar texture to Enteromorpha sp., was
presented in a dark brownish color [55], [56]. Enteromorpha
sp. and other macroalgae were spatially continuous compared
with seagrass, which was more likely to be sparse. This further
aided in distinguishing and picking extra points for these classes.
While the vegetation species may be found in other circum-
stances (e.g., saltmarsh hummocks can grow amongst seagrass
slightly away from estuary borders), our intent was to maximize
our confidence that our selected points were classified correctly
rather than to select across the range of possible appearances
for each species. Overall, extra 54 points were added through
expert photointerpretation to maintain the class distribution
balance. Therefore, the set of points to be annotated for each

Fig. 2. Sample images representative of vegetation classes used in the
analyses.

Fig. 3. User interface for providing participant annotations during the
experiment.

participant comprised 119 points whereby 53 points were drawn
from the in situ survey and extra 54 were created through
photointerpretation and the remaining 12 points were randomly
selected from dry sand polygons.

E. Experimental Setup

The goal of the experiment was to examine the variability
in annotations from multiple participants with differing back-
grounds in research and expertise with marine habitat mapping.
Each participant was presented with a unique and random order
of points to be annotated and a small set of labeled sample
images representative of the vegetation classes to assist with
identification. Figs. 2 and 3, respectively, display the set of
labeled sample images presented to each participant and the user
interface available to participants during the experiment. Partic-
ipants used ArcMap 10.6.1 to visualize and annotate samples.

Each participant generated 119 annotations with each cell
containing a semantic value corresponding to the class domain
in Section II-D. The participant population was split into three
groups based on their level of expertise to explore whether
prior knowledge of the study site, research background, and/or
previous experience with marine annotation could influence
experimental results. The criteria separating each group were
as follows.
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1) Group A: Expert ecologist or geomorphologist, present
at the in situ survey and/or had previous experience with
annotating marine biology for the study site.

2) Group B: Expert ecologist or geomorphologist but was not
present at the in situ survey and/or did not have experience
with annotating marine biology for the study site.

3) Group C: Neither an expert ecologist or geomorphologist
nor had experience with annotating marine biology from
aerial imagery.

Therefore, annotations were grouped into three sets based on
the stated groupings.

To evaluate the interobserver variability within each group,
Cochran’s Q-test was used to investigate the statistical signif-
icance of differences between K observations on the same n
elements with binomial distribution [57], [58]. For this work,
K series of observations corresponded to participants within
a group and elements for each observation were individual
annotations of participants. Therefore, the null hypothesis was
that annotations for participants within a group were drawn
from one common dichotomous distribution, which would imply
low variability in annotations. However, Cochran’s Q-test states
that each annotation must be dichotomous and represented as 0
or 1. Since the experimental annotation setup was a complex
multiclass problem, each annotation was compared with the
assigned label (either in situ or photointerpreted) and represented
as 1 if correct; otherwise, the annotation was represented as 0.

Cochran’s Q-test statistic with K − 1 degrees of freedom
follows a χ2 distribution and is given as follows:

Q =
K(K − 1)

∑
j(Cj − C̄)2

KS −∑
i R

2
i

(1)

where Cj is a column total, Ri is a row total, C̄ is the average
column total, andS is the total score, i.e.,S =

∑
i Ri =

∑
j Cj .

In this context, a column total is the sum of correct annotations
for a single participant, and a row total is the sum of correct
annotations for a single point across all participants.

F. Fully Convolutional Neural Networks

CNNs have proven to surpass prior-art techniques in a large
number of different CV applications since the introduction
of AlexNet [10]. The shift from supervised traditional ML
algorithms, whereby tailored feature extraction methods and
classifier tuning are replaced with a joint optimization of both
procedures, is an enabling factor for CNN success. The feature
extraction process consists of repeated convolution and pooling
operations that transform the input image into hierarchical ab-
stract representations of data. The joint optimization is achieved
by adjusting convolutional kernel weights and biases through the
derivative chain rule that minimizes the error between network
outputs and annotated labels [9].

FCNs [11], [13] are an adaptation of CNNs for semantic
segmentation. The architecture of FCNs can be broken down
into three parts: an encoder, a decoder, and a classification layer.
The encoder network is a CNN without the final fully connected
layer, the decoder network applies repeating upsample and
convolution operations on feature maps created by the encoder

network, and the classification layer consists of 1× 1 convolu-
tion kernels and a softmax transfer function to produce per-pixel
class probabilities. Fig. 4 displays the architecture used for this
work. The overall architecture was a U-Net [11] and the encoder
network is a VGG-13 [60] pretrained on ImageNet. However,
the weights in the input layer were randomly initialized and
changed to handle a five-channel input image.

1) Data Preprocessing and Training Parameters: FCNs
were trained with segmentation maps that contain a one-to-one
mapping of pixels encoded with a semantic value, with the
goal to optimize this mapping [13]. Segmentation maps were
generated using the geographic coordinates stored at each point
and converting real-world coordinates to image coordinates. If
a point or multiple points resided within an image tile, then
the candidate image was sampled into 256×256 image blocks
centered on the labeled parts of the image. For each point, a
bounding box consistent to 300 mm was placed. Fig. 5 shows a
gallery of sample imagery used for training FCNs.

The loss was computed by processing a minibatch of im-
ages with the FCN, which result in per-pixel probabilities
P ∈ RB×K×H×W and comparing network outputs with the
corresponding annotated maps Y ∈ ZB×H×W ; whereB,K,H ,
andW are, respectively, the batch size, number of target classes,
height, and width of the image. Then, the negative log-likelihood
loss was calculated between segmentation maps and network
probabilities

Ls(P, Y ) =

⎧⎪⎨
⎪⎩

0, if Y (x) = −1

−∑K
k=1 Yk(x) log(Pk(x)),

if Y (x) �= −1

(2)

where x ∈ Ω; Ω ⊆ Z2 is a pixel location and Pk(x) is the
probability for the kth channel at pixel location x, with∑K

k′=1 Pk′(x) = 1. For each image, the loss was the sum of
all individual pixel losses using (2) and averaged according to
the number of labeled pixels within Y . Previous work on the
same study site uses semisupervision methods to improve the
generalization and performance of FCNs [23]. However, the use
of an unsupervised loss term would influence the analysis of
our experimental setup by allowing networks to adjust weights
based on nonlabeled parts of the image, whereas our goal was
to determine the effects of aggregated crowdsourced labels.

During training, each image was augmented with stochastic
transformations that consisted of rotations up to 25◦ and hori-
zontal or vertical flips. Each network was trained for 200 epochs
with a batch size of 12 with Adam optimizer. The optimizer
learning rate was constant and set to 0.001. All FCNNs were
implemented and trained using Pytorch version 10.2.

III. RESULTS

A. Interobserver Experimental Results

Table I and Fig. 6 give the results of our experiment. The
significance level for each control group was set to 5% and
the degrees of freedom were set according to the number of
participants within a particular group. Therefore, the critical
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Fig. 4. U-Net architecture and loss calculation. The input channels were stacked and passed through the network. The encoder network applies repeated convolution
and max pooling operations to extract feature maps, while the decoder network upsamples these and stacks features from the corresponding layer in the encoder
path. The output is a segmented map, which was compared with the ground-truth mask using cross-entropy loss. The computed loss was used to train the network,
through gradient descent optimization.

Fig. 5. Gallery of images and corresponding ecological target classes. OM—Other macroalgae inc. Fucus; MB—Microphytobenthos; EM—Enteromorpha;
SM—Saltmarsh; SG—Seagrass; DS—Dry sand; OB—Other bareground.

Fig. 6. Confusion matrices for the majority-vote annotations for each control group.
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TABLE I
PARTICIPANT ANNOTATION ACCURACY AND COCHRAN Q-TEST STATISTIC

RESULTS

values according to a χ2 distribution were 9.49, 12.59, and 7.81,
for control groups A, B, and C, respectively.

The test statistic described in (1) objectively evaluates the
statistical significance of differences between K observations on
the same n elements with a binomial distribution. By comparing
each annotation with the known in situ label and representing
correct annotations as 1 and incorrect as 0, Cochran’s Q-test
evaluates whether annotations, which can be correct or incorrect,
were drawn from the same binomial distribution. Therefore, the
test statistic for a group may not allow us to reject the null
hypothesis, which would imply low interobserver variability,
but participants within that group could collectively annotate
test points incorrectly. In fact, participants were more likely to
be collectively incorrect than correct due to different incorrect
annotations being represented as 0. For example, if the class
label for a given point was dry sand but participants annotated the
said point as other bareground and microphytobenthos, then both
annotations were represented as 0, which would contribute to a
smaller test statistic value. Hence, the test statistic was analyzed
along with the annotation accuracy metrics so that emphasis was
placed on groups that were collectively correct and also yielded
a test statistic that did not reject the null hypothesis.

B. FCNs’ Results

The metrics to quantify FCN performance were pixel ac-
curacy, precision, recall, and F1-score. Pixel accuracy is the
ratio between pixels that were classified correctly and the to-
tal number of labeled pixels in the test set for a given class.
Equation (3) describes each metric, where TP, TN, FP, and FN
are, respectively, the true positive, true negative, false positive,
and false negative pixel classifications.

Our evaluation consisted of two different tests: The first test
shows the effects of training several FCNs on different versions
of labeled data based on using majority-vote annotations from
each group. This test evaluated whether errors in the annota-
tion experiment were propagated to the FCN performance. For
training the FCNs, we used the same points as in the interob-
server variability experiment—a set of 53 randomly selected
points from the in situ survey, an additional 54 points chosen
through expert photointerpretation, and 12 points from dry sand
polygons. The remaining 55 points recorded in situ were used
for model testing and further 12 points from dry sand polygons.
Therefore, FCNs were trained on the combined set of 119 points

TABLE II
PRECISION, RECALL, AND F1-SCORES FOR MODELS TRAINED WITH IN SITU

LABELS AND FOR MODELS TRAINED WITH MAJORITY-VOTE ANNOTATIONS

FROM GROUP A

and the remaining 67 points comprised the test set. For our sec-
ond test, the combined training set was reduced to the same initial
set of 53 randomly selected in situ points and the remaining
66 labels (54 from photointerpretation plus 12 points from dry
sand polygons) were replaced with majority-vote annotations
from each group. The goal of the second experiment was to
determine whether supplementing a reduced training set with
majority-vote annotations still achieves comparable results to
models trained with in situ labels.

Fig. 7 shows the results of our first experiment and Table II
provides further insight into class-specific performance of FCNs
trained with in situ data versus FCNs trained with majority-vote
annotations from group A. Fig. 8 shows the results of training
FCNs on a reduced dataset of in situ labels versus FCNs trained
on a combined train set of in situ labels and majority-vote
annotations. The confusion matrices and tabled metrics contain
the average results of five sequential train and test runs

pixel accuracy =
TP + TN

TP + FP + TN + FN
(3)

precision =
TP

TP + FP
(4)

recall =
TP

TP + FN
(5)

F1 = 2.× recall × precision
recall + precision

. (6)

IV. DISCUSSION

A. Interobserver Experimental Analysis

From our results, the null hypothesis that participant annota-
tions were drawn from the same distribution was not rejected
only in group A. Moreover, group A also exhibited the highest
mean and lowest variance in accuracy for annotations with
72.43±3.106%, which showed that participants in group A
were more likely to be correct than the other two groups. The
pre-exposure of participants in group A to the target classes at
the study site justified the lowest test statistic for participant
annotations within this particular group. Furthermore, the latter
statement can also be supported by examining the majority-vote
confusion matrix for group A (top-left matrix in Fig. 6), where
the accuracy of the majority-vote annotations was 81.31% for
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Fig. 7. Confusion matrices for FCNN models trained using different versions of labeled data. Results for models trained on in situ labels (top left) and majority-vote
annotations for group A (top right), group B (bottom left), and group C (bottom right).

group A—higher than the highest accuracy of any participant in
the experiment. This illustrates that annotations for participants
in group A were better if performed collectively and, as a whole
group A, were good candidates for crowdsourcing labels for this
particular study site. Given the low variability in annotations for
group A, examining Fig. 6 also informed us about the problem-
atic classes to annotate from aerial imagery. Other bareground
was a sediment class composed of rock, mud, and wet sand, and
microphytobenthos typically appeared only as a subtle greenish
shading on wet sediment [54], which could justify why both
classes were mutually misannotated. The same reasoning can be
applied to annotations for Enteromorpha sp. and seagrass since
both classes exhibit similar color and texture from an aerial point
of view.

The null hypothesis for participants in group B was rejected
by a significant margin. This could be due to the following:
First, participants in this group were not familiar with annotating
aerial imagery for this study site. In IR crowdsourcing, this is
also known as the ambiguity effect whereby missing information
makes annotations appear more difficult and, consequently, less

attractive [59]. Alternatively, the participant population con-
tained experts from different disciplines who may have conflict-
ing biases during annotation. If participants do not agree with
each other, then the test statistic yields a high value based on
whether annotations were correct or not. Specifically, the second
highest overall annotation accuracy was from participant 9,
while the lowest accuracy was from participant 6, both of
whom belong to group B. In fact, participant 9 is a ben-
thic ecologist with specific knowledge of identifying intertidal
algae, while participant 6 is an expert in sedimentology. This
contrast in discipline is reflected in annotation and, subsequently,
in the test statistic due to correct or incorrect annotation on
the same test points. The average accuracy was lower than
in group A—57.50±18.16% and the majority-vote confusion
matrix paints a similar picture—high variability and feature
ambiguity lead to erroneous labeling, with an overall normal-
ized majority-vote accuracy of 64.41% (middle-right matrix
in Fig. 6).

For participants in the final group C, the null hypothesis
was also rejected, however by a smaller margin than group B.
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Fig. 8. Confusion matrices for FCNN models trained using a set of in situ labels (left) and using the same in situ set supplemented with majority-vote annotations
for groups A, B, and C (top right, bottom left, and bottom right).

Again, this implies that participants within this group exhibit
high interobserver variability. Both the average accuracy and
majority-vote accuracy were the lowest out of all groups, with
53.5±10.82 and 60.75% (bottom-left matrix in Fig. 6), which
also reflected low confidence in participant annotations. How-
ever, even with lower accuracy, participants within group C
showed less variability in correct/incorrect annotations than
group B participants. This could be due to participants in group
C not having any prior knowledge of the study site or with
annotating aerial imagery and associating similar color and
texture based on the sample images in Fig. 2 to the same
class. The confusion matrix for group C provides insights into
problematic target classes to annotate for subjects with the least
experience. Algae classes, e.g., Enteromorpha sp. and other
macroalgae, were often mutually mislabeled, while seagrass was
often annotated as Enteromorpha sp. This implies that vegetation
classes were hard to discern from an aerial point of view with
no prior knowledge. Furthermore, and similarly to group A,

other bareground, a sediment class that includes wet sand, was
also incorrectly annotated as microphytobenthos, which again
implies that these two classes are hard to discern from each other.

To sum up, this analysis covers three groups and assesses
the interobserver variability in participants with different back-
grounds and expertise while also assessing the accuracy of
each participant, average group accuracy and majority-vote
accuracy. Participants in group A showed to have low inter-
observer variability while also correctly annotating 81.31% of
the points collectively. Participants in groups B and C exhibited
high interobserver variability. Examining the criteria separating
each group, having discipline expertise, prior knowledge of the
site and/or previous experience annotating marine biology play
an important role in minimizing interobserver variability and
ensure accurate annotation, and lack of exposure to these criteria
leads to high variability and low confidence. However, our
results also suggested that an expert ecologist or geomorpholo-
gist without in situ exposure produced similar overall accuracy
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annotations as nonexperts, this was influenced by the individual
accuracy result of participant 6 since the majority of participants
within group B yielded a higher accuracy in annotations than
two of three participants in group C. Finally, aggregating labels
based on majority-vote annotations also draw parallels with field
of expert frameworks in low-level image processing and en-
semble learning [31], [32], [62], [63]. These frameworks model
high-dimensional probability distributions by taking the product
of several expert distributions, where each expert works on a
low-dimensional subspace that is relatively easy to model. This
is similar and accurate for annotations in all groups. In general,
aggregating labels showed an increase in accuracy scores of
8.88%, 6.91%, and 7.25%, respectively, for groups A, B, and C.
This alludes to the specific and complementing nature of differ-
ent research backgrounds aiding the accurate annotation.

B. FCNs With Different Versions of Labeled Data

The first test in our evaluation considered four FCNs trained
with different versions of the labeled data.

First, FCNs trained with in situ labels (top-left matrix in
Fig. 7) were viewed as the baseline for the remaining FCNs
trained on majority-vote annotations from each group. The
normalized accuracy with in situ labels was 87.79% and models
exhibited high confidence and accurate predictions for dry sand,
other macroalgae, seagrass, and saltmarsh. Other bareground
proved to be a problematic class to model with a majority of pre-
dictions confused with microphytobenthos and Enteromorpha
sp. This paints a similar picture to majority-vote annotations for
participants in group A (top-left matrix in Fig. 6), whereby mi-
crophytobenthos was mislabeled as other bareground. However,
FCNs do not mutually mislabel seagrass with Enteromorpha
spp., which implies that FCNs were better at discerning these
two specific vegetation classes than participants from group A.

The normalized accuracy for FCNs trained with majority-vote
annotations from participants in group A was 81.99% (top-right
matrix in Fig. 7). This particular group exhibited low interob-
server variability and accurate annotations with the exception of
microphytobenthos and other bareground; which may be due
to both classes being present in wet sand. Furthermore, En-
teromorpha sp. was mutually mislabeled with seagrass because
both classes showed similar color and texture from an aerial
point of view. The latter bias in annotations from participants in
group A was propagated to FCN performance—where 23.3% of
seagrass labels were predicted as Enteromorpha sp. (top right in
Fig. 7). However, examining Enteromorpha sp. predictions
showed that this particular class was over-represented due to er-
roneous predictions and confusion with other vegetation classes,
such as saltmarsh, seagrass, and other macroalgae. Therefore,
erroneous labels from participants in group A caused FCNs not
only to mutually mislabel Enteromorpha sp. with seagrass but
also resulted in cascading errors for other vegetation classes due
to overfitting for Enteromorpha sp. Similarly to previous work
using aerial imagery for annotation, this test also showed that
empirical models can compensate certain degrees of erroneous
human annotations [19], [28].

FCNs trained with majority-vote annotations from partici-
pants in group B yielded a normalized accuracy of 63.72%
(bottom-left matrix in Fig. 7). Annotations from participants
in group B exhibited high interobserver variability, resulting in
low confidence in majority-vote annotations. This was due to
conflicting biases between experts, i.e., ecologists, geomorphol-
ogists, and sedimentologists, and the ambiguity effect through
lack of exposure to the in situ survey or aerial annotation of
marine vegetation species from the study site. The main trends
in human annotations from this group were other bareground
mislabeled as dry sand, and a general confusion of vegetation
classes among Enteromorpha sp., other macroalgae, and sea-
grass. These errors were also propagated into FCN performance,
as 64.1% of other bareground predictions were mislabeled as dry
sand and seagrass was severely misclassified and predicted as
Enteromorpha sp. and other macroalgae, respectively, 60.4%
and 35.6% (bottom-left matrix in Fig. 7).

The final set of majority-vote labels from group C yielded
a normalized accuracy of 66.36% (bottom-right matrix in
Fig. 7). Even though the average and majority-vote accuracy
for annotations provided by group C were lower than results
yielded by group B—FCNs trained with majority-vote annota-
tions from subjects in group C yielded a higher test set accuracy
than majority-vote annotations from group B. Our experiment
showed that participants in group C presented high interobserver
variability but by less of a margin than group B (see Table I
in Section III-A). The analysis also showed that nonexpert
participants in group C exhibited low confidence predictions for
other bareground with 31.8% of points labeled as microphyto-
benthos (bottom-left matrix in Fig. 6). Similarly to participants
in group B, they exhibited a general confusion in annotations for
vegetation classes—in particular—seagrass and Enteromorpha
sp. were often mutually misannotated. Again, these errors in
human annotations were propagated to FCN errors, e.g., mutual
misclassifications for seagrass and Enteromorpha sp. classes.

Our analysis supports the hypothesis that errors in crowd-
sourced human annotation were propagated into the FCN per-
formance. All groups had a similar trend whereby annota-
tions for microphytobenthos were mislabeled with wet sedi-
ment classes. This bias was propagated into all models trained
with majority-vote annotations where other bareground was
either under-represented (bottom-left matrix in Fig. 7), over-
represented (bottom-right matrix in Fig. 7), or confused with
dry sand (top-right matrix in Fig. 7). The mutual mislabeling
of Enteromorpha sp. and seagrass points for participants in
group A caused the FCN to misclassify all vegetation classes
as Enteromorpha sp. This showed that poor annotations not
only propagated errors into the FCN performance but also could
cause cascading errors with classes that exhibit similar color
and texture from an aerial point of view. This stresses the need
for good quality labels as FCNs optimize their weights and
biases based on a nonlinear one-to-one mapping between image
pixels and labeled maps [13]. However, our results also showed
that FCNs trained with low interobserver variability and high
confidence annotations, as shown with subjects in group A,
can demonstrate comparable performance to the FCNs trained
with in situ labels. Conversely, training with annotations from
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groups B or C, which manifested high interobserver variability
and higher rates of erroneous labeling, severely degraded FCN
performance.

C. FCNs With Balanced In Situ Only Versus Crowdsourced
Supplemented Labeled Data

The second and final test in our evaluation considered two
FCNs. One model was trained with only the balanced in situ
labels. Therefore, the training set was the initial balanced set
of 53 random points with in situ labels (see Section II-C) and
the labels for the remaining 66 photointerpreted points were
replaced with the semantic value of majority-vote crowdsourced
annotations.

For comparison, we considered an FCN trained with just the
balanced set of 53 in situ labels, which yielded a normalized test
set accuracy of 82.9% (top-left matrix in Fig. 8). The accuracy
was lower than FCNs trained with the combined full training set
of 53 in situ labels and 66 photointerpreted labels (top left in
Fig. 7). This was expected as FCNs learn hierarchical represen-
tations of data through gradient descent [9], and if FCN kernel
weight and bias adjustments were based on fewer image exam-
ples, then model performance and generalization also degrade.
The main affected and under-represented class was seagrass
where the accuracy dropped from 99.5% (top-left matrix in
Fig. 7) to 43.6% (top-left matrix in Fig. 8).

The normalized accuracy for FCNs trained with the in situ set
supplemented with the labels from the participants in group A
was 89.6% (top-right matrix in Fig. 8), which was also the high-
est accuracy of all FCNs in our analysis. This setting improved
the test set accuracy compared with the model trained with just in
situ labels. This was due to two reasons: first, supplementing the
dataset allows for more unique samples to be incorporated into
the training set, and second, the supplemented crowdsourced
portion of the training set from group A exhibited low inter-
observer variability and accurate annotations. Furthermore, this
particular result provided an interesting comparison with the
FCN trained on in situ plus photointerpreted labels (the top-left
matrix in Fig. 7). Both FCNs yielded satisfactory results, which
confirms that the aggregated labels from multiple annotators
within group A were as good as the efforts of a single expert
annotator (lead author). This comparison also showed that in
situ efforts can be combined successfully with aerial imagery
annotation, which could reduce costs and labor from in situ
surveys.

The accuracy for FCNs trained using in situ labels supple-
mented with the labels from participants in groups B and C was,
respectively, 73.34% and 68.7% (bottom-left and bottom-right
matrices in Fig. 8). Our analysis of both datasets was performed
jointly as FCNs trained in both settings paint a similar picture.
Both sets of models failed to achieve better results than models
trained with just the balanced set of in situ labels (top left in
Fig. 8), which again stresses the need for good quality crowd-
sourced labels. FCNs trained with majority-vote annotations
from participants in group B over-represented seagrass and also
misclassified all other macroalgae pixels, mostly as seagrass
(bottom-left matrix in Fig. 8). A similar outcome happened

for models supplemented with the labels provided by group
C—again all other macroalgae class instances are misclassified,
this time mostly as saltmarsh (bottom-left matrix in Fig. 8). In
both settings, this would be due to poor annotation performance
from these two groups (see Fig. 6).

V. CONCLUSION

This work analyzed the feasibility of using crowdsourced
annotations on a complex multiclass problem domain that in-
cludes intertidal coastal species, such as seagrass, saltmarsh,
and macroalgae.

To assess the quality of crowdsourced annotations, an interob-
server variability experiment was performed with a population
of 12 participants that were split into 3 sets of groups. The
criteria for each group were based on discipline expertise and
previous experience with either annotating aerial imagery for
this study site or marine biology in general. The assessment was
possible by analyzing the statistical differences in crowdsourced
annotations using Cochran’s Q-test. Furthermore, the annotation
accuracy and a per-class analysis were used to assess for any
potential observation biases.

The results of our experiment show that discipline experts
familiar with the study site were more accurate than experts with
no prior knowledge of the site and nonexperts. This confirms that
discipline expertise, prior knowledge of the site, and/or previous
experience annotating marine biology play an important role
in minimizing interobserver variability and ensuring accurate
annotation, and that lack of exposure to either of these criteria
leads to high variability and low confidence. Furthermore, the
results of our analysis also point to a small performance gain
between annotators with expert discipline knowledge versus
annotators with no previous experience in marine biology anno-
tation or domain expertise. However, this may be skewed due to
annotations from participant 6.

The experiment stressed the difficulty of labeling a complex
multiclass marine biology problem, and therefore, we conclude
that pre-exposure to the study site is important for intertidal
classification if good quality labels are to be guaranteed and that
in situ ground truthing may be unavoidable to prevent confusion
by site experts, for instance, the general confusion between
microphytobenthos with other bareground and Enteromorpha
sp. with seagrass (see Sections III-A and IV-B and C).

For the experiment with FCNs trained with crowdsourced
annotations, two scenarios were considered: the first was a direct
comparison of FCNs trained with majority-vote crowdsourced
annotation from each participant group with FCNs trained
with transcribed in situ labels. This showed that annotations
that exhibit low interobserver variability and high confidence
annotations, as shown with subjects in group A, demonstrate
comparable performance to the FCNs trained with in situ labels.
Conversely, training with annotations from groups B or C,
which manifested high interobserver variability and higher rates
of erroneous labeling, severely degraded FCN performance.
Therefore, we conclude that errors in crowdsourced human
annotations were propagated into FCN performance. The second
experiment considered two FCNs: one whereby the training set
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was the initial balanced set of 53 points with transcribed in situ
labels (see Section II-D), and the other where the training set was
the initial set of 53 points with in situ labels supplemented with
majority-vote annotations from each participant group. In this
scenario, FCNs supplemented with majority-vote annotations
from participant group A reported a normalized accuracy of
89.6%, which was also the highest accuracy of all FCNs in our
analysis. This showed that in situ efforts can be combined suc-
cessfully with crowdsourced aerial imagery annotation, which
could reduce costs and labor from in situ surveys, given that
crowdsourced labels are consistent and accurate. Similarly to
the previous scenario, FCNs supplemented with majority-vote
annotations from participant groups B and C severely degraded
FCN performance, which again stresses the need for good qual-
ity crowdsourced labels.

However, this work does not fully exclude in situ surveying
but merely affirms that good quality labels can be found in situ
but a healthy quantity of labels can also be supplemented from
aerial imagery, which would reduce in situ efforts and costs.
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