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Abstract—Recent long spells of high temperatures and drought-
hit summers have fostered the conditions for an unprecedented
outbreak of bark beetles in Europe. This phenomenon has ruined
vast swathes of European conifer forests creating a need among for-
est managers to find effective methods to gather information about
the mapping of bark beetle infestation hotspots. Sentinel-2 data
have been recently established as an alternative to field surveys for
certain inventory tasks. Hence, this study explores the achievements
of machine learning to perform the inventory mapping of bark
beetle infestation hotspots in Sentinel-2 images. In particular, we
investigate the accuracy performance of a spectral classifier that is
learned for the study task by leveraging spectral vegetation indices
and performing self-training. We use a dataset of Sentinel-2 images
acquired in nonoverlapping forest scenes from the North-east of
France acquired in October 2018. The selected scenes host bark
beetle infestation hotspots of different sizes, which originate from
the mass reproduction of the bark beetle in the 2018 infestation. We
perform a learning stage by accounting for the ground-truth bark
beetle infestation masks of a subset of images in the study imagery
dataset (training imagery set). The goal is to produce a prediction
of the bark beetle infestation masks for the remaining images in the
study imagery dataset (working imagery set). Moreover, we use an
explainable artificial intelligence technique to study the relevance
of spectral information and explain the effect of both self-training
and spectral vegetation indices on the mapping decisions.

Index Terms—Bark beetle infestation mapping, explainable
artificial intelligence (XAI), forest tree die-back, self-training,
Sentinel-2 image processing, spectral classification, spectral
vegetation indices.

I. INTRODUCTION

BARK beetles are small insects that reproduce beneath the
bark of coniferous trees, depositing their eggs under the

bark. The beetles commonly feed dying trees with weakened
defense mechanisms, but they can also attack healthy trees when
beetle populations expand. In particular, bark beetles swarm only
when the temperature is sufficiently high, while recent trends
toward extremely high temperatures and drought-hit summers
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have led the beetles to reproduce at a faster rate. The current
infestation of European spruce bark beetles began in 2012.
However, the phenomenon started growing significantly in the
middle of 2018. In fact, since 2018, Europe has experienced
repeated large-scale hot, dry weather that has led bark beetles,
which normally reproduce twice a year, to start reproducing
three times a year. This has fostered an unprecedented outbreak
of bark beetles that are ruining vast swathes of conifer forests.
For example, in 2018, the volume of affected conifer trees in
France was already much higher than during the previous beetle
infestation in 2003–2007, from which the forests took years
to recover.

Although higher temperatures and drought increase bark bee-
tle infestations on a large scale, local damage is often patchy. So
the mapping of the spatial spread of the bark beetle infestation
is an important challenging problem in both forest management
and ecological research. This mapping is traditionally performed
in Europe by foresters during field surveys. However, fieldwork
based on human assessment of individual trees is laborious
and, in the case of large forest zones, it is time-consuming and
expensive [1]. On the other hand, the increasing free availability
of remote sensing images enables remote sensing image classi-
fication to be used as a key tool for (partially) automating the
mapping of the forest health status by systematically reducing
the amount of fieldwork.

Remotely sensed satellite data rely on spectral signatures
from different regions in the electromagnetic spectrum. The
recent literature has already linked unique spectral signatures
to different functional and structural plant traits (e.g., pigments,
leaf structure, plant water content, and nitrogen concentration)
by showing that stress sources that affect a plant’s biophysical
and biochemical properties also affect spectral signatures [2].
Various studies have shown that spectral data of satellite images
commonly disclose useful information for monitoring the forest
health status comprising the presence of bark beetle infestation
hotspots [1], [3], [4].

The recent study of [5] has discussed the importance of the
early detection of the bark beetle infestation (i.e., before the bark
swarm). In fact, early detection is indispensable for the timely
sanitation of infested trees. The same study has also described
the early detection symptoms of bark beetle infestation, which
comprise the presence of entrance holes, resin flow from en-
trance holes and boring dust that occur when the beetles attack
the tree, penetrate the bark, and excavate mating chambers and
breeding galleries. All these symptoms are commonly monitored
through terrestrial monitoring [5]. On the other hand, gradual
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needle discoloration and loss of green or discolored needles
are considered late symptoms indicating an advanced stage
of infestation [5]. Often the next bark beetle generation has
already emerged at this point in time, so the recognition of
these symptoms will likely not enable timely sanitation. Based
on these considerations, Kautz et al. [5] highlight the need to
combine terrestrial monitoring and remote sensing monitoring
for the early stage detection. In any case, a delayed detection
performed with remote sensing monitoring may still serve to
perform an inventory task. For example, the French Ministry of
Agriculture and Food commissioned the inventory map of the
bark beetle infestation hotspots observed in October 2018, to
assess the damage in spruce forests of the North-east of France
following the 2018 bark beetle outbreak.2 This kind of inventory
results, although not distinguishing the stage of the infestation,
may also support locating undiscovered previous breeding sites
and prompting the application of field monitoring in the vicinity
of the detected hotspots, to identify recent infestations in the
neighbor areas [6], [7].

This study explores how machine learning methods can be
used to map bark beetle infestation hotspots in Sentinel-2 im-
ages by postponing the problem of boosting early detection by
integrating terrestrial monitoring and satellite data monitoring
to future work. Therefore, it can be regarded as contributing to
establishing opportunities and limits of using machine learning
on Sentinel-2 data as an alternative to field surveys for bark
beetle infestation inventory tasks. In particular, we explore the
effect of spectral vegetation indices coupled with self-training
on the accuracy of a spectral classifier trained and evaluated in
Sentinel-2 images. Notably, various recent studies have already
shown that spectral vegetation indices can aid in gaining accu-
racy in training a spectral classifier for bark beetle infestation
mapping (e.g., [1], [3], [4], and [8]). However, to the best of our
knowledge, no previous study has explored the achievements of
self-training in this remote sensing problem.

Another contribution of this study is the use of an eXplain-
able Artificial Intelligence (XAI) technique to strengthen the
mapping results to explore the effect of both spectral bands
and spectral vegetation indices on decisions concerning forest
patches with health trees and forest patches with dying trees, re-
spectively. This allows us to explain how spectral input informa-
tion contributes to recognizing zones of the opposite classes and
how self-training changed the relevance of the input information
in this problem. Explaining how spectral input information
contributes to recognizing zones of the opposite classes and
how self-training changed the relevance of the input information
in this problem can help gain the trust of forest managers and
remote sensing stakeholders in classifier decisions.

This article is organized as follows. The related work is
presented in Section II. Section III gives problem formulation.
Section IV describes the study area and data. Section V illus-
trates the spectral vegetation indices, while Section VI describes
the methods used in this work. Section VII discusses the results
obtained. Finally, Section VIII concludes this article.

2[Online]. Available: https://agriculture.gouv.fr/cartographie-des-degats-de-
scolytes-de-lepicea-dans-le-nord-est-de-la-france

II. RELATED WORK

Several remote sensing studies describe methods for mapping
forest stress related to bark beetle attacks in Sentinel-2 imagery
data. In fact, [2] notes that several forest stress sources (com-
prising bark beetle infestation) that may affect biophysical and
biochemical properties of trees also influence spectral data. For
example, [2] shows that chlorophyll degradation and nitrogen
deficiency lead to an increase in reflectance spectra in the visible
region (in particular, the red and green bands). On the other
hand, the NIR and SWIR bands commonly provide information
to assess water content and nitrogen concentration in trees. In
fact, they help to highlight changes caused by a reaction to
vitality losses and cell structure alterations when chlorophyll
and leaf water are reduced [2]. Finally, the Red Edge spectral
bands are more sensitive to diseased and insect attacks [2]. This
analysis has prompted a plethora of studies [1], [3], [4], [8], [9],
[10], which explore the ability of various spectral vegetation
indices, that mainly combine red, green, NIR, and SWIR bands,
to enhance the accuracy of classifiers trained to map bark beetle
stress in spectral data. In any case, to the best of our knowledge,
previous studies neither leverage self-training, to gain accuracy,
nor use XAI, to explain the effect of spectral input information
on the classifier decisions.

Regarding the classification algorithm, with the recent boom
of deep learning also in remote sensing, some studies have
started to explore sophisticated deep neural architectures for
mapping bark beetle infestation in satellite images. For example,
Zhang et al. [8] experiment a UNet++ with attention mechanism
modules for detecting forest damage induced by bark beetles in
Sentinel-2 images. Liu et al. [11] test a combination of a deep
neural network, a support vector machine (SVM), and a random
forest, while Nguyen et al. [12] explore the performance of a
convolution neural network in UAV images of forest patches
damaged by bark beetle infestations. In any case, several recent
studies on bark beetle mapping (e.g., [1], [3], [9], and [10])
still resort to machine learning algorithms and, particularly, to
Random Forest [13] and SVM [14]. On the other hand, a few
recent studies have started to experiment the performance of
XGBoost [15] in a limited number of remote sensing problems
such as landslide susceptibility mapping [16] and cloud mask
generation [17]. Notably, Singh et al. [17] show that XGBoost
can achieve better generalization ability than Random Forest,
SVM, and convolutional neural network in cloud mask gener-
ation on Sentinel-2 data. In addition, recent studies, developed
outside the remote sensing field, have repeatedly assessed the
better performance and generalization power of XGBoost in
compliance check problems [18], solar radiation mapping [19],
and earthquake classification [20]. For these reasons, in this
study, we use XGBoost for the spectral mapping of bark beetle
infestation in satellite images.

Finally, there are three stages of bark beetle infestation.
1) Green attack—A period with no visible abnormal colors

in the tree crowns during bark beetle colonization.
2) Red attack—A period when the crowns turn a yellow or

reddish color with significantly decreased water content
in the needles.

https://agriculture.gouv.fr/cartographie-des-degats-de-scolytes-de-lepicea-dans-le-nord-est-de-la-france
https://agriculture.gouv.fr/cartographie-des-degats-de-scolytes-de-lepicea-dans-le-nord-est-de-la-france
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3) Gray attack—When coniferous trees gradually lose nee-
dles after dying.

As reported in a recent survey [21], green attacks can be
reliably detected from the ground or verifying the presence
early stage bark beetle symptoms in neighbors of red-attacked
patches. In fact, most sensing methods, comprising our method,
are developed to map red or gray attacks. However, a recent
study [22] has concluded that the detection of green attacks in
spectral data requires the detection of subtle reflectance changes
in the imagery time series collected with very high temporal
revisit frequency. Therefore, a few recent studies, [1], [3], [10],
have started to explore the time series of spectral data, to perform
the early detection of green attacks. The analysis and explana-
tion of the achievements of self-training, coupled with spectral
vegetation indices in the times series of Sentinel-2 images of
forest areas, will be a future direction of this research.

III. PROBLEM FORMULATION

Let us consider a Sentinel-2 imagery dataset, that is a col-
lection of optical images of nonoverlapping, rectangular, forest
areas. Images were acquired in a specific period using the
Sentinel-2 sensor in the visible, near infrared, and short wave
infrared part of the spectrum. In particular, every Sentinel-2
imageS is an hypercube of size nS ×mS × d, which represents
a collection of spectral vectors measured on a d-dimensional
selection of the Sentinel-2 spectrum over a grid of nS ×mS

pixels. Every pixel (i, j) of S is a region of around a few square
meters of the Earth’s surface, which is a function of the satellite
spatial resolution. S(i, j) is a 1-D real-valued spectrum section
of hypercube S indexed by spatial coordinates i and j within
the satellite resolution. Let us assume that the status of the bark
beetle infestation of pixels of S is described by a binary mask
Y, that is a 2-D matrix with size nS ×mS. Every frame Y(i, j)
is a binary value with two opposite labels: “healthy” (0) and
“damaged” (1), where “healthy” denotes the absence of a bark
beetle infestation hotspot in the pixel, while “damaged” denotes
the presence of a bark beetle infestation hotspot in the pixel.

In this study, we have the binary mask of every study
Sentinel-2 image. We partitioned images and masks associated
with images in the provided Sentinel-2 imagery dataset into a
training imagery set and a working imagery set. Specifically,
every Sentinel-2 image and its mask of the starting imagery set
is assigned to either the training imagery set or the working
imagery set so that the intersection of the training imagery set
and working imagery set is empty, while the union of the training
imagery set and working set is the entire starting imagery set.

In the learning stage, we considered the Sentinel-2 images of
the training imagery set with the binary masks associated with
the images, and the Sentinel-2 images of the working imagery
set (without the binary masks associated with). We resorted to
a self-training strategy and spectral vegetation indices to learn
a spectral classifier from these partially labeled spectral data.
We used the spectral classifier to predict the binary masks of
the Sentinel-2 images in the working imagery set. Finally, in
the evaluation stage, we evaluated the accuracy of the spectral
classifier by computing several metrics measuring the pixel-wise

differences between the binary labels of both the predicted masks
and the ground-truth masks associated with the images of the
working imagery set. We note that labels of ground-truth masks
of images of working imagery set are neglected in the learning
stage, while they are considered in the evaluation stage.

IV. STUDY AREA AND DATA

The study area is in the North-east of France and is predomi-
nated by coniferous forests. Due to the mass reproduction of the
bark beetle in 2018 and 2019, at the end of April 2019, the French
National Forestry Office estimated that 50% of the spruce trees
in France were infested with bark beetles, while, under normal
conditions, the figure for dead or diseased trees was 15%. In this
area, no large windthrows occurred in the years before 2018,
and therefore, the observed attacks at the regional scale were
very likely caused by the hot summer droughts in 2018 [23]. In
addition, the study area is fully covered by the map of the bark
beetle infestation hotspots observed in October 2018 and created
by Sertit (University of Strasbourg), an organization specializing
in emergency mapping.3 This map was commissioned by the
French Ministry of Agriculture and Food to assess the damage
in spruce forests of the North-east of France following the 2018
bark beetle outbreak. This map does not provided information on
the bark beetle infestation stages, but it delineates the boundaries
of bark beetle hotspots that caused forest tree die-back in the
North-east of France in October 2018.

The remote sensing company Wildsense4 rechecked and fixed
the infestation hotspot polygons of this map also with the help of
foresters. In particular, to avoid mixed reflectance from various
causes in discoloration and defoliation of conifer, Wildsense
manually selected 92 squared, imagery tiles covering spruce
forestry areas fully under bark beetle attacks in October 2018.
The selected imagery tiles have spatial sizes varying from
33× 41 m to 225× 364 m. The percentage of infested terri-
tory per tile varies from 0.003% to 0.30% of the tile surface.
Selected imagery tiles of this study cover 1072 979 pixels in the
North-east of France, at 10-m2 resolution.

Based on these premises, Sentinel-2 satellite images, acquired
in October 2018, were downloaded from the Sentinel hub for
all the selected 92 imagery tiles spanned across the study area.
The downloaded imagery set went through atmospheric and
reflectance distribution function correction, cloud clearing, and
band selection performed by Wildsense. The spectral bands
considered are: Coastal aerosol, Blue, Green, Red, Red Edge
1, Red Edge 3, NIR, Water Vapor, SWIR 1, and SWIR 2. In
Sentinel-2, the spectral bands Blue, Green, Red, and NIR are all
at 10-m resolution, while the bands Coastal aerosol and Water
Vapor bands are at 60-m resolution. The remaining bands are at
20-m resolution. So, during the imagery set preparation, spectral
bands with different resolutions from 10 m were resampled to
10 m to achieve an equal spatial resolution across all spectral

3The map can be accessed via https://macarte.ign.fr/carte/3bd52aa2b6422
a3a58b5086576f91080/Foyers+de+scolytes+dans+les+pessi%C3%A8res+et+
les+sapini%C3%A8res+du+Nord-Est+de+la+France,+automne+2018-
printemps+2019

4[Online]. Available: https://swiftt.eu/consortium/partners
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https://macarte.ign.fr/carte/3bd52aa2b6422a3a58b5086576f91080/Foyers+de+scolytes+dans+les+pessi%C3%A8res+et+les+sapini%C3%A8res+du+Nord-Est+de+la+France
https://macarte.ign.fr/carte/3bd52aa2b6422a3a58b5086576f91080/Foyers+de+scolytes+dans+les+pessi%C3%A8res+et+les+sapini%C3%A8res+du+Nord-Est+de+la+France
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Fig. 1. Location of the study 92 images in the North-east of France. The red
tiles fed the training imagery set, while the blue tiles fed the working set of this
study.

TABLE I
DISTRIBUTION OF CLASSES “HEALTHY” AND “DAMAGED” IN THE TRAINING

IMAGERY SET AND THE WORKING IMAGERY SET OF THE SET OF 92
SENTINEL-2 IMAGES CONSIDERED IN THIS STUDY

bands. This dataset was produced with the ground-truth map of
the bark beetle infestation in October 2018 by the Wildsense
company, to allow the research partners of the EU research
project SWIFTT5 to partially fulfil project objectives referred
to the development of powerful machine learning models to
provide forest managers with affordable, simple, and effective
remote sensing tools for forest health monitoring of various types
of risks comprising tree die-back due to bark beetle infestation .

Within the prepared imagery set, we performed the learning
stage by using 76 images (covering 856 062 pixels at 102 m2

resolution) with their labels (training imagery set) and 16 images
(216 917 pixels) without labels (working imagery set). A map
of the selected imagery scenes, and their partitioning in training
imagery set and working imagery set is shown in Fig. 1. In
addition, Table I reports the distribution of the pixel classes
(“healthy” and “damaged”) in both the training and the work-
ing imagery set of this study. These statistics show the high
imbalanced condition of the classification problem addressed
in this study. Fig. 2 shows the box plots of the spectral bands
plotted independently of each other in the entire imagery set with
respect to the two opposite ground-truth classes (“damaged”
and “healthy”). The box plots show that a greater divergence
between the opposite classes can be observed on Red Edge
3, NIR, and Water Vapor spectral bands. This conclusion is

5[Online]. Available: https://swiftt.eu/

TABLE II
F METRIC RESULTS OF ONE-WAY ANOVA ANALYSIS PERFORMED ON THE

SPECTRAL BANDS IN THE ENTIRE IMAGERY SET, THE TRAINING IMAGERY SET,
AND THE WORKING IMAGERY SET

also supported by the results of the one-way ANOVA analysis
that finds out whether there exists a statistically significant
difference between the mean values of the two groups of pixels
labeled with the two opposite ground-truth classes. Results of
the one-way ANOVA analysis reported in Table II show that
the null hypothesis that the means of the compared groups are
equals is always rejected with p-value ≤ 0.001 and the highest
F-statistic (i.e., the ratio of the variation between sample means
on the variation within the samples) is measured on Red Edge
3, NIR, and Water Vapor spectral bands. This conclusion can be
equally drawn by performing the one-way ANOVA analysis on
the entire imagery set, the training imagery set, and the working
imagery set, respectively.

V. SPECTRAL VEGETATION INDEX ANALYSIS

We consider three spectral vegetation indices, namely NG-
DRI, NMDI, and MCARI. These indices, that were computed
from the Sentinel-2 spectral bands, allowed us to capture forest
greenness, chlorophyll, and water content, and are selected
particularly based on the considerations illustrated in [2] on the
sensitivity of Sentinel-2 bands to stress-induced variations in
chlorophyll content (Visible), biomass (NIR), and water content
(SWIR). In fact, according to [2], Green, Red, and NIR bands are
mainly sensitive to chlorophyll degradation. SWIR 1 and SWIR
2 bands are mainly sensitive to vitality losses and cell structure
alterations when chlorophyll and leaf water are reduced. Red-
edge spectral bands are mainly sensitive to disease and insect
attacks.

Therefore, the normalized difference green/red index (NG-
DRI) [24] was computed to capture the chlorophyll degradation,
by combining the green and red bands in the visible spectrum

NGDRI =
Green − Red
Green + Red

. (1)

The authors in [1], [8], and [9] explore the use of this index for
bark beetle mapping in forestry regions in the Southeast of the
Skeena region of Canada, the Vysočina region in the central part
of the Czech Republic and the Remningstorp, Västra Götaland
region in Sweden, respectively.

https://swiftt.eu/
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Fig. 2. Box plot distribution of spectral bands in the entire imagery set.

Fig. 3. Box plot distribution of NGDRI, NMDI, and MCARI in the entire imagery set (left side), the training imagery set portion (central side), and the working
imagery set portion (right side).

The normalized multiband drought index (NMDI) [25] was
adopted for detecting vegetation water by using NIR, SWIR 1,
and SWIR 2 bands

NMDI =
NIR − (SWIR1− SWIR2)
NIR + (SWIR1 + SWIR2)

. (2)

Wang and Qu. [25] show that the lower the NMDI, the greater
the severity of the vegetation drought, and consequently, the tree
vitality loss. The index is also considered in [10] for bark beetle
mapping in a forestry ecosystem in the North-eastern part of
Italy and Southern Austria, and in [26], for forest fire detection
in both southern Georgia, USA, and southern Greece.

The modified chlorophyll absorption in reflectance index
(MCARI) [27] was adopted for estimating the leaf chlorophyll
concentration from leaf and canopy reluctance. It combines
spectral data enclosed in the Sentinel-2 bands Red, Green, and
Red Edge 1 (RE1) bands

MCARI = ((RE1− Red)− 0.2 ∗ (RE1− Green)) ∗ RE1
Red

.

(3)
The index is also considered in [3] for mapping the bark beetle

infestation in a forestry region in Northern Italy.

Fig. 3 shows the box plots of the three indices NGDRI, NMDI,
and MCARI for the two opposite ground-truth classes “healthy”
and “damaged.” The plots are computed on the entire imagery
set, as well as on the training and the working imagery set
of this study. The box plots show that a good divergence can
be observed between the opposite classes in the three spectral
vegetation indices. The divergence is equally visible in the
entire imagery set, as well as in the training and the working
portion of the imagery set considered for this study. Notably,
the greatest divergence between the damaged and healthy pixels
can be observed in the NGDRI box plots. The conclusions
of this visual analysis are also supported by the statistical results
of the one-way ANOVA analysis reported in Table III. Fig. 4
shows the heatmaps of the three indices in a sample Sentinel-2
image of the working imagery set considered in this study. These
plots show that both NGDRI and NMDI roughly separate the
forest patches infested by the bark beetle from the healthy ones
surrounding them better than MCARI.

Finally, Fig. 5 shows the results of the bivariate correlation
analysis performed by computing the Spearman’s rank correla-
tion coefficient over the collection of spectral bands and spectral
vegetation indices. The Spearman’s rank correlation coefficient
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Fig. 4. (a) RGB, (b) NGDRI, (c) NMDI, and (d) MCARI of the sample image of the study working imagery set that is shown in the zoom of Fig. 1. The
black-colored polygons delimit the ground-truth boundary of the bark beetle infestation patches. The heatmaps of NGDRI, NMDI, and MCARI are produced with
the “bwr” color map. (a) RGB. (b) NGDRI. (c) NMDI. (d) MCARI.

Fig. 5. Spearman’s rank correlation analysis performed on the spectral bands and spectral vegetation indices in both the (a) training imagery set and (b) working
imagery set. (a) Training imagery set. (b) Working imagery set.

TABLE III
F METRIC RESULTS OF ONE-WAY ANOVA ANALYSIS PERFORMED

ON THE SPECTRAL VEGETATION INDICES NGDRI, NMDI, AND

MCARI ON THE ENTIRE IMAGERY SET, THE TRAINING IMAGERY SET,
AND THE WORKING IMAGERY SET

is a nonparametric measure of rank correlation that assesses
how well the relationship between two compared variables can
be described using a monotonic function. It varies between −1

and +1 with 0 implying no correlation, −1 implying an exact
monotonic relationship with negative correlation and +1 imply-
ing an exact monotonic relationship with positive correlation.
This correlation analysis shows that although the spectral bands
are all positively correlated with each other, they can be grouped
into two blocks. Block 1 contains: Coastal aerosol, Blue, Green,
Red, Red Edge 1, SWIR 1, and SWIR 2, while Block 2 contains:
Red Edge 3, NIR, and Water vapor. In particular, the intrablock
positive correlation computed between each pair of spectral
bands belonging to the same block is commonly greater than
0.6, while the interblock correlation computed between each
pair of spectral bands belonging to the two different blocks is
commonly lower than 0.6. In addition, we note that the interblock
positive correlation computed between the Green and Red Edge
1 spectral bands of Block 1 and the spectral bands of Block
2 is greater than the interblock positive correlation measured



10056 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 6. Workflow of the framework SILVIA for mapping bark beetle infestation in unlabeled Sentinel-2 images of a forest located in the North-east of France by
leveraging spectral vegetation indices, self-training with labeled images of the training imagery set and unlabeled images of the working imagery set, and XAI.

between the Coastal Aerosol, Blue, and Red spectral bands of
Block 1 and the spectral bands of Block 2.

By extending this correlation analysis to the spectral vege-
tation indices, we note that each index is positively correlated
with each other. In addition, both NGDRI and NMDI have a
more negative correlation with spectral bands of Block 1, while
they have a slight positive correlation, closer to 0, with spectral
bands of Block 2. On the other hand, MCARI has a correlation
closer to 0 with spectral bands of Block 1, while it has a more
positive correlation with spectral bands of Block 2. Based on
this analysis, we expect that MCARI may have a different effect
than NGDRI and NDMI into the learning stage. To investigate
this idea, we performed an ablation study of spectral vegetation
indices, whose results are illustrated in Section VII-B, in order
to explore the effect of several combinations of the three spectral
vegetation indices on the performance of the spectral classifier
trained in the learning stage.

VI. METHODS

Fig. 6 graphically shows the learning stage of the workflow
of the self-training and spectral vegetation indices for spectral
classification (SILVIA) framework experimented in this study.
The learning framework resorts to a self-training strategy and
leverages spectral vegetation indices to learn a spectral classifier
from a set of partially labeled images (that comprise labeled
training images and unlabeled working images). It uses the
learned classifier to predict labels of working images. It also
integrates an XAI component to explain classifier decisions.
The evaluation framework computes several accuracy metrics by
comparing pixel-wise ground-truth labels and predicted labels
of masks of images in the working set.

A. Notation

Let S denote the starting imagery set and Y denote the
starting mask set so that every binary mask Y ∈ S is one-to-one

associated with a Sentinel-2 image S ∈ S . Let S+ the imagery
set derived from S by concatenating the spectral vector of
every pixel (i, j) ∈ S of every image S ∈ S with the vector of
spectral vegetation indices computed from S(i, j) (see details in
Section V). LetFdenote the vector of spectral bands and spectral
vegetation indices recorded in every pixel section of images in
S+. Let S+T and S+W denote the training and the working
imagery set so that S+T ∪ S+W

= S+ and S+T ∩ S+W
= �.

Let YT and YW denote the training and working mask set so
that YT contains ground-truth masks of images comprised in
S+T and YT contains ground-truth masks of images comprised
in S+W .

B. Self-Training

In the learning stage, the spectral vegetation indices are com-
puted and the self-training approach works on S+T , YT , and
S+W with a wrapper classification algorithm.

The self-training strategy, also known as decision-directed
or self-taught machine learning, is a simple semisupervised
learning approach [28] that accounts for supervisory information
obtained from unlabeled data, by leveraging the underlying data
structure to predict the unobserved or hidden part of the input.
It enriches the labeled training data by training a new spectral
classifier with labeled input in conjunction with pseudo-labeled
samples for prediction. Cascante-Bonilla et al. [29] have recently
shown that the use of pseudolabeling makes the classifier more
resilient to out-of-distribution samples in the unlabeled set, while
Zhang et al. [30] have proved that unlabeled data can improve
training convergence.

The self-training step is performed with XGBoost [15] as
a wrapper classification algorithm. This is a well-known tree-
boosting algorithm that applies gradient boosting to couple weak
tree classifiers and learn a strong classifier in an iterative manner.
This is done by using residual errors computed for each tree
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to decrease the error margin for the successor tree. In addition,
XGBoost adopts a regularization term to prevent overfitting, and
parallel computation to speed up the learning stage.

XGBoost is initially used to train a spectral classifier Φ1 :
F �→ {healthy, damaged} by minimizing a regularized empir-
ical loss over the collection of labeled pixels in the training
imagery set (S+T

,YT ). Notice that the spectral input space F
of Φ1 contains the concatenation of both the spectral bands and
the spectral vegetation indices. The output space contains the
“damaged” and “healthy” classes. Subsequently, Φ1 is adopted
to estimate the pseudolabels ŶW

Φ1
of the collection of pixels of

S+W , i.e., ŶW
Φ1

= Φ1(S+W
). We note that ŶW

Φ1
is a prediction

of YW , while YW is unavailable in the learning stage. Finally,
the pseudolabeled pixels of S+W are leveraged to train a new
classifier Φ2 : F �→ {healthy, damaged} by minimizing the reg-
ularized empirical loss of the wrapper classification algorithm
over the entire imagery set (S+T ∪ S+W

,YT ∪ ŶW
Φ1

) Specif-
ically, we use XGBoost to learn Φ2 by taking advantage of
supervision provided by ground-truth labels YT for pixels of
images collected in S+T and predicted pseudolabels ŶW

Φ1
for

pixels of images collected in S+W .
XGBoost, similarly to most machine learning algorithms,

expects training samples with a balanced class distribution. To
handle the imbalanced condition of the study data, the two
classifiers of the self-training step are trained by adopting a
cost-sensitive approach [31]. This approach consists in learning
a classifier by accounting for the costs assigned to confidence
scores of different labels, i.e., the highest cost should be assigned
to the minority class (“damaged”), while the lowest cost should
be assigned to the majority class (“healthy”). For each classifier,
the cost schema is automatically selected according to a fivefold
stratified cross-validation of training samples by performing a
grid search of the cost space.

Finally, Φ2 is used to output final predictions ŶW
Φ2

=

Φ2(S+W
), which represent the final predictions of infestation

labels of masks associated with images in S+W .

C. Explainable Artificial Intelligence (XAI)

SHapley Additive exPlanations (SHAP) [32] is an explainer,
to yield local and global explanations of inputs that contribute to
decisions. SHAP has been recently used in [33] for interpretable
land cover classification. In the proposed framework, SHAP is
used to explain the effect of the input feature spaceF, composed
of both spectral bands and spectral vegetation indices, on clas-
sifier decisions. It can be used to explain the final decisions
of the two classifiers Φ1 and Φ2. These explanations allow
us to identify which spectral information mainly conditions
classifiers’ decisions, as well as to understand how classifier
decisions may be changed through the self-training strategy.

SHAP is a local-level XAI technique that performs a theoretic
game approach. It determines the contribution of each input
feature to the prediction (relevance value) of a classifier as the
average marginal contribution of a feature value for all possible
predictions [34]. Let Φ : F �→ {healthy, damaged} denote the
classifier to be explained. In this study Φ = Φ1 or Φ = Φ2. For

each imagery spectral pixel section p ∈ S+W and for each fea-
ture X ∈ F, SHAP measures the effect of X on the confidence
scores estimated byΦ onp for the opposite classes y =“healthy”
and y =“damaged,” respectively. Let Φ(p)[y] denote the con-
fidence score according to Φ sees p assigned to class y with
y =“healthy” or y =“damaged.” Notice that Φ, finally, decides
to classifyp in the class for which the highest confidence score is
computed. For each class y, SHAP measures the effect of X on
Φ(p)[y], by comparing the confidence scores that are estimated
by considering, for each subspace X ⊆ F/{X}, the pair of sur-
rogate classifiers ΦX : X �→ Y and ΦX∪{X} : X ∪ {X} �→ Y
trained with input feature spaces X and X ∪ {X}, respectively.
Specifically, for each subspace X ⊆ F/{X}, the confidence
scores produced by ΦX and ΦX∪{X} are compared according
to the following formula:

ϕX,X,y(p) = ΦX∪{X}
(
πX∪{X}(p)

)
[y]− ΦX (πX(p)) [y]

(4)
where πX : F �→ X and πX∪{X} : F �→ X ∪ {X} denote the
projection operators that return the spectral information enclosed
in X and X ∪ {X}, respectively.

Finally, Shapley values are computed, for each input dimen-
sion X , as a weighted average of all possible differences as
follows:

ΨX,y(p) =
∑

X⊆F/{X}

|X|! (|F| − |X| − 1)!

|F|! (ϕX,X,y(p))

(5)
where | • | denotes the vector size. The higher the value of
φX,y(p), the greater the effect of X on the decision of assigning
pixel p to class y.

D. Accuracy Metrics

To explore the effectiveness of the SILVIA framework de-
scribed, we performed an evaluation stage by measuring mul-
tiple accuracy metrics, i.e., Precision (P), Recall (R), and FS-
core (F) computed for the two opposite classes, false detection
rate (FDR), missed alarm rate (MAR), overall accuracy (OA),
average accuracy (AA), and GMean (G). Notice that AA and
GMean metrics are commonly used in imbalanced classification
problems. Let us consider: tp—the number of pixels of the
imagery set in the “damaged” class that are correctly predicted
as belonging to that class type; fp—the number of pixels not
belonging to the “damaged” class that are wrongly predicted
as belonging to the class “healthy”; tn—the number of pixels
belonging to the “healthy” class that are correctly predicted as
belonging to that class type; and fn—the number of pixels of the
“damaged” class that are wrongly predicted as not belonging to
that class type. The accuracy metrics were computed as follows.

1) P(h) and P(d) measure the precision (also called user
accuracy) of the “healthy” and the “damaged” class, re-
spectively, i.e., P (h) = tn

tn+fn and P (d) = tp
tp+fp .

2) R(h) and R(d) measure the recall (also called producer
accuracy) of the “healthy” and the “damaged” class, re-
spectively, i.e., R(h) = tn

tn+fp and P (d) = tp
tp+fn .

3) F(h) and F(d) measure the FScore, that is, the harmonic
mean of precision and recall of the “healthy” and the



10058 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

“damaged” class respectively, i.e.,F (h) = 2P (h)R(h)
P (h)+R(h) and

F (d) = 2P (d)R(d)
P (d)+R(d) .

4) FDR measures the probability that a pixel belonging to
the “healthy” class is wrongly classified in the “damaged”
class, i.e., FDR = fp

fp+tp .
5) MAR measures how many pixels belonging to the “dam-

aged” class are wrongly predicted in the “healthy” class
on the number of pixels predicted in the “damaged” class,
i.e., MAR = fn

fn+tp .
6) OA measures the proportion of correctly classified pixels,

i.e., OA = tp+tn
tp+tn+fp+fn .

7) AAmeasures the average of each accuracy value per class,
i.e., AA = 1

2 (
tp

tp+fn + tn
tn+fp ).

8) GMean measures the geometric mean of specificity
and recall by equally considering the errors in both
classes, i.e., G =

√
specificity × sensitivity, where speci-

ficity measures how many pixels are correctly predicted
for the “healthy” class given all occurrences of that
class, i.e., specificity = tn

tn+fp , while sensitivity measures
how many pixels are correctly predicted for the “dam-
aged” class given all occurrences of that class type, i.e.,
sensitivity = tp

tp+fn .
All the accuracy metrics were computed on predictions pro-

duced for pixels in the working imagery set of this study.

VII. RESULTS AND DISCUSSION

The SILVIA framework was implemented in Python 3.8. The
evaluation study was conducted on a Linux machine with an
Intel(R) Core(TM) i7-9700F CPU at 3.00 GHz and 32-GB
RAM. All the experiments were executed on a single GeForce
RTX 2080.

A. Spectral Vegetation Indices and Self-Training

We performed an ablation study, to explore the effect of
both spectral vegetation indices and self-training on spectral
classifiers trained with XGBoost in SILVIA. To this end, we
analyzed the performance of spectral classifiers trained in the
following configurations of SILVIA.

1) S, which discards both the spectral vegetation indices
and the self-training strategy, and maps the bark beetle
infestation by using the spectral classifier trained by the
spectral data of the study training imagery set.

2) S+ SELF, which discards the spectral vegetation indices,
and maps the bark beetle infestation by using the spectral
classifier trained by the labeled spectral data of the training
imagery set and the unlabeled spectral data of the working
imagery set through the self-training strategy.

3) S+ I, which discards the self-training strategy, and maps
the bark beetle infestation by using the spectral classifier
trained by both the spectral data and the spectral vegetation
index data of the training imagery set.

4) S+ I+ SELF, which is the default configuration of the
SILVIA framework as described in Section VI.

Fig. 7 compares the time spent (in minutes) completing the
computation process with configurations S, S+ SELF, S+ I,

Fig. 7. Computation time (in minutes) of configurations S, S+ SELF, S+ I,
and S+ I+ SELF of SILVIA.

and S+ I+ SELF, while Table IV reports the accuracy metrics
measured on the bark beetle maps produced for the working
imagery set with S, S+ SELF, S+ I, and S+ I+ SELF, respec-
tively. As expected, performing the self-training strategy is more
time consuming than accounting for spectral vegetation indices
in the input space of classifiers. Precision, Recall, and FScore
results show that the use of spectral vegetation indices and the
self-training strategy allow us to improve the precision of the
“healthy” class P(h) and the recall of the “damaged” class R(d),
while they reduce the precision of the “damaged” classP(d) and
the recall of the “healthy” class R(h). These metrics show that
a better ability to recognize infested patches is achieved at the
cost of a higher number of healthy pixels being wrongly assigned
to the damaged patch. This consideration is also supported by
the analysis of both MAR and FDR. In fact, both performing
self-training and leveraging spectral vegetation indices allow
us to reduce the MAR by diminishing the number of pixels
infested by the bark beetle, but missed by the classifier. In any
case, a better ability to recognize infested patches is achieved
at the cost of a higher number of healthy pixels being wrongly
assigned to the damaged patch. In fact, the FDR increases with
the use of both self-training and spectral vegetation indices.
Notably, learning the spectral classifier through the self-training
strategy (S+ SELF) causes a higher number of false alarms
than training the classifier by leveraging the spectral vegetation
indices (S+ I). On the other hand, we highlight that the decrease
of MAR is highly desirable in this problem, also at the cost of
an equal increase of FDR, considering that the “damaged” class
is very imbalanced in the study problem, and from the point of
view of forest management, a missed alarm is more expensive
than a false alarm.

Regarding OA, AA, and GMean, we note that OA decreases
negligibly, but OA is dominated by the majority “healthy” class.
On the other hand, both AA and GMean improve significantly
due to the use of self-training and spectral vegetation indices.
We recall that AA gives equal weight to the accuracy achieved
in both classes, so it is more appropriate than OA for measuring
improvements in the study problem without being conditioned
by the imbalanced phenomenon. Similarly,GMean is commonly
considered a more appropriate measure of performance than OA
in imbalanced classification problems, as it combines sensitivity
and specificity with equal weights. Sensitivity might be more
interesting than specificity in the imbalanced problems. Notably,
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TABLE IV
ACCURACY METRICS OF S, S+ SELF, S+ I, AND S+ I+ SELF

Fig. 8. Bark beetle maps of the sample image of the study working imagery set that is shown in the zoom of Fig. 1. The maps were produced with (a) S,
(b)S+ SELF, (c)S+ I, and (d)S+ I+ SELF. The white pixels are the ones predicted in the “damaged” class. The red, blue, and yellow polygons delimit the bound-
ary of the ground-truth hotspots of the bark beetle infestation in this sample image. No pixel in the yellow polygon was correctly detected by S as infested by the bark
beetle. The number of infested pixels in the blue polygons correctly detected byS+ SELF,S+ I, andS+ I+ SELF is higher than the number discovered byS. (a)S.
(b) S+ SELF. (c) S+ I. (d) S+ I+ SELF.

a greater improvement in both AA and GMean is achieved by
coupling self-training with vegetation indices.

The conclusions drawn from the accuracy performance analy-
sis can be visually supported by the exploration of the bark beetle
maps that are produced with the spectral classifiers, trained in the
configurations compared. Fig. 8 shows the bark beetle maps pro-
duced by configurations S, S+ SELF, S+ I, and S+ I+ SELF
in the sample image of the study’s unlabeled imagery set already
considered in Fig. 4. Notably, both the self-training strategy and
the spectral vegetation indices allow us to discover a small forest
patch infested by the bark beetle that is otherwise ignored [i.e.,
the yellow polygon in Fig. 8(a)]. On the other hand, both the
self-training strategy and the spectral vegetation indices allow

us to fill in the surface of the forest patches infested by the bark
beetle better [i.e., the blue polygons in Fig. 8(a)].

B. Spectral Vegetation Index Sensitivity

We performed a sensitivity study to explore the effect of
the different combinations of spectral vegetation indices on the
accuracy of the spectral classifiers trained accounting for the se-
lected indices. For this purpose, we considered the spectral clas-
sifiers trained in the two configurations of SILVIA that account
for the vegetation indices: (S+ I) (that discards the self-training
strategy) and S+ I+ SELF (that uses the self-training strategy).
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TABLE V
ACCURACY METRICS OF S+ I AND S+ I+ SELF BY VARYING THE COMBINATION OF SPECTRAL VEGETATION INDICES CONSIDERED

TABLE VI
ACCURACY METRICS OF XGBOOST, RANDOM FOREST, AND SVM

The results reported in Table V show that MCARI allows us
to better delineate the healthy forest patches causing an increase
in the amount of missed alarms, while NGDRI and NMDI allow
us to better delineate infested forest patches causing an increase
in the number of false alarms. In fact, the configuration of
both S+ I and S+ I+ SELF with MCARI achieves the highest
R(h) and P(d), as well as the lowest FDR. The configuration
with NGDRI and NMDI achieves the highest P(h) and R(d),
as well as the lowest MAR. NGDRI is more effective than
NMDI at recognizing infested forest patches. Finally, we note
that, although MCARI elaborated alone helps in recognizing
the healthy forest patches better than the infested forest patches,
the spectral classifier trained leveraging NGDRI, NMDI, and
MCARI achieves the highestP(h),R(d),AA, andGMean of this
study. This result is welcome in a scenario characterized by a
strong imbalance of the minority class “damaged.” This behavior
of spectral vegetation indices is equally observed regardless the
use of the self-training strategy.

C. Wrapper Classification Algorithm

We analyze the performance of the wrapper classification al-
gorithm by comparing the performance ofSILVIAwith XGBoost
to the performance of SILVIA with Random Forest and SVM.
These classification algorithms are selected as they have been
recently used in [1], [3], [9], and [10] to address various bark
beetle mapping problems in different European forestry regions.
As for XGBoost, we adopt a cost-based approach to handle
the imbalanced condition of the study data in both Random
Forest and SVM. Similarly to XGBoost, the cost schema of each
classifier is selected with a grid-search performed on the fivefold
cross-validation of samples processed to train the classifier with
either Random Forest or SVM.

Fig. 9. Computation time (in minutes) of XGBoost, Random Forest, and SVM.

Fig. 9 compares the time that the SILVIA framework spent (in
minutes) completing the computation process with XGBoost,
Random Forest, and SVM, respectively. Table VI reports the
accuracy metrics measured on the bark beetle infestation maps
yielded by the three wrapper classification algorithms. These
results show that Random Forest achieves the lowestFDR, which
results in a small gain in both R(h) and P(d), as well as OA. On
the other hand, XGBoost achieves the lowest MAR that results
in a significant gain in both AA and GMean. Notably, the SVM
achieves a good tradeoff between FDR and MAR, as well as
between F(h) and F(d), in this study, and it is the runner-up in
terms ofOA,AA, andGMean. However, wrapping the SVM into
SILVIA is much more time consuming than wrapping XGBoost
or Random Forest.

D. XAI Exploration

We perform the analysis of the explanations that the XAI mod-
ule of SILVIA produced. For this purpose, we analyze separately
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Fig. 10. Average Shapley vectors of the spectral input space of the classifiers learned with configurations S, S+ SELF, S+ I, and S+ I+ SELF, respectively.
(a) Damaged. (b) Healthy.

the average Shapley vector of the input space of each spectral
classifier on pixels belonging to the two opposite classes.

Fig. 10(a) and (b) compares the maps of the average Shapley
vectors generated for the “healthy” and “damaged” classes in
the configurations S, S+ SELF, S+ I, and S+ I+ SELF, re-
spectively. These Shapley maps show that the Coastal Aerosol
spectral band has, in general, little effect on all the spec-
tral classifiers trained in this problem independently of the
class to be recognized. This outcome is expected since Coast
Aerosol commonly conveys useful information for mapping
a coastal habitat [35], but no coastal habitat was covered by
this study area. On the other hand, the Shapley maps show
that the effect of the spectral input on the decisions yielded
by the same spectral classifier may change according to the
classes. For example, SWIR 2, which is one of the top-relevant
spectral bands of this study, has greater effect on decisions
concerning pixels infested by the bark beetle than decisions
concerning pixels not infested by the bark beetle, regardless
of the computation of the spectral vegetation indices or the use
of the self-training strategy. On the other hand, SWIR 2 has the
greatest effect on decisions concerning forest patches infested
by the bark beetle when this band is processed with spectral
vegetation indices, while Red Edge 1 has the greatest effect on
decisions concerning the same patches when spectral vegetation
indices are neglected for training the classifier. Notably, this
outcome is in line with the analysis reported in [2], which high-
lights the importance of SWIR and Red Edge spectral bands for
recognizing a forest patch infested by insects, and particularly,
by bark beetles. In addition, our XAI study shows that SWIR
2 also appears among the five most relevant spectral bands
considered by each classifier to recognize healthy forest patches.
On the other hand, the Red Edge spectral bands appear among
the four most relevant spectral features for recognizing healthy
forest patches with classifiers trained by leveraging the original
Sentinel-2 data and in the eighth most relevant features to rec-
ognize healthy forest patches with classifiers trained leveraging
the spectral vegetation indices. This confirms the relevance of
this band when additional information disclosed by the spectral
vegetation indices is kept away in this study. Focusing attention

on the healthy forest patches Water Vapor is consistently the
second most important feature, regardless of the computation
of spectral vegetation indices or the use of self-training. This
outcome shows that Water Vapor can be a relevant indicator of
the presence of healthy forest patches.

Further considerations concern how the decisions of clas-
sifiers change according to the computation of the spectral
vegetation indices and the use of the self-training strategy. Using
the self-training strategy to train the classifier introduces only
small changes in how the spectral input space conditions the
classifier decisions. Therefore, this XAI study clarifies that,
even though the self-training strategy is able to estimate the
parameters of a spectral classifier in such a way as to delimit
the infested patches better, it does not change significantly
the relevance of the dimensions of the input feature space
on the classifier decisions. On the contrary, the computation
of the spectral vegetation indices has a greater effect on how
the various dimensions of the input feature space contribute to
the classifier decisions. In fact, both NGDRI and MCARI are
among the six most important dimensions of the input space of
a classifier, regardless of the use of the self-training strategy,
and the specific class considered. Particularly, the consideration
of NGDRI, which is a combination of Red and Green, causes a
decrease in the relevance of the Red and Green bands in decisions
on forest patches belonging to both classes. The final comments
concern the NIR band. The XAI analysis in this study reveals
that the NIR band results are less appropriate for bark beetle
detection, even though the evidence in [2] highlighted significant
differences in NIR values between healthy and infested trees.
However, our conclusion on NIR band is in line with recent
achievements that have reported in [1] the poor performance of
NIR for early bark beetle detection.

Let us focus on the spectral classifier trained in the
S+ I+ SELF configuration of SILVIA. Fig. 11 plots the Shapley
value, measured for each input dimension (Y-axis), with respect
to the input dimension value (X-axis), for both pixels of the
healthy forest patches (green pixels) and pixels of the forest
patches infested by the bark beetle (red pixels). For example,
this plot shows that Shapley values of NGDRI follow an opposite
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Fig. 11. Plots of local Shapley values (Y-axis) measured for the spectral classifier trained in the default configuration S+ I+ SELF of SILVIA for each input
dimension of the spectral classifier (spectral band or vegetation index on the X-axis) for both pixels belonging the healthy forest patches (green pixels) and pixels
belonging to forest patches infested by the bark beetle (red pixels). (a) Coastal Aerosol. (b) Blue. (c) Green. (d) Red. (e) Red Edge 1. (f) Red Edge 3. (g) NIR.
(h) Water Vapor. (i) SWIR 1. (j) SWIR 2. (k) NGDRI. (l) NMDI. (m) MCARI.

trend on pixels belonging to opposite classes. Specifically, the
lower the value of NGDRI, the greater the effect of NGDRI on
decisions concerning pixels belonging to forest patches infested
by the bark beetle. On the other hand, the higher the value of
Water Vapor or NGDRI, the greater the relevance of NGDRI for
decisions on pixels belonging to healthy forest patches. A similar
trend is observed in Shapley values of Water Vapor. However,
Shapley values of NIR show that similar values of NIR may
result in an opposite effect of this dimension on decisions con-
cerning pixels in the same class. We observe that Shapley values
of NIR are distributed approximately symmetrically around the
X-axis for both pixels belonging to forest patches infested by
the bark beetles and healthy forest patches. This supports the
conclusions drawn previously on the poor performance of NIR
for early bark beetle detection.

Finally, Fig. 12(a) and (b) compares the maps of the average
Shapley vectors generated for the “healthy” and “damaged”
classes in the configuration S+ I+ SELF of SILVIA with XG-
Boost, Random Forest, and SVM, as wrapper classification
algorithms, respectively. We note that NGDRI is among the two
most important dimensions of the input space of both classes,
regardless of the classification algorithm. On the other hand,
Coastal Aerosol, Blue, and Green are the less relevant dimen-
sions of the input spectral space for both classes, regardless
of the classification algorithm. Instead, the NIR band that is
among the least appropriate dimension for the bark beetle de-
tection with the spectral classifier trained with XGBoost gains
importance with Random Forest and SVM. In particular, the
NIR band is the most important input dimension of the SVM for
deciding on pixels in the healthy forest patches, while it is the



ANDRESINI et al.: SILVIA: AN eXPLAINABLE FRAMEWORK TO MAP BARK BEETLE INFESTATION IN SENTINEL-2 IMAGES 10063

Fig. 12. Average shapley vectors of the spectral input space of XGBoost, Random Forest, and SVM. (a) Damaged. (b) Healthy.

TABLE VII
ACCURACY METRICS OF SPECTRAL CLASSIFIERS TRAINED IN THE CONFIGURATION S+ I+ SELF OF SILVIA BY SELECTING THE TOP-k FEATURES (SPECTRAL

BANDS AND SPECTRAL VEGETATION INDICES) SORTED ACCORDING TO THE RESULTS OF THE AVERAGE SHAPLEY VALUE ANALYSIS

Fig. 13. Euclidean distance computed between the Shapley rank vectors of
the inputs space of decisions produced in SILVIA with the wrapper classifica-
tion algorithms: XGBoost, Random Forest, and SVM, for the opposite labels:
“healthy” and “damaged.” (a) Damaged. (b) Healthy.

third most important input dimension of the SVM for deciding
on pixels in the forest patches infested by the bark beetle.

To complete this analysis, Fig. 13 shows the maps of the
Euclidean distances computed between the Shapley rank vectors
computed on the dimensions of the input space of decisions
produced with XGBoost, Random Forest, and SVM for the
opposite labels: “healthy” and “damaged.” These maps show
that XGBoost and Random Forest are the most similar in terms
of the relevance that the different dimensions of the input space
have on decisions concerning pixels in the forest patches infested

by the bark beetle. On the other hand, Random Forest and SVM
are the most similar in terms of the relevance that the different
dimensions of the input space have on decisions concerning
pixels in the healthy forest patches.

E. XAI-Based Feature Sensitivity

In this section, we explore to what extent it would be mean-
ingful to train the spectral classifier on a reduced set of spectral
bands and indices, which correspond to the best performing
ones according to the XAI analysis. For this purpose, we sorted
features according to their average Shapley values and trained
a spectral classifier with the top-k features. We performed this
study considering the spectral classifier trained with XGBoost
in the configuration S+ I+ SELF of SILVIA.

The results reported in Table VII show that the highest P(h),
R(d), AA, and GMean, and the lowest MAR are achieved when
all spectral bands and spectral vegetation indices are used. On
the other hand, the highest OA and the lowest FDR are achieved
when the top-ten features are used for training the spectral clas-
sifier. In particular, this spectral classifier was trained through
self-training by discarding Blue, Red, and NIR according to the
XAI ranking. Notably, the spectral classifier trained with the
top-ten features is also the classifier that achieves the highest
FScore in the opposite classes F(h) and (F(d)).



10064 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE VIII
ACCURACY PERFORMANCE OF THE CONFIGURATION S+ I+ SELF OF SILVIA, U−Net, AND FCN− 8

F. Deep Learning Competitors

Finally, considering the recent boom of deep learning in
remote sensing, we compare the accuracy of the methodology
considered in this study with two state-of-the-art deep neu-
ral networks for semantic segmentation, i.e., U-Net [36] and
FCN-8 [37]. Both U-Net and FCN-8 are convolutional neural
networks. The U-Net was developed for biomedical image seg-
mentation and has been recently used in several remote sensing
problems (e.g., [38] and [39]). The FCN-8 has also recently been
adopted various remote sensing tasks (e.g., [40] and [41]). In this
study, we used standard implementations of both U-Net6 and
FCN-8.7 In both cases, we adopted the Tversky loss to address
the issue of data imbalance [42].

Table VIII reports the accuracy metrics measured on the bark
beetle infestation maps, produced with the S+ I− SELF con-
figuration of the SILVIA framework, the U-Net, and the FCN-8.
The results show that, even thoughSILVIA performs a pixel-wise
approach that neglects the spatial arrangement of pixels, it can
outperform both U-Net and FCN-8 along all measured metrics.

VIII. CONCLUSION

In this study, we explore the effect of performing the self-
training strategy and leveraging spectral vegetation indices on a
spectral classifier, trained for mapping bark beetle infestation in
Sentinel-2 images, acquired in October 2018 in a forestry area in
the North-east of France. The spectral classifier is trained using
the XGBoost algorithm that allows us to find a good tradeoff
between accuracy and efficiency requirements. A cost-based
approach is adopted in the classifier training to handle the
imbalanced condition. Finally, we use a local XAI technique—
SHAP—to explain what the effect of the input spectral data is on
the classifier decisions, as well as to understand how the use of
self-training and spectral vegetation indices change the classifier
decisions.

As a future development, we plan to continue the research
in this direction, by processing the time series of Sentinel-2
images and using XAI to understand how the temporal spectral
information may have an effect on the ability of a spectral
classifier to recognize forest patches infested at different stages
of bark beetle attack. In addition, we plan to explore possible
transfer learning techniques [43] to update the spectral classifier
trained in a specific geographic area or in a specific period to
different geographic areas or periods. We also intend to explore
the trasferability of a spectral classifier trained for mapping

6[Online]. Available: https://github.com/karolzak/keras-unet/tree/master
7[Online]. Available: https://github.com/naineshhulke/keras-fcn-segmenta

tion-model

forest tree die-back hotspots caused by bark beetle infestation,
to perform the inventory of tree die-back hotpsots caused by
different families of fungal forest pathogens. As further fu-
ture work, we plan to go spectral-spatial classifiers into detail
(e.g., [44]), as well as explore the achievements of the proposed
methodology in mapping various risks (e.g., windthrow forest
damage and forest fires risks) across various regions of Europe.
Finally, we plan to extend this study by focusing on the more
challenging task of recognizing the different stages of bark beetle
infestation to prompt the early detection of new infestations
before the beetles swarm. In fact, cutting down affected trees
during the early stages may help mitigating the diffusion of
infestation. However, as recently discussed in [5], optical sys-
tems, comprising Sentinel-2 based systems, facilitate detection
of infested trees beyond the visible range (e.g., subtle decreases
in chlorophyll and water content of the needles), while terres-
trial monitoring may be more advantageous for detecting early
crown discoloration caused by bark beetle infestation. Hence, a
future direction of this study is that of extending the proposed
methods to handle both optical and terrestrial monitoring data
and exploring the performances of these methods in the early
detection task.
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