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LFD-Net: Lightweight Feature-Interaction Dehazing
Network for Real-Time Remote Sensing Tasks

Yizhu Jin , Jiaxing Chen , Feng Tian , and Kun Hu , Member, IEEE

Abstract—Currently, remote sensing equipments are evolving
toward intelligence and integration, incorporating edge computing
techniques to enable real-time responses. One of the key challenges
in enhancing downstream decision-making capabilities is the pre-
processing step of image dehazing. Existing dehazing methods usu-
ally suffer from steep computational costs with densely connected
residual modules, as well as difficulties in maintaining visual qual-
ity. To tackle these problems, we designed a lightweight atmosphere
scattering model based network structure to extract, fuse, and
weight multiscale features. Our proposed LFD-Net demonstrates
strong interpretability by exploiting the gated fusion module and
attention mechanism to realize feature interactions between mul-
tilevel representations. The experimental results of LFD-Net on
SOTS dataset reach an average frequency per second of 54.41,
approximately eight times faster than seven most popular methods
with equivalent metrics. After image dehazing by LFD-Net, the per-
formance of object detection is significantly improved. The mean
average precision when IoU = 0.5 (mAP@0.5) based on YOLOv5
is improved by 4.73% on DAIR-V2X dataset, which verified the
practicability and adaptability of LFD-Net for real-time vision
tasks.

Index Terms—Interpretablity, model compression, real-time
application, single image dehazing.

I. INTRODUCTION

R EMOTE sensing refers to the process of collecting in-
formation or data about an object, area, or phenomenon

from a distance, typically using sensors mounted on aircraft,
satellites, or other platforms [1]. Nowadays, the construction
of space-air-ground integrated remote sensing land observation
networks is of great importance for various industrial applica-
tions [2], [3]. Based on platforms, such as satellites, aircraft,
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drones, vehicles, and ground monitoring devices, one can ob-
tain comprehensive information about ground objects. However,
real-time accurate information extraction in complex and highly
dynamic conditions, such as traffic regulation, crime tracking,
and disaster relief, remains particularly difficult [4], [5], [6]. A
key preprocessing step to improve the image quality is to remove
the negative effects of prevailing haze, and it would be a good
option to deploy dehazing algorithms on remote sensing terminal
platforms, which could significantly reduce data transmission
costs and achieve faster response. Therefore, it is necessary
to propose a lightweight dehazing algorithm to remove the
constraints of limited power and computing resources on edge
devices, and optimize the dehazing efficiency while ensuring
accuracy and reliability.

Dehazing methods for remote sensing images are mainly of
three types: prior knowledge-based methods, physical model-
based methods, and deep learning-based methods. Most of the
earliest dehazing methods are based on prior knowledge. For
instance, dark channel prior (DCP) makes an approximation that
haze-effected pixels have at least one relatively low intensity
value among RGB channels [7]; a semiphysical guided-filter-
based approach is adopted to refine the coarse haze thickness
map to restore textural information [8]; depth estimation and
image segmentation are incorporated with DCP to generate the
final transmittance [9]. These prior knowledge based methods
are typically subject to empirical or statistical regularities, lead-
ing to limited application scenarios.

In addition, ASM has been extensively introduced in physics
model based dehazing methods. It is physically grounded for
an unrestricted access to various image scenes through the
estimation of global atmosphere light and transmission map.
For instance, an end-to-end DehazeNet combines dark channel,
maximum contract, color attenuation as well as hue disparity
prior to compute the transmission map and assigns a default
value to atmosphere light [10]; a Haze Density Prediction
Network is designed for a more accurate approximation of
atmosphere light to better fit for nighttime occasions [11]; a
multidecoder framework is presented to handle multiple bad
weather restoration, with rain veiling effect embedded into
the conventional ASM [12], and a differential guided layer is
embedded with the backbone and substituted to the physical
scattering equation [13]. Approaches based on ASM are usually
more lightweight, but they may produce unnatural color tones
due to inaccurate estimation of atmospheric light.

Compared with traditional dehazing methods, deep learning-
based methods gradually become the research hotspot due to
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their stronger modeling and generalization capabilities. Dehaz-
ing methods based on convolutional neural networks (CNNs)
are extensively adopted, which will be discussed in detail in
Section II.

Our proposed Lightweight Feature-interaction Dehazing Net-
work (LFD-Net) utilizes convolutional layers of different kernel
sizes as a sequence to extract multilevel features. The fea-
ture interaction process is addressed coherently by taking in,
redistributing, and reassigning weights to the extracted features.
Each component of our network performs its own function, but
also interacts efficiently and effectively as a whole. Moreover,
we utilize multiple metrics for evaluation, which are highly
relevant and sensitive to remote sensing tasks. Overall, our main
contributions are threefold as follows.

1) Our method employs ASM to jointly approximate the
atmospheric light and transmission map to enhance image
restoration capability and inference efficiency. It incorpo-
rates the convolutional operations into more specialized
modules while maintaining the conciseness.

2) Our proposed method is designed to provide interpretabil-
ity by assigning distinct tasks to each module, as demon-
strated by the results of our visualization and abla-
tion experiments. The feature-interaction process relies
heavily on elementwise multiplication, which has been
shown to enhance the performance of pure convolutional
operations.

3) Our proposed method has been extensively validated
across various scenarios of space-air-ground remote sens-
ing land observation tasks to demonstrate its stability,
practicability, and generalization capabilities. It can ef-
fectively address common challenges such as halo effect,
gridding artifact, and color inconsistency, and achieves
an excellent tradeoff between accuracy and efficiency,
which considerably improves the performance of object
detection.

II. RELATED WORK

The increasing prevalence of intelligent remote sensing de-
vices that support real-time responses, as opposed to relying on
data transmission to servers, has highlighted the importance of
studying lightweight dehazing methods, which are crucial for
context-aware and fast-response remote sensing systems. How-
ever, there exists a tradeoff between the efficiency and accuracy
of lightweight dehazing approaches. Some approaches employ
knowledge distillation [14], [15] or pruning techniques [16],
which may sacrifice accuracy for efficiency. In contrast, other
methods directly construct lightweight networks to address
this issue. For instance, AOD-Net [17] serves as a baseline
for other lightweight dehazing models by concatenating mul-
tilevel features using different patterns. FAOD-Net [18] and
GAOD-Net [19] utilized depthwise and pointwise convolutions
to reduce parameters and aggregate context information in a
pyramid pooling module. FAMED-Net [20] employed cascaded
and densely connected pointwise convolutional and pooling
layers at multiple scales. LD-Net [21] tackles the semantic gap
by concatenating convolutional layers and incorporates a Color
Visible Restoration module to enhance color consistency.

Nevertheless, achieving a balance between high performance
on specific datasets and generalization to diverse practical appli-
cations remains a central challenge. The design and evaluation
of dehazing methods should consider this tradeoff comprehen-
sively. While current methods may exhibit promising results
under certain conditions, their lack of efficiency and generaliza-
tion capabilities limit their suitability for real world and real-time
applications.

Our proposed LFD-Net considers dehazing as an image recon-
struction task with an emphasis on feature extraction and feature
utilization processes, as discussed in Sections II-A and II-B. In
contrast to stacking deep residual modules in these procedures,
we employ the gated fusion and attention mechanism only once,
which improves both efficiency and interpretability. Moreover,
it is important to design comprehensive evaluation metrics for
dehazing methods, as described in Section II-C.

A. Feature Extraction

One of the key challenges in image reconstruction is the
extraction of multilevel or multiscale features, which can be
facilitated by using a symmetric encoder-decoder structure. The
U-Net architecture, originally designed for effective extrac-
tion of context information at different scales or levels [22],
has been widely used as a backbone in various reconstruction
tasks. In [23], the Strengthen-Operate-Subtract boosting strategy
is incorporated into the decoder, and a dense feature fusion
module utilizing a back-projection feedback scheme is lever-
aged to compensate the missing spatial information from high-
resolution features. In [24], the U-Net architecture is modified
to incorporate discrete wavelet transform and inverse discrete
wavelet transform in place of conventional downsampling and
upsampling. In [25], hybrid convolution is applied in the U-Net
encoder, which combines standard convolution with dilated
convolution, to expand the receptive field and extract image
features in more detail.

As opposed to a fixed backbone like U-Net, some methods
utilize more flexible structures with multiple paths to diversify
color information or perform various tasks. For instance, in [26],
image dehazing and depth estimation are addressed simultane-
ously in a framework with four decoders sharing information
from the same encoder. In [27], a multicolor space encoder that
incorporates RGB, LAB, and HSV is applied to extract repre-
sentative features in separate paths. In [28], quadruple color-cue
is integrated into a multilook architecture with multiweighted
training loss for autonomous vehicular application. These color
spaces are often designed manually, which work well for specific
applications, but may lack adaptability and generalization for
others.

B. Feature Utilization

Another major challenge in image reconstruction tasks is the
efficient utilization of extracted features, which has prompted
the exploration of various feature fusion strategies and attention
mechanisms. For instance, in [29], a novel attention-based mul-
tiscale estimation module is implemented in the backbone on
a grid network to alleviate the bottleneck issue encountered in
conventional multiscale approaches. In [30], a block structure
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integrated with channelwise attention (CA), pixelwise attention
(PA) is stacked to form a group structure, which is progressively
triple-stacked and concatenated to feed into another CA-PA
attention mechanism for feature fusion. In [31], a multilevel
fusion module is presented to integrate low-level and high-level
representations. In addition, a residual mixed-convolution at-
tention module is developed to guide the network to focus on
significant features during the learning process. In [32], the
feature fusion method progressively aggregates the features of
hazy image and generated reference image to remove the useless
features.

Moreover, the self-attention mechanism proposed in trans-
former has also been practiced in dehazing methods. For
instance, a transformer-based channel attention module and a
spatial attention module are combined to form an attention mod-
ule that enhances channel and spatial features [33]. Long-range
dependencies of image information can be effectively extracted
through transformer blocks in image dehazing [34]. Recently, it
has been revealed in [35] that self-attention mechanism inher-
ently functions as a two-order feature interaction. In our method,
gated convolution has been developed as an alternative method to
achieve an competitive results to self-attention, while reducing
the computational cost.

C. Quality Evaluation

Existing methods usually focus on high performance quan-
tified by metrics in terms of peak-signal-to-noise-ratio (PSNR)
and structure similarity index (SSIM). More specifically, PSNR
measures the ratio between the maximum possible value of
a pixel and the power of corrupting noise that affects the
restoration fidelity. Instead of directly estimating absolute error,
SSIM reveals interdependencies within pixels by luminance
masking and contrast masking between spatially close image
pairs. Besides, CIE2000 Delta E formula (CIEDE2000) and
Spatial-Spectral Entropy-based Quality (SSEQ) are also intro-
duced in our comparison metrics, because color and texture are
significant for object recognition and terrain classification of
remote sensing applications. CIEDE2000 is used to quantify the
visual difference between two colors. It takes into account the
chromaticity and luminance of the colors being compared, as
well as the surrounding colors and the viewing conditions [36].
SSEQ is calculated by separating the image into its spatial and
spectral components, calculating and combining the entropy
of each component [37]. Halo effect in many remote sensing
images can lead to significant degradation over large areas
compared to high spatial resolution close-range images. In the
comparison experiments, we calculate the average CIEDE2000
of each pixel in image pairs and the average absolute value of
relative error on SSEQ (i.e., ΔSSEQ).

III. PROPOSED METHOD

A. Preliminaries

ASM is employed in our method to overcome the difficulty of
raw pixel prediction from reconstructed images via light model.
It is physics based, more suitable for real-world scenarios, and

Fig. 1. Comparison metrics on outdoor SOTS, in terms of PSNR, SSIM,
CIEDE2000, ΔSSEQ (↑), and FPS (→).

less prone to overfitting during training. The conventional ASM
can be reformulated to jointly estimate the global atmosphere
light A and the transmission map t, resulting in a reduction of
parameters [17]

I(θ) = J(θ)× t(θ) +A(1− t(θ)) (1)

where A is treated as a constant, t ∈ (0, 1] denotes the pixelwise
transmittance of light, θ represents the pixel coordinate of an
H ×W image of height H and width W , with I and J being
the hazy input and haze-free output, respectively. Therefore, the
haze-free approximation J(θ) can be written as

J(θ) =
I(θ)−A

t(θ)
+A. (2)

To encapsulate these two factors (i.e., A and t(θ)) into one
variable, the formula of the reformulated ASM is as follows:

J(θ) = K(θ)× I(θ)−K(θ) + b (3)

whereK(θ) represents the new incorporated variable, which can
be derived as

K(θ) =

1
t(θ) × (I(θ)−A) + (A− b)

I(θ)− 1
. (4)

To be specific, K is the intermediate evaluation parameter of
the network. The ultimate goal is to generate a separate K value
for each input channel, typically in terms of RGB. That is, K in
size 3 ×H ×W is substituted into (3) at the end of the network,
with a most commonly used default value b = 1.

B. Network Design

The proposed LFD-Net distinguishes itself from both heavy-
weight and lightweight frameworks with its concise and effective
approach to feature extraction and interaction, as shown in Fig. 1
and Fig. 2. To optimize the lightweight structure design of the
LFD-Net, the gated fusion module and attention mechanism are
used only once, instead of being incorporated as parts of more
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Fig. 2. Architecture of the lightweight feature-interaction dehazing network. The reformulated ASM generates an explicit output by substituting the evaluated
K value. The network primarily consists of convolutional layers and concatenation layers, with the use of elementwise product in the gated fusion module and
attention mechanism.

complex blocks. This approach significantly improves efficiency
while maintaining strong performance in dehazing tasks.

In CNNs, convolution kernels of varying sizes are used to
extract features at different levels of abstraction. Specifically,
smaller size kernels are effective at capturing local features,
while larger size kernels are more suited for capturing features
with larger receptive fields, which are considered as more global
features. The most commonly used kernel size is 3 × 3. How-
ever, stacking convolutional layers with this typical kernel size
are not efficient enough in lightweight models. The concatena-
tion layers are utilized to combine the low-level and high-level
features, which compensates the loss of information from the
initial layers as the network proceeds deeper. Therefore, the for-
mation of convolutional and concatenation layers is crucial and
needs to be designed flexibly to meet specific needs. Different
from existing methods, we further simplify the formation of
convolutional layers during feature extraction. Based on this, we
also introduce feature interaction strategies including the gated
fusion module and attention mechanism.

To be specific, in feature extraction, a sequence of convolu-
tional layers with ascending kernel sizes is implemented, ranging
from 3 × 3, 5 × 5, to 7 × 7, namely Conv 1, Conv 2, and Conv 3.
A residual connection between Conv 1 and Conv 3 is utilized to
refine feature representations between low-level and high-level
features.

A concatenation layer, namely Concat 1, is applied to com-
bine the multilevel features from the extraction process. These
features are then fed into the gated fusion module for spatial
interactions, which includes a convolutional operation, namely
Conv 4. The output features are passed to the second concatena-
tion layer, namely Concat 2, which progressively integrates the
features extracted in Conv 3 layer. This is because higher level
information is always more global, and thus being distributed to
lower levels in the gated fusion module while performing feature
interactions. This information is also indispensable for image
restoration, especially for the following attention mechanism,

TABLE I
DETAILS OF THE LFD-NET ARCHITECTURE

which makes it necessary to involve the Concat 2 layer. The at-
tention mechanism adaptively learns channelwise and pixelwise
weights to enhance conducive features. After that, all features
are fed into the high-resolution stage, which consists of two
convolutional layers, namely Conv 5 and Conv 6, respectively.
The details of the proposed method are illustrated in Table I.

C. Gated Fusion Module

Our proposed LFD-Net replaces densely connected resid-
ual blocks with effective feature-interaction-based strategies.
The gated fusion module aims to perform two-order interac-
tions among multilevel features. This idea is demonstrated in
transformer-based architecture through two successive pixel-
wise products ( i.e.,K,V ) [38]. While transformers are effective,
the computational cost is huge when dealing with low-level
preprocessing tasks. Transformer-ensembled CNNs usually ex-
pand the flexibility of convolutional operations through adding
dynamic weights to improve the modeling power of convolu-
tion [35], [39], [40]. Similar techniques have been practiced in
image dehazing methods [41], [42], but are still in need of further
exploration and interpretation.

Our proposed method also takes advantage of pixelwise multi-
plication by directly implementing it to successive feature levels,
the concatenation layer Concat 1 that combines the sequence of
convolutional layers Conv 1, Conv 2, and Conv 3. For illustration,
these features are denoted as F1, F2, and F3, respectively. In
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addition, these three convolutional operations are denoted as C1,
C2, and C3, and the ith feature map of the output layer is denoted
as Gi. The process of gated fusion module can be expressed
mathematically as follows:

Gi =
3∑

k=1

Ck(F)⊗Fk,i

=

3∑

k=1

Ck(Fk,i ⊕
∑

j �=i

Fk,j)⊗Fk,i

=

3∑

k=1

Ck(Fk,i)⊗Fk,i +
∑

j �=i

Ck(Fk,j)⊗Fk,j (5)

where Fk,i is the original ith feature map of the kth group. As
shown in (5), the input of gated fusion module consists of three
levels. The number of output feature maps reduces the input by
one-third, equal to the number of feature maps in each level of the
input. The gated fusion module enhances the features within a
feature map with neighboring pixels and introduces interactions
by dynamically assigning weights to other feature maps through
pixelwise multiplication. This reinforces the ability of convolu-
tion to retain and utilize multilevel features in an intensive and
expansive manner.

D. Attention Mechanism

According to (5), the gated fusion module adaptively en-
hances and interacts with multilevel features. However, in cases
where the haze is unevenly distributed, as often occurs in aerial
imaging, accurately assessing the extent and density of the haze
region remains challenging. This can result in the presence of
fancy shades or dark spots. Attention mechanisms, which have
been designed to focus on distinctive parts when processing large
amounts of information [43], can be utilized to address this issue
in image dehazing. Specifically, CA selects the feature levels
for features associated with the haze region, while pixelwise
attention refines the selected haze region. In [30], attention
mechanism [44] is integrated into a block structure and stacked
in feature extraction process. While in our proposed method, the
attention mechanism is utilized only once as a single module to
finalize feature weights before the high-resolution stage, leaving
a large space for weight adjustment.

The adopted attention mechanism is composed of channel-
wise attention (CA) and pixelwise attention (PA), as depicted in
Fig. 3, serving as a compensation to the gated fusion module. All
of the convolution operations used in the attention mechanism
have a kernel size of 1 × 1, similar to a multilayer perceptron
architecture, with global average pooling and channelwise mix-
ing [45]. In this mechanism, elementwise product is also used
in place of absolute convolutional operations to increase the
flexibility and reduce computational complexity.

In detail, CA first assigns weights to each channel by a global
average pooling. The average pooling value of the c-th feature
map, namely Mc, can be formulated as follows:

Mc =
1

H ×W

W∑

i=1

H∑

j=1

Mc,i,j . (6)

Fig. 3. Structure of attention mechanism. (a), (b) Stand for CA and PA
separately.

Then, two successive convolutional layers with activation
layers are utilized as linear transformation to obtain a 1-D weight
vector that elementwisely multiplies the cth feature map as
follows:

M∗
c = σ(C∗

2δ(C∗
1(Mc)))⊗Mc (7)

where C∗
1 and C∗

2 are the two convolutional layers, respectively,
with δ(·) and σ(·) being the corresponding activation function.

Similarly, PA transforms the output feature maps of CA M∗

on a pixel scale with the output namely M◦ derived as follows:

M◦ = σ(C◦
2σ(C◦

1(M∗)))⊗M∗ (8)

where C◦
1 and C◦

2 are the two convolutional operations, respec-
tively, with σ(·) being the shared activation function.

Unlike the gated fusion module, which reduces the number
of channels by one-third, the attention mechanism maintains
an equal number of input and output channels. This suggests
that the attention mechanism is able to effectively preserve the
feature representation through channelwise interaction, lead-
ing to fine-tuning of pixelwise features with relatively low
computational cost. In comparison to the approach presented
in [21], which utilizes 1× 1 convolutional layers at the begin-
ning and end of the network, our method incorporates fully
connected layers into the attention mechanism with elemen-
twise product to further enhance the power of convolutional
operations.

E. Loss Function

While a combination of L1 loss, L2 loss, SSIM, or perceptual
loss as loss functions has been shown to achieve good perfor-
mance in previous works [46], [47], [48], [49], our experiments
on LFD-Net indicate that the most widely used L2 loss, is the
most suitable loss function for LFD-Net. The L2 loss is defined
as follows:

L =
1

H ×W

W∑

s=1

H∑

t=1

(Is,t − Js,t)
2 (9)

where I is the input hazy image and J is the haze-free output.
The intermediate value being approximated is K, which is not
a direct output and thus introducing a natural discrepancy with
the output from VGG, rendering it impractical to utilize percep-
tual loss. Furthermore, the small number of parameters in the
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TABLE II
AVERAGE COMPARISON OF METRICS ON SOTS FOR 492 JPG IMAGES

TABLE III
AVERAGE COMPARISON OF METRICS ON O-HAZE FOR 45 JPG IMAGES

proposed method minimizes the risk of overfitting, so regular-
ization terms (i.e., L1 Loss) may even be counterproductive.

IV. EXPERIMENTS

A. Dataset

To validate the dehazing effect of LFD-Net for space-air-
ground integrated remote sensing land observation, we first con-
duct training (i.e., outdoor training set OTS) and validation ( i.e.,
synthetic objective testing set SOTS, hybrid subjective testing
set HSTS) experiments of ground-based observation from the
REalistic Single Image DEhazing dataset RESIDE [50]. To val-
idate the generalization ability of LFD-Net, we also use the real
hazy and haze-free outdoor images dataset O-HAZE [51]. We
fine-tine the pretrained weights from ground-based observation
data by using the aerial image dataset AID [52] for satellite
(i.e., space-based) and drone (i.e., air-based) and test on the
Remote sensing Image Cloud rEmoving dataset RICE [53].
However, we lack a dataset to test the performance of the
downstream perception task under hazy conditions. To solve
this problem, we synthesize hazy images on DAIR-V2X [54]
and VisDrone2019 [55], and evaluate the performance of object
detection tasks using hazy and dehazed images for comparison.

B. Experiment Results

We faithfully reproduce seven methods for various out-
door scenarios, including DCP [7], AOD-Net [17], Grid-
DehazeNet [29], Wavelet-U-Net [24], GCA-Net [42], FFA-
Net [30], and D4 [56]. All the experiments are conducted on a PC
with an R9-5900HX CPU (E5-1650) and an NVIDIA RTX-3080
GPU. Quantitative comparison results on the outdoor SOTS and
O-HAZE datasets can be found in Tables II and III, respectively.
The visual comparison results from the outdoor SOTS and
O-HAZE datasets are shown in Figs. 4 and 5. Furthermore, we
also perform experiments using real-world hazy images with no

TABLE IV
AVERAGE COMPARISON OF METRICS ON RICE1 FOR 500 PNG IMAGES

reference both from HSTS and randomly selected images from
the Internet, as depicted in Figs. 6 and 7.

In the remote sensing domain, to the best of our knowl-
edge, pretrained models for dehazing methods are not publicly
available. However, we also reproduce seven SOTA methods
using default outdoor weights, including AOD-Net [17], Grid-
DehazeNet [29], GCA-Net [42], FFA-Net [30], MSBDN [23],
D4 [56], and DehazeFormer [57]. As expected, the performance
of AOD-Net is limited due to its small number of parameters,
while the other methods show similar performance before fine-
tuning. In this article, our pretrained model is open to the public
for further comparison.

To demonstrate the effectiveness and efficiency of our pro-
posed method, we present a comprehensive comparison using
various metrics including PSNR, SSIM, CIEDE2000, ΔSSEQ,
and FPS. The comparison results are summarized in Tables II,
III, and IV. In addition, we provide a comparison of model sizes
in Table V.

Observations reveal that many networks suffer from incon-
sistencies within color blocks or misrepresenting original in-
formation, as reflected in terms of CIEDE2000 and ΔSSEQ.
For instance, lightweight methods such as AOD-Net [17] and
D4 [56] produce relatively dark visual quality, resulting in a
significant loss of texture information and making it difficult to
distinguish objects for downstream tasks. DCP [7], a traditional
dehazing method, exhibits relatively high dehazing capacity;
however, it is susceptible to severe color shift as it heavily
relies on prior assumptions about color distributions. While
GCA-Net [42] encounters color shift occasionally in the syn-
thetic SOTS dataset, it performs well in realistic scenarios like
O-HAZE, which has thick and irregular haze. However, its halo
effect and color imbalance are magnified in RICE1, which makes
it less adaptive to generalized scenarios, as shown in Fig. 8.
FFA-Net [30] performs well on specific datasets but distinctly
lacks dehazing capability on RICE1, where there are a variety
of landforms and terrains, rendering it not generalizable enough
for shifted domains.

From the experiment, we can observe that incorporating atten-
tion mechanisms may prevent the image from being uniformly
dehazed without region discrepancy (i.e., FFA-Net) compared
to networks with absolute convolutional and concatenation lay-
ers (i.e., AOD-Net, LD-Net). However, a stack of sophisti-
cated modules incorporating attention mechanisms may also
confuse the model when selecting regions of interest, leading
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Fig. 4. Visual comparison on outdoor SOTS. We compare our methods with DCP [7], AOD-Net [17], GridDehazeNet [29], Wavelet-U-Net [24], GCA-Net [42],
FFA-Net [30], and D4 [56]. Our proposed method exhibits adaptability to diverse scenarios and possesses a noteworthy level of generalization.
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Fig. 5. Visual comparison results on O-HAZE. We compare our methods with DCP [7], AOD-Net [17], GridDehazeNet [29], Wavelet-U-Net [24], GCA-Net [42],
FFA-Net [30], and D4 [56]. AOD-Net and D4 produce relatively dark in visual quality. GCA-Net performs well on irregular haze but suffers from inconsistency
in color blocks. Our proposed method exhibits adaptability to diverse scenarios and possesses a noteworthy level of generalization.
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Fig. 6. Visual Comparison Results on Real-world HSTS. (a) Hazy image. (b) DCP [7]. (c) AOD-Net [17]. (d) GridDehazeNet [29]. (e) Wavelet-U-Net [24].
(f) GCA-Net [42]. (g) FFA-Net [30]. (h) D4 [56]. (i) Ours (LFD-Net). Our proposed method exhibits adaptability to diverse scenarios and possesses a noteworthy
level of generalization.

Fig. 7. Visual comparison results on randomly selected real-world images. (a) Hazy image. (b) DCP [7]. (c) AOD-Net [17]. (d) GridDehazeNet [29].
(e) Wavelet-U-Net [24]. (f) GCA-Net [42]. (g) FFA-Net [30]. (h) D4 [56]. (i) Ours (LFD-Net). Our proposed method exhibits adaptability to diverse scenarios and
possesses a noteworthy level of generalization.



9148 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 8. Visual comparison results on O-HAZE. We compare our methods with DCP [7], AOD-Net [17], GridDehazeNet [29], Wavelet-U-Net [24], GCA-Net [42],
FFA-Net [30], and D4 [56]. AOD-Net and D4 produce relatively dark in visual quality. GCA-Net performs well on irregular haze but suffers from inconsistency
in color blocks. Our proposed method exhibits adaptability to diverse scenarios and possesses a noteworthy level of generalization.
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TABLE V
COMPARISON OF THE PARAMETERS OF MODELS

TABLE VI
ABLATION EXPERIMENT OF LFD-NET ON OUTDOOR SOTS DATASET

to insufficient attention paid to each hazy region and overfit-
ting on specific datasets with limited data diversity, render-
ing these approaches not flexible enough for real-world vision
tasks.

Nevertheless, attention mechanisms are well adapted to U-
Net or U-Net ensembling structures, where multiscale features
are addressed symmetrically. Wavelet-U-Net [24] and GridDe-
hazeNet [29] have excellent performance, but they may come
at the cost of inference time, 6.6× and 5.4× longer compared
to our proposed method, respectively. Wavelet-U-Net trans-
forms the image into the wavelet space using discrete wavelet
transformation, which adds to the computational cost to some
extent. GridDehazeNet also utilizes attention mechanisms but
as a bridge of multiscale features, which ensembles the design
of U-Net [22]. It has three rows and six columns, with each row
corresponding to a different scale, constructing a grid network,
which may compromise the inference speed.

However, their performance on the HSTS dataset from Fig. 6
and randomly selected hazy images from Fig. 7 demonstrates
that they may also suffer occasional degradation when dealing
with remote objects that are occluded, as well as objects located
in areas uniformly covered with thick haze but with limited prior
semantic information. While the images randomly selected for
our study in Fig. 7 may not be representative of specific datasets,
they are still valuable for consideration as they reflect scenarios
that can occur in real-world practices. Although accurately
verifying the generalization of algorithms is challenging, our
approach has demonstrated effectiveness even when encoun-
tering severe domain shifts, as evidenced by our experiments.
Our proposed method does not adopt the U-Net structure for
efficiency, nor does it leverage stacked attention mechanisms,
which saves the computational cost to a large extent, exhibits
adaptability to diverse scenarios, and possesses a noteworthy
level of generalization.

C. Ablation Study

The experimental results confirm that our proposed LFD-Net
is effective and efficient for real-time applications. Since it
has a different principle than other methods, we perform a
series of ablation studies to ensure that each component of the
network is indispensable. The detailed experimental conditions
and corresponding metrics tested on outdoor SOTS are listed in
Table VI.

Inspired by [17] and [21], we add a second concatenation
layer (i.e., Concat 2), to our method. In Case 1, we omit Concat
2 and observe a slight loss of detailed texture information due
to the reduced high-level information.

In Cases 2, 3, and 4, we investigate the importance of the gated
fusion module and attention mechanism in our model. These
cases demonstrate that these two subnetworks work together
to facilitate feature interaction. Specifically, the removal of the
attention mechanism leads to the occasional appearance of black
spots on the images, which significantly degrades the overall
performance. In comparison with other lightweight methods,
our method partially addresses this issue. In addition, the gated
fusion module is a crucial component in enhancing the dehazing
capability, serving as a bridge between the multilevel feature
extraction process ending at the first concatenation layer Concat
1, and the attention mechanism begining at the second concate-
nation layer Concat 2.

When both the attention mechanism and the gated fusion
module are involved, the detailed information in the images
is further refined, making it more authentic and faithful to the
original information. This structure helps to preserve and interact
with multilevel information to improve the overall image quality.

D. Visualization Results

We have visualized the intermediate feature maps before and
after the Gated Fusion module, as depicted in Fig. 9. As shown
in (a), the incorporated convolutional layer combines features
of three levels from Conv 1, Conv 2 and Conv 1 + Conv 3 to
generate three distinctive feature maps. They are distinguished
from each other by their focus on close or distant objects and
the lightness or contrast of the pixels.

In Fig. 9(b)–(d), we demonstrate the changes in specific
feature maps after the gated fusion module. Fig. 9(b) shows
that the contrast of the image is enhanced with the hierarchical
information, resulting in distant objects becoming more distinct.
Fig. 9(c) and (d) shows more abstract feature representations,
which are significantly shifted compared to the input features.
Specifically, Fig. 9(c) emphasizes the outline of substances,
while Fig. 9(d) highlights the blocks within substances.

The gated fusion module reallocates the distributed fea-
ture representations of the multilevel layers through feature-
interaction strategies. The feature extraction process is com-
pressed into three successive convolutional layers, for which
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Fig. 9. Visualization results of the changes in layers before and after the gated fusion module. (a) represents the three output feature maps of the convolutional
operation Conv 4 incorporated into Gated Fusion module, (b)-(d) stand for the changes in the 15th, 30th, and 31st feature map of the layers, respectively. (b) shows
that the contrast of the image is enhanced, resulting in distant objects becoming more distinct. (c) and (d) show more abstract feature representations, which are
significantly shifted compared to the input. Specifically, (c) emphasizes the outline of substances, while (d) highlights the blocks within substances. (a) The output
of convolutional operation in gated fusion module. (b) The 15th Feature Map of Each Level of Concat 1 and the Output of Gated Fusion Module. (c) The 30th
Feature Map of Each Level of Concat 1 and the Output of Gated Fusion Module. (d) The 31st Feature Map of Each Level of Concat 1 and the Output of Gated
Fusion Module.

we compensate by intralevel enhancement and interlevel com-
bination.

E. Application for Object Detection Task

As a severe weather condition, haze can significantly reduce
the effectiveness of remote sensing land observation system.

For instance, in autonomous navigation applications, object
detection can be significantly impacted by hazy environments,
resulting in degraded image quality and potentially jeopardizing
the safety of the system. Therefore, preprocessing procedure for
image enhancement before performing those tasks is of great
importance. As far as we know, there is no dataset with built-in
synthetic hazed images for object detection. In our experiment,
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Fig. 10. Reference object detection results. (a) Comparison of object detection results under ordinary, simulated hazy, and dehazed conditions. (b)–(e) Detailed
subscenes of detection results under different conditions. (b) and (c) Demonstrate an improvement in the detection rate, detecting an additional car instance in
the dehazed condition compared to the hazy condition. (d) Corrects the error of mistaking a roadblock for a car in the hazy condition. (e) Shows the detection of
another car compared to the ground-truth clear image.

Fig. 11. Reference remote sensing object detection results. (a) Comparison of remote sensing object detection results under ordinary, simulated hazy, and dehazed
conditions. (b)–(e) Detailed subscenes of detection results under different conditions, in which the detection rate for pedestrians is enhanced to a large extent. In
particular, (b) and (e) highlight instances of pedestrians that are not visible in the ordinary conditions but are detected after dehazing, similar to the results from
DAIR-V2X.
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we randomly select 100 images from each dataset (DAIR-V2X
and VisDrone2019) and produce their synthetic hazy versions.
We use the default outdoor pretrained weight for the former and
the fine-tuned remote sensing pretrained weight for the latter.
Both object detection processes are based on YOLOv5. Our
experiment results show that the mean average precision when
IoU = 0.5 (mAP@0.5) of the dehazed condition improves by
4.73% compared to the hazy condition in DAIR-V2X, while by
0.81% in VisDrone2019.

Furthermore, overall detection result of a particular scene is
shown in Fig. 10(a), while Fig. 10(b)–(e) illustrates the most
representative perspectives of the dehazing effect. In Fig. 10(b)
and (c), it can be seen that dehazing improves the detection rate,
as an additional car instance is detected in the dehazed condition
compared to the hazy condition. In Fig. 10(d), the roadblock
is mistakenly identified as a car in the hazy condition, but the
dehazing method is able to remove this error. In Fig. 10(e),
another car instance is shown before and after dehazing the
synthetic hazed image.

In Fig. 11(a), we show the overall remote sensing object
detection results from the perspective of a drone in a partic-
ular scene. In the images captured by the drone, the types
of land cover are more complex and the objects are smaller
when compared to the driving perspective from DAIR-V2X.
Fig. 11(b)–(e) illustrates the difficulties object detection meth-
ods encounter when detecting smaller pedestrian instances, es-
pecially in hazy conditions. However, dehazing methods can
partially address this issue and enhance the detection rate of
small objects like pedestrians, as shown in Fig. 11(c) and (d).
In Fig. 10(b) and (e), two additional pedestrian instances are
detected after dehazing compared to the original conditions,
similar to that in Fig. 10(e). Experimental results show that haze
can have unpredictable effects on normal conditions, and our
method can provide a better solution compared to the ground
truth in representing high-level semantic information to some
extent.

V. CONCLUSION

In this article, we propose a novel end-to-end model called
LFD-Net for remote sensing image dehazing. As a prepro-
cessing for downstream vision tasks, it not only ensures the
effectiveness and efficiency required for real-time applications,
but also outperforms SOTA methods in terms of region-balance
and color-fidelity. By designing this framework, we demonstrate
the potential of CNN-based networks by performing two-order
spatial interaction. Specifically, we show that the capabilities
of deep neural networks can be enhanced not only by adding
more complex modules to be deeper, but also by effectively
combining individual and natural feature extraction, fusion,
and attention with feature interaction strategies, particularly in
the field of image superresolution. The experiments on various
scenarios also shows that performance of a model is not always
proportional to the number of parameters, and less parameters
to some extent may help mitigate overfitting, which might be
conducive for future network design.
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