
8274 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

A Parallel Algorithm for Hyperspectral Target
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Abstract—Target detection for hyperspectral images (HSIs) is
one of the significant techniques in remote sensing data processing.
Targets generally comprise various object categories with complex
features and of varying sizes. Target detection is often used in
complex application scenarios in which accurately and efficiently
acquiring detection results can be challenging. The development
of advanced target detection approaches is becoming increasingly
necessary in both military and civilian fields. This article proposes
an alternating direction method of multiplier (ADMM)-based par-
allel approach for hyperspectral target detection. Different from
existing methods performing target detection solely on HSIs, our
approach performs the fusion of hyperspectral and multispec-
tral data to leverage both spectral and spatial information prior.
For each task or data partition, the parallel processing of the
computation load on multiple computing nodes can substantially
reduce the computation time. In addition, we introduce a novel
weighted ADMM, which takes the influence of different variables
on convergence into account, to further enhance the computational
efficiency of the target detection model. Experiments on real-world
HSI datasets demonstrate that our proposed parallel method not
only produces more accurate detection results than direct detection
methods, but also achieves significant acceleration ratio compared
with the serial processing flow.

Index Terms—Alternating direction method of multiplier
(ADMM), fusion, hyperspectral image (HSI), parallel, target
detection.
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I. INTRODUCTION

HYPERSPECTRAL images (HSIs), a 3-D data cube, with
the abundant spectral and spatial information. Each pixel

in HSIs consists of a continuous spectrum that is closely related
to the material of the object and its environment. HSIs are
mapped to the Earth at the spatial resolution of meters and sub-
meters, and their outstanding advantage lies in the inclusion of
fine spatial and texture features. In addition to using reflectance
on different bands for radiation dimension analysis, it is more
important to exploit texture, structure and context features to dig
the relationships and rules contained in pixels, so as to provide
support for ground object classification, target recognition, and
scene analysis [1]. Over the past decades, hyperspectral target
detection has been widely used and shown tremendous advan-
tages in many fields [2], such as military target reconnaissance,
vegetation research, and geological surveying. Hyperspectral
target detection, which attracts a variety of signal process-
ing and machine learning algorithms [3], [4], facing various
challenges and emerging different solutions and strategies [5],
[6], [7].

Assuming priorinformation about the target is available, the
fundamental issue in hyperspectral target detection is to separate
the target of interest from the background based on the spectral
differences between different types of materials [8]. Specifi-
cally, target detection involves finding a scientific and effective
method to measure and compare the spectral differences in the
detection. The typical processing flow of classical hyperspectral
target detection algorithms involves deriving decision functions
through various mathematical analyses of the data, with the aim
of highlighting the target and suppressing the background [9],
[10]. To generate the detection output, the vector representation
of the test pixels is input into the decision function and compared
with a threshold to determine the presence of the target [11],
[12]. The main methods for detection can be classified into
four categories. The first category is based on spectral similarity
measurement, with classical algorithms, such as spectral angle
mapper [13]. This algorithm calculates the cosine of the angle
between the target spectrum and the test spectrum, and if the
cosine value is within a certain threshold, it indicates a high
probability that the test spectrum is the target. The second cate-
gory is based on projection, with projection operators being an
important tool in hyperspectral data processing for highlighting
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targets, suppressing noise, and improving signal-to-noise ratio.
Representative algorithms include orthogonal subspace projec-
tion [14], which projects the spectral vector onto the orthogonal
subspace of the background to achieve good detection perfor-
mance. Another algorithm is constrained energy minimization
(CEM) [15], which designs a finite impulse response filter that
minimizes the average energy of background samples passing
through the filter, while satisfying a constant filter response for
the signal. The third category is based on statistical methods,
which assume that the background and target follow different
probability distributions and construct likelihood ratio tests,
such as matched filtering [16] and adaptive matched subspace
detector [17]. The last category is based on low-rank and sparse
methods. The combined sparse and collaborative representation
algorithm [10] uses sparse representation for the target and col-
laborative representation for the background to obtain detection
results through the residual between the two representations. The
low-rank regularized least squares-matched subspace detector
[18] adds a low-rank constraint to the least squares method,
limits the background samples, and generates results under the
generalized likelihood ratio test.

Under reasonable assumptions, traditional algorithms exhibit
robustness in hyperspectral target detection; however, most of
them rely heavily on specific model assumptions [19]. If the
detection algorithm or model does not sufficiently incorporate
the authentic information of the land features, it can lead to
a significant degradation in the performance of the detection
process. In practice, hyperspectral data contain various types of
objects, and the theoretical model of traditional methods is con-
strained by prior conditions [20], limiting its capacity to utilize
data information, which substantially affects the performance
of detection [21]. The detection method based on data fusion
takes full advantage of the spectral information provided by
hyperspectral data and, to a certain extent, compensates for the
deficiency in spatial resolution inherent in such hyperspectral
data. Senchuri et al. [22] proposed a multisensory hyperspec-
tral and LiDAR data fusion approach for road edge detection
utilizing machine learning algorithms, including support vector
machines, random forests, and convolutional neural networks
(CNN), in urban environments. Jones proposed a novel data
fusion based approach for mapping quartz and carbonate veins
in drill cores, leveraging diverse image analysis techniques in
conjunction with the mineral abundance data derived from the
unmixing of the thermal infrared and short-wave infrared spec-
tra. The empirical results illustrate that the advanced data fusion
strategy was successful in logging the quartz and carbonate
veins [23].

In recent years, deep learning has rapidly developed. By
constructing complex neural network models to analyze the
features of hyperspectral datasets, deep learning has shown
excellent performance in HSI processing [24], [25], [26]. With
the emergence of large-scale datasets and the thriving devel-
opment of deep neural networks in the field of visual images,
hyperspectral target detection technology based on deep learning
has been continuously innovated. By extracting deep abstract
features, deep learning technology combines the advantages
of imaging spectroscopy technology and 2-D target detection

technology, and further explores the spatial and spectral in-
formation of HSIs. Xie et al. [27] proposed a deep learning
algorithm for spectral bands selection, which employs a vari-
ational autoencoder (VAE) to select the bands with abundant
target information and reconstructs the image for detection.
To better utilize the widely distributed background spectral
elements in HSIs, they also proposed a background-aware target
detection method, training the network on background pixels and
reconstructing it for better detection. Wang et al. [28] proposed a
target detection method based on CNN, which constructs a novel
HSI change detection framework based on 3D-Wavelet domain
active CNN. Zhu et al. [29] proposed a two-stream convolutional
network-based target detector, which utilizes the two-stream
convolutional networks to extract the spectral information in
HSI.

HSI provides a comprehensive representation of objects due
to the richness of information provided by the multiple spectral
bands. However, it also leads to an extensive volume of data and
redundant information in the image. Consequently, hyperspec-
tral target detection methods often suffer from problems, such
as long computation time and insufficient memory, on a single
machine. Distributed machine learning provides an effective so-
lution to these problems, as data and models are properly divided
among different work nodes in a distributed environment. By
designing efficient parallel communication schemes, different
work nodes can cooperatively and simultaneously complete
the calculation tasks. Ren and Chang [30] capitalized on the
characteristic that the high-order automatic anomaly detection
algorithm may descend into a local extreme point after ran-
domly selecting the initial vector, facilitating parallel detection
under diverse situations. Liu et al. [31] optimized the target
detection algorithm based on low-rank sparse representation.
They first segmented the image using the narrow dependency
of hyperspectral data on the high-performance computing plat-
form Spark, then used parallel clustering algorithm to cluster
the pixels of HSIs, and finally computed the clustered data
in parallel, significantly improving the speed and scalability
of the method. In a similar vein, Zhang et al. [32] proposed
a distributed and parallel implementation of the collaborative
Tucker3 tensor decomposition for hyperspectral computational
imaging, achieving exceptional accuracy and significantly en-
hancing computational efficiency when dealing with large-scale
HSI datasets. Moreover, some researchers have harnessed the
advantages of hardware to achieve parallel and efficient execu-
tion of HSI detection tasks. Du et al. [33] proposed an efficient
RX method based on GPU, capitalizing on the rapid computing
speed of the GPU and the recursive computing characteristics of
the RX algorithm, vastly improving the efficiency of hyperspec-
tral target detection. Macias et al. [34] presented a hardware
optimized implementation for FPGAs of the automatic target
detection and classification algorithm using the Gram–Schmidt
method for orthogonalization purposes. In conclusion, the ex-
ploration and optimization of hyperspectral target detection
methods leveraging distributed machine learning and hardware
advancements are paving the way for solving current issues faced
in handling large volumes of hyperspectral data efficiently and
effectively.
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Fig. 1. Target detection serial execution flow based on fusion.

HSI provides multilevel, multidirectional, and multitemporal
information for features of land cover. It has been widely ap-
plied in various applications, such as urban planning, precision
agriculture, and military reconnaissance. However, the process-
ing of hyperspectral data poses significant challenges, such as a
large number of spectral bands, large data volume, redundant in-
formation, and time-consuming processing on a single machine.
In this situation, this article proposes a parallel target detection
method after consulting aforementioned ideas. We first consider
the problem of insufficient spatial resolution in HSIs, inspired
by the CEM and data fusion method in [35], and we perform
the fusion of hyperspectral data and multispectral data after the
coarse detection. According to the fusion, high-resolution HSIs
are obtained, which contain both spatial and spectral information
and are beneficial for achieving high accuracy detection results.
To overcome the difficulties of large data volume and insufficient
computing resources, we develop a distributed implementation
of the proposed method. In detection, the training process of
VAE is performed in parallel based on data segmentation, and the
weight is calculated by the average of each node. The execution
of fusion is also in parallel manner, by coordinating tasks among
multiple working nodes, the fusion process is performed simulta-
neously on each hyperspectral data block and its corresponding
multispectral data block. ADMM as the optimized algorithm
of fusion model, whose process is the most time-consuming
part of our method, is modified to tackle the issue of multiple
parameters alternating iteration. Different from the sequential
update of variables in ADMM, our method takes into account the
influence of each variable on convergence and the time required
for each variable update. The update frequency of each variable
is determined by its influence. Specifically, this work makes the
following contributions.

1) We propose a novel object detection method to solve the
problem of insufficient spatial resolution in HSIs.

2) We develop a parallel implementation to improve the
processing efficiency of hyperspectral big data on high-
performance computing platforms.

3) We propose an optimized ADMM to reduce the processing
time for fusion by modifying the update frequency of
variables. This approach effectively reduces unnecessary
updates of unimportant variables, resulting in more effi-
cient computation.

The rest of this article is organized as follows. Section II
provides a detailed introduction of the proposed remote sensing
image processing method. Section III presents a parallel imple-
ment of the detection method. Section IV shows the experimental
results that demonstrate the reliability and acceleration effects
of the method. Finally, Section V concludes this article.

II. ALGORITHM

The flowchart of the proposed method is shown in Fig. 1.
The input of algorithm includes an HSI, a corresponding
multispectral image (MSI), and the target spectrum. The steps
of the detection can be divided into the following.

1) Use a target detection method based on background re-
construction to perform rough detection on the HSI and
preliminarily select the possible areas where the targets
may exist.

2) Fuse the selected areas with the corresponding MSIs to
obtain high-resolution HSIs.

3) Perform detailed detection on the fused image to obtain
the corresponding pixels of the target and generate the
detection results.

The following sections will introduce the serial processes of
the algorithm.

A. Target Detection Process Based on Background
Reconstruction

The well-known CEM algorithm has shown success in detec-
tion. Main idea behind the CEM is to design a finite impulse
response filter that minimizes the energy of the background
samples, subject to the constraint that the filter response to a
known target signal is constant. Let Y = [x1,x2, . . .,xNH

] ∈
RNH×LH denotes hyperspectral data matrix with NH pixels
and LH spectral bands, prior signal d ∈ RLH×1 and filter w =
[w1, w2, . . ., wLH

]T . CEM solves the following problem:

minwTRw

s.t. wTd = 1 (1)

where R = (1/N)Y Y T represents the autocorrelation matrix
of the background. The constrained optimization problem above
can be solved by Lagrange multiplier method and acquire the
following equation:

w =
R−1d

dTR−1d
. (2)

Afterw is obtained, calculate the spectral response value wTY .
If the spectral value of corresponding pixel is exceeding than the
threshold set in advance, the pixel is considered as the target.
CEM treats the original image as the background for computing
the linear filter while the number of background samples is
far more than targets. Thus, there is a slight error between the
result calculated and expected. To retrieve information solely
from background samples, this article employs CEM detection
algorithm based on background reconstruction. This method
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generates data that closely mirror the original input, facilitating
the reestablishment of background pixels. When leveraged for
target detection in conjunction with background reconstruction,
this approach exhibits superior performance. Remarkably, in
certain image detection scenarios—such as those found in San
Diego—it can surpass traditional CEM algorithms by up to five
units in terms of area under curve (AUC) values. This highlights
the considerable advantage of employing reconstructed back-
ground for target detection, suggesting an innovative and more
accurate strategy in complex imaging environments. In order to
ensure that the reconstructed samples contain only background
information, and to make the reconstructed background more
realistic, a constraint energy minimization regularization term
is introduced in the VAE network. This allows the background
samples to be reconstructed accurately, while the reconstruction
error of nonbackground samples is relatively large. The specific
formula is

Lcem_loss =
∑
i

(
R−1d

dTR−1d

)T

x,
i. (3)

As the loss function of detection method based on background
reconstruction is

L = LVAE + ρLcem_loss. (4)

LVAE belong to the original VAE, gradient descent (GD) can be
used to optimize the model above efficiently.

In general, the process of target detection based on back-
ground reconstruction includes the following steps.

1) Conduct preliminary detection on the input hyperspectral
data using the CEM algorithm.

2) Random select background samples for background re-
construction.

3) Perform target detection using the residual between the
original image and the reconstructed background.

B. HSI Super-Resolution

HSI super-resolution is an important technology that generate
high-resolution hyperspectral images (HR-HSIs) by fusing low-
resolution hyperspectral images (LR-HSIs) and high-resolution
multispectral images (HR-MSIs). HR-HSIs not only offer de-
tailed object outlines, but also encompass rich spectral infor-
mation that can be utilized to precisely identify object charac-
teristics and aid in target detection. Therefore, target detection
based on high-resolution HSIs is more accurate and better suited
for important tasks such as military target detection. Due to
the limitations of imaging sensors, it is difficult to balance the
spectral resolution and spatial resolution of an image. For HSI,
the spectral resolution is high, but the spatial resolution is low,
while traditional panchromatic or MSIs achieves high spatial
resolution. To obtain HR-HSIs, a more cost-effective solution is
to fuse hyperspectral and MSIs. In addition to the methods ex-
tended from hypersharpening technology, HSI super-resolution
mainly includes model-based methods [36], [37], [38], [39], [40]
and learning-based methods [41], [42], [43], [44], [45].

The HR-HSI X ∈ RNM×LH is obtained by fusing the
LR-HSI Y ∈ RNH×LH and the corresponding HR-MSI Z ∈

RNM×LM . NM and LM are the number of pixels and bands
in HR-MSI separately. Y and Z can be modeled as spatially
degraded and spectrally degraded versions of the desired X .
Specifically, this can be described as

Y = XBH +EY (5)

Z = RX +EZ (6)

where B represents the spatial blurring operator, H represents
the spatial downsampling operator, R represents the spectral
response of the multispectral sensor, and EX and EY are the
residuals. In some papers, the equation above can be combined
as a regularization model composed of two fidelity, and written
as

min
X

1

2
||Y −XBH||2F +

1

2
||Z −RX||2F (7)

where || ∗ ||F is the Frobenius norm. As linear spectral mixing
model (LSMM) introduced to the fusion, (7) can be rewritten as

min
A,S

1

2
||Y −ASBH||2F +

1

2
||Z −RAS||2F (8)

where A represents the endmember matrix and S represents
the abundance matrix. To make sense physically, A and S are
supposed to be nonnegative. For model-based methods, the main
idea is to establish a regularization model based on the mecha-
nisms of spectral and spatial degradation. In this article, the ma-
trix decomposition fusion (MDF) framework is adopted, which
decomposes the HSI matrix into two unconstrained matrices.
Optimizing the following model to obtain A and S preliminary:

min
A,S

||X −AS||2F . (9)

In this equation,A andS are not the final solution for the fusion,
and the function of them is estimating X . To measure the per-
formance of an AS, MDF method using region-based low-rank
regularization (RLR-MDF) introduces the root-mean-squared
error (RMSE), which is a common metric used in regression
analysis to measure the difference between predicted values and
actual values. The RMSE is defined as follows:

||X −AS||2F /
√
NHLH . (10)

The RMSE results show that MDF produces more exact outputs
than nonnegative matrix factorization. Specifically, RLR-MDF
solves the following optimization problems:

min
A,S

1

2
||Y −ASBH||2F +

1

2
||Z −RAS||2F + λS(S) (11)

where S(S) is the proposed regularizer

S(S) =
K∑

k=1

||S(k)||∗. (12)

||S(k)||∗ denotes the nuclear norm, and k is the number of
superpixel. Because Z indicates the spatial information of X
reliably, it makes sense to transfer the spatial relationship of Z
to S. As whole, the complete RLR-MDF can be divided into
four steps: 1) initialize the spectral matrix. Since the spectral
information is mainly contained in Y , we can use the VCA
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Fig. 2. Target detection parallel execution flow based on fusion.

algorithm to decompose Y and obtain the initial matrix A. 2)
Estimate the spatial matrixS, using ADMM to solve the problem
described in (11), we can obtain S. 3) update the spectral matrix
A based on the outputs from step 2. To acquire the results, solve
the LS problem according to (13). 4) Reconstruction of HR-HIS
using A and S directly.

min
A

||Y −ASBH||2F + λ||A||2F . (13)

Remarkably, the MDF framework bears some resemblance to
the CS-based fusion methods. The first step can be viewed as
identifying an appropriate conversion, while the second step can
be seen as a procedure for injecting details. The third step is
employed to adaptively modify the conversion, and the final
step entails a reconstruction process.

III. PARALLEL IMPLEMENTATION

In this section, we describe the parallel version of our pro-
posed algorithm, starting with a parallel flow of our proposed
detection method. Then, we explain the parallel patterns of
the VAE algorithm for background reconstruction. Finally, we
provide a detailed description of the optimization of the ADMM
algorithm in the fusion process.

A. Parallel Implementation of the Hyperspectral Target
Detection

Fig. 2 shows the complete parallel process for high-resolution
hyperspectral target detection based on background reconstruc-
tion. For the input hyperspectral data, background selection is
performed first. The CEM algorithm is used to roughly deter-
mine the location of the target and select background pixels,
then selected background pixels are partitioned for data-block
training. During the VAE background reconstruction process,
data are distributed to different nodes for training, and the model
averaging (MA) method is used to reduce the training time. After
training is completed, the results are consolidated and a new
background spectrum is generated. Finally, the CEM algorithm
is used again to detect the reconstructed background image and
determine the area to which the target belongs. At this point, the
coarse detection of hyperspectral targets is completed.

After obtaining the coarse detection results for hyperspectral
targets, corresponding areas need to be selected from the multi-
spectral data. Since there are usually many types of targets, such
as vehicles, trees, and houses, the coarse-cutting results may
contain multiple regions. In the fusion process, we use image
regions as task units and assign different regions to different
computing nodes for fusion and detection, achieving completely
independent task parallelism. This greatly improves the task

acceleration ratio. On each computing node, the HR-HSI block
and corresponding MSI are obtained first. Then, the RLR-MDF
algorithm is used to fuse data and obtain a HR-HSI. During the
fusion process, the proposed novel weighted ADMM method is
used for computation acceleration. After the fusion is completed,
target detection is performed on the HR-HSI to obtain the final
clear detection results.

Different from the traditional target detection methods based
on the model, this article uses the data fused from hyperspectral
and MSIs. Compared with other methods, our approach yields
clearer and higher accuracy results which takes full advantages
of rich spectral information from hyperspectral data and the high
spatial resolution from multispectral data. In order to accurately
identify the target, we have implemented strategies pertaining
to data parallelism. We fully exploit the characteristic of data
redundancy in VAE and use MA strategy to achieve parallel
optimization during the training process. In the fusion process,
the parallel unit becomes the target region selected in the coarse
detection, which ensures tasks on each node are independent
without the need for communication. Furthermore, we also use
a weight-based method to determine the update frequency of
variables in ADMM during the fusion process, greatly reducing
computation time. In summary, our approach achieves high
accuracy and efficiency simultaneously.

B. Model-Averaging VAE

The algorithm proposed in this article includes two target
detection processes based on background reconstruction, and
utilizes VAE that requires input of background samples. How-
ever, since the background samples constitute a high proportion
of the original image, the number of pixels require training is
very large, leading to significant consumption of computational
resources and time. Considering the characteristics of widely
distributed background targets are numerous and complex, this
article employs MA to perform parallel optimization of the GD
in the VAE. MA is a simple and straightforward parallel mech-
anism that requires only one communication between nodes to
interact with the models after the training process is completed.
Each computing node can work independently without waiting
for others. MA has excellent acceleration effects, almost achiev-
ing linear acceleration ratios. However, the model parameter bias
is usually large since nodes do not need information exchange
during the training process. But in this article, the input of
VAE network used for background reconstruction is background
samples, which have a large data volume and information re-
dundancy. Even after segmentation, the sample distribution on
every node is similar to the original image sample distribution.
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Therefore, using the MA model for optimizing VAE training
can not only speed up the training but also ensure the stability
of accuracy after parallel computation. The formulation of MA
can be written as follows:

ȳ =
1

N

N∑
i=1

yi (14)

where ȳ represents the average predicted result,N represents the
number of models or compute nodes, and

∑N
i=1 yi represents the

sum of all predicted results from the models.

C. Novel Weighted ADMM

ADMM is used to solving constrained minimization prob-
lems, which is widely applied in fields, such as data mining,
machine learning, and image analysis [46], [47], [48]. This
method decomposes the original problem into several smaller,
easier-to-solve sub-problems, and obtains the global solution
through the collaboration of these subproblems. ADMM is
primarily used to solve (11) in RLR-MDF. To accomplish this,
three variables: V 1, V 2, and V 3 are introduced, which allow
us to express the original problem as follows:

min
S,V 1,V 2,V 3

f(S,V 1,V 2,V 3)

s.t. V 1 = SB,V 2 = S,V 3 = S (15)

where

f(S,V 1,V 2,V 3) =
1

2
||Y −AV 1H||2F

+
1

2
||Z −RAV 2||2F + λS(V 3).

(16)

The augmented Lagrangian function (15) can be written as

L(S,V 1,V 2,V 3,D1,D2,D3)

= f(S,V 1,V 2,V 3) +
μ

2
||SB − V 1 −D1||2F

+
μ

2
||S − V 2 −D2||2F + ||S − V 3 −D3||2F (17)

where μ > 0 is the penalty parameter, the auxiliary variables
D1, D2, D3 ∈ RJ×NH are used in an iterative process to refine
the optimization procedure, and J is the number of endmember
in HSI. The iterative process can be expressed as follows.

1) Solving S subproblem: Optimizing L associated with S
can be written as

S(t+1) = argmin
S

μ

2
||SB − V

(t)
1 −D

(t)
1 ||2F

+
μ

2
||S − V

(t)
2 −D

(t)
2 ||2F +

μ

2
||S − V

(t)
3 −D

(t)
3 ||2F
(18)

and the formula for solving the above problem is

S(t+1) = (BBT + 2I)−1((V
(t)
1 +D

(t)
1 )BT

+ V
(t)
2 +D

(t)
2 + V

(t)
3 +D

(t)
3 ). (19)

This computation can be carried out efficiently using the
fast Fourier transform (FFT), while the first term (BBT +
2I)−1 can be precomputed in advance.

2) Solving V 1 subproblem: Optimizing L associated with
V 1 can be written as

V
(t+1)
1 = argmin

V 1

1

2
||Y −AV 1H||2F

+
μ

2
||S(t+1)B − V 1 −D

(t)
1 ||2F (20)

and the formula for solving the above problem is

V
(t+1)
1 H = (ATA+ μI)−1

(ATY + μ(S(t+1)B −D
(t)
1 ))H (21)

V
(t+1)
1 H̄ = (S(t+1)B −D

(t)
1 )H̄ . (22)

RLF-MDF utilizes the masking matrix H to partition
V1 into two submatrices, V 1H and V 1H̄ , where H̄ is
the complement matrix of H . FFT can be employed to
expedite the computation process effectively, while the
(ATA+ μI)−1 and ATY can be precomputed before-
hand.

3) Solving V 2 subproblem: Optimizing L associated with
V 2 can be written as

V
(t+1)
2 = argmin

V 2

1

2
||Z −RAV 2||2F

+
μ

2
||S(t+1) − V 2 −D

(t)
2 ||2F (23)

and the formula for solving the above problem is

V
(t+1)
2 = (ATRTRA+ μI)−1(ATRTZ

+ μ(S(t+1) −D
(t)
2 )). (24)

4) SolvingV 3 subproblem: OptimizingLwith respect toV 3

can be written as

V
(t+1)
3 = argmin

V 3

λ

K∑
k=1

||V3(k)||∗

+
μ

2
||S(t+1) − V 3 −D

(t)
3 ||2F (25)

and the solution for solving the above problem is

V
(t+1)
3(k) = Dλ/µ(S

(t+1)
(k) −D

(t)
3(k)) (26)

where Dλ/µ(.) represents the singular value threshold
function.

5) Updating auxiliary multipliers: The multipliers associated
with L is calculated as follows:

D
(t+1)
1 = D

(t)
1 − (S(t+1)B − V

(t+1)
1 ) (27)

D
(t+1)
2 = D

(t)
2 − (S(t+1) − V

(t+1)
2 ) (28)

D
(t+1)
3 = D

(t)
3 − (S(t+1) − V

(t+1)
3 ). (29)

For RLR-MDF method, the most time-consuming step is solv-
ing (15), with a complexity of O(JNH logNW + J2NH) per
iteration for the overall process. NW is width in hyperspectral
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Algorithm 1: Weighted ADMM.
Require: LR-HSI Y , HR-MSI Z, B, H , R, λ, J, K,
interval vector p, spectral matrix A and superpixel-level
labels of Z ′s pixels

1: Initial S(0),V
(0)
1 ,V

(0)
2 , V (0)

3 ,D
(0)
1 ,D

(0)
2 ,D

(0)
3 by

zero matrix, μ = 0.05, maxIter = 200, ε = 10−3

2: for each i ∈ [1,maxIter] do
3: Update S(t) by (19)
4: if i % p1 == 0 then
5: Update V

(t)
1 by (21) and (22)

6: end if
7: if i % p2 == 0 then
8: Update V

(t)
2 by (24)

9: end if
10: if i % p3 == 0 then
11: Update V

(t)
3 by (26)

12: end if
13: if i % p4 == 0 then
14: Update D

(t)
1 by (27)

15: end if
16: if i % p5 == 0 then
17: Update D

(t)
2 by (28)

18: end if
19: if i % p6 == 0 then
20: Update D

(t)
3 by (29)

21: end if
22: if ||AS(t−1) −AS(t)||F /||AS(t−1)||F < ε then
23: break
24: end if
25: end for
26: returnThe spectral matrix S

3-D cube. Although the problems in steps 1 and 2 can be quickly
computed using FFT or other methods, the calculation is unac-
ceptable due to the complexity and the large number of variables
involved in the optimization process. To reduce the computing
time during each iteration, this article proposes a novel weighted
alternating direction method of multipliers. Specifically, during
the optimization, every time S is updated, not all introduced
variables and auxiliary variables need to be updated while the
importance of each variable for convergence of S to the optimal
point is not equal. Some variables may have already converged
to their optimal values and their updates may have little impact
on the convergence of S. Regarding this phenomenon, some
methods use partial matrix updates to reduce the computation
for less important variables [49]. Here, we propose assigning
a weight to each variable, which determines the frequency of
its update. The complete optimization algorithm is presented in
Algorithm 1.

The limitation of ADMM is that the update steps involve
interdependent variables, and each step requires information
from the previous step. Consequently, the steps must be executed
sequentially, making parallelism difficult to achieve. Moreover,
optimizing the algorithm is challenging since the convergence

of the algorithm depends on the parameters’ values at each step,
and changing them may affect the convergence. To mitigate
this limitation, researchers have proposed various approaches,
such as developing parallel ADMM algorithms, modifying the
update rules, or using acceleration techniques. However, these
techniques require a deep understanding of the algorithm’s prin-
ciples and properties and careful consideration of the problem
at hand. In particular, optimizing the ADMM algorithm requires
balancing the tradeoff between convergence speed and compu-
tational complexity. Unlike traditional ADMM, the proposed
algorithm differs in the way variables are updated. It considers
that the importance of each variable to the convergence of S is
different. Some updates of variables can significantly accelerate
the convergence of S, while others only have a minimal impact
on convergence. Therefore, the algorithm employs an interval
strategy for updating variables. If a variable is deemed essential,
there will be few intervals before it gets to convergence. Con-
versely, if a variable is unimportant, it will have many intervals.
This interval strategy reduces the computation frequency of
some variables, thereby reducing the computation time and
workload. Below, we will introduce the calculation of weights
and setting of intervals.

Calculation of weight is an important part of this article. In
the context of processing large and complex hyperspectral data,
it is common practice to segment the data into smaller chunks
for more efficient computation. To reduce the computation time
required for calculating the weights, only a small portion of the
data is selected for weight calculation. In the feature fusion,
the impact of each variable on the final result is taken into
consideration. After each variable update, the change in S and
its impact V on the fusion accuracy are calculated, and the
weights are then determined based on the average impact of
these variables.

V aff = ||ASV −1 −ASV ||F /||ASV ||F , (30)

where V aff represents the affect of variables calculated in the
processes of problem (14). SV −1 and SV represent the value of
S before and after the update of V . In other words, we figure
out the every S after variables updated, then acquire the affect
V aff. Finally, means of V aff are calculated and used as weights,
which can be written as

c = V sum/T (31)

where T is the number of iteration and c is the weight.
Then, we introduce the setting of update interval. In the

weight-based ADMM update method, the iteration frequency of
variables with lower importance is reduced by setting intervals.
After calculating the weights, the variable with the highest
weight is selected and updated once per iteration, while the
remaining variables can be updated using the following method.
The update interval p for each variable is computed based on its
weight. Specifically, the weight ci of variable is first calculated,
and then, the update interval pi is set as follows:

pi = cmax/ci (32)

Here, cmax denotes the maximum weight among all variables,
and ci denotes weights of different variables. The variable is
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updated every pi iterations, except for the variable with the
highest weight, which is updated every iteration. This strategy
reduces the computation frequency of variables with lower
importance, while ensuring that the variable with the highest
weight is updated frequently to facilitate convergence.

In this paragraph, we analyze the computational complex-
ity. First, we calculate the computational complexity of each
variable update. The complexity of the subproblem for S is
O(JNH logNW ), V 1 is O(JNH logNW + J2NH), V 2 is
O(J2NH), and V 3 is O(J2NH). If the updates are performed
sequentially, the total complexity isO(JNH logNW + J2NH).
Nevertheless, the proposed method maintains a complexity of
O(J2NH) during iterations that do not reach the interval, and
only increases to O(JNH logNW + J2NH) after the interval
has been reached. Since the intervals of V 1 and V 2 are both
ten in this experiment, the proposed method efficiently solves
the original problem. In terms of convergence performance,
the ADMM update scheme proposed in this article bears re-
semblance to asynchronous ADMM. For a detailed proof of
convergence, interested readers are referred to [50] or relevant
literature.

In addition, there are three points that need to be clarified.
First, since the update formula for auxiliary variables mainly
involves matrix addition and subtraction, the time consumption
of auxiliary variables update in each iteration is very low. There-
fore, the update frequency of auxiliary variables can also be set to
once per iteration. Second, the optimization algorithm proposed
in this article has similar to asynchronous communication, and
some variables may have significant deviations due to lack of
updates over a long period of time. Therefore, a maximum delay
“maxiter” is set in this article. Third, the setting of the update
frequency does not need to be very accurate. In most cases, the
algorithm will converge as the number of iterations increases.
The main purpose here is to reduce the number of updates for
variables that have smaller convergence effects.

IV. EXPERIMENTS

In this section, we conducted experiments on a real hyperspec-
tral datasets to demonstrate the reliability and performance of the
proposed method. The content mainly includes an introduction
to the dataset, verification of the effectiveness of the proposed
method on the dataset, a time comparison between serial and
parallel methods, and optimization improvements in parallel
computing. All experiments were conducted on a computing
cluster with 128 cores, 3.40 GHz, and 600 GB RAM.

A. Datasets

The real remote sensing HSI and MSI datasets used in the
experiment were obtained by the HSI Analysis Laboratory at
the University of Houston and the National Center for Airborne
Laser Mapping in the United States. The spectral range covers
380 to 1050 nm, with a total of 48 bands and 20 types of ground
cover. In this article, an HSI image with dimensions of 601 ×
596 × 48 and a corresponding MSI image with dimensions of
12020 × 11920 × 3 were selected as reference images to detect
vehicles of different colors in the images.

Fig. 3. Detection results of yellow cars.

B. Precision Results

The experimental results are primarily determined by three
components: rough detection time, fusion time, and postfusion
detection time. The size of the input data is the decisive factor
in the rough detection time, while the running time of the other
parts depends on the number of target areas that selected by
fusion and detection. Target areas can be understood as the
number of vehicles that need to be detected. Therefore, in this
experiment, we selected eight fusion detection targets after the
coarse detection for origin HSI. After that, we expanded the
data through reasonable splicing, and linearly increased the
number of fusion target detection. Thus, we have successfully
validated the proposed approach presented in this article, which
demonstrates its effectiveness in processing large-scale datasets.

In the experiment, we selected red and yellow cars as the
targets, and red cars are more than that of yellow cars. Cars
occupy fewer pixels compared with other targets, such as houses,
which better reflects the accuracy of the proposed method in
this study. For the hyperspectral target detection, we use the
receiver operating characteristic (ROC) curve to evaluate the
detection performance. The ROC curve describes the detection
performance in terms of the true positive rate (PD) and false
positive rate (PF ) at each threshold θ. The curve illustrates the
relationship between the detection rate and the false alarm rate.
The area under the ROC curve (AUC) is used as a metric to
measure the detection performance. A larger AUC value for the
ROC curve indicates better detection performance. PD and PF

are calculated as follows:

PD = TP/(TP + FN), PF = FP/(FP + TN) (33)

where true positive (TP) represents the number of correctly
detected target pixels, false positive (FP) represents the number
of false alarm pixels, false negative (FN) represents the number
of missed target pixels, and true negative (TN) represents the
number of correctly detected background pixels.

Figs. 3 and 4 illustrate the detection results of yellow and red
cars, respectively. Among them, the column on the left is the
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Fig. 4. Detection results of red cars.

TABLE I
AUC VALUES OF YELLOW CARS

TABLE II
AUC VALUES OF RED CARS

ground truth image, the middle column is the detection result
before fusion, and the column on the right is the detection result
after fusion. It is manifest that prefusion detection results are
hazy and laborious to identify, posing a significant challenge
in ascertaining the precision of target detection. Conversely,
postfusion detection results are sharp and exact, facilitating
easy identification of the test objects. When juxtaposed with the
ground truth, the fused results demonstrate heightened accuracy.
Tables I and II present the accuracy metrics, with LR-HIS
signifying the nonfused detection results, and HR-HIS denoting
the fused detection outcomes. The accuracy metrics suggest
that the fused target detection methodology proposed herein
markedly enhances the performance pertaining to accuracy and
exhibits stellar performance. Elaborating further on the supe-
riority of the proposed approach in this article, it becomes
evident when compared with conventional data fusion detection
methods. Traditional techniques often struggle with the tradeoff
between spatial resolution and spectral resolution; however, our
method effectively integrates these two aspects, yielding clearer
and more accurate detection results. Moreover, our approach
leverages advanced fusion algorithms, which not only preserve
the spectral characteristics of the hyperspectral data but also
enhance the spatial details obtained from multispectral data.
This symbiotic integration substantially amplifies the detection
precision and overall performance, thus establishing the notable
advantage of our proposed methodology.

TABLE III
RUNNING TIME OF DIFFERENT VARIABLES UPDATE MODES

C. Time Results

In this section, we conducted a comparative analysis of the
runtime of the proposed weight-based alternating iterative up-
date method and the sequential update method in a single-
machine environment. Four different update ways were em-
ployed for comparison, including sequential update (Group 1),
weight-based update (Group 2), weight-and-time-based update
(Group 3), and random update (Group 4). Table III presents the
experimental results, where the four groups respectively control
the variables update in the algorithm, and the data following
the variables represent the update intervals in different groups.
The results indicate that the proposed weight-based alternating
iterative method outperforms the sequential execution in equal
conditions, reducing the computation time by 25 s for single-
machine execution, and this improvement is also observed in
parallel execution. In addition, in Group 3, we considered the
time cost of a single-step iteration and further improved the algo-
rithm’s performance by increasing the update frequency of dual
variables and reducing the time needed for dual variable updates.
This approach led to an even greater reduction in computation
time compared with the weight-based update method used in
Group 2. Group 4 shows that random variable updates do not
achieve the expected acceleration effect, even the time is longer
than before.

In addition to comparing the runtime performance, we also
analyzed the convergence curve in the four groups. The four line
charts in Fig. 5 correspond to the four different variable update
methods. It can be observed from the chart that in Group 1, the
ADMM method gradually converges as the number of iterations
increases, and the difference between before and after iterations
fluctuates and decreases. The proposed methods in Groups 2 and
3 still maintain the same decreasing trend while reducing the
computational cost, indicating that the weight-based alternating
iterative update method effectively achieves convergence.

Overall, the proposed weight-based alternating iterative up-
date method exhibits excellent performance in terms of algorith-
mic efficiency, achieving good acceleration and fast convergence
rates. This will be useful for tackling more complex optimization
problems on large-scale datasets. In this section, we conducted
experiments with data of varying sizes to test the performance
of the proposed parallel algorithm on big data. These data were
expanded by copying them to multiples of 2, 4, 6, 8, and 10, and
the corresponding fusion regions and number of detection targets
were increased. We tested the algorithm on different data sizes
with varying numbers of computing resources (compute nodes),
specifically 1, 2, 4, 8, and 16, which represent exponential
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Fig. 5. Convergence curve. (a) Group1. (b) Group2. (c) Group3. (d) Group4.

growth, making it easier to observe the relationship between
the increase in computing resources and the time it takes to
perform calculations. As shown in the Fig. 6, the runtime of the
parallel algorithm decreases almost linearly with the number
of compute resources. For instance, for 4 times larger data, the
runtime on a single machine is 3430 s. After adding one compute
resource, the algorithm becomes parallel, and the runtime is
reduced to 1730 s, saving 1700 s of time and achieving almost
linear speedup. When the number of compute nodes is increased
to 4, the runtime is reduced to 892 s, with a speedup ratio of
3.84. When the number of compute nodes is increased to 8,
the runtime is reduced to 456 s, with a speedup ratio of 7.52.
Finally, when the number of compute nodes is increased to 16,
the runtime is reduced to 252 s, with a speedup ratio of 13.61.
Even when the number of compute resources reaches dozens, the
proposed fusion detection parallel algorithm still exhibits a high
speedup ratio. Similar speedup effects were observed for data
of other sizes. Considering that increasing compute resources
increases data I/O between nodes, the experiment demonstrates
that the proposed method can achieve excellent speedup when
processing large data.

In the original data processing [see Fig. 6(a)], the speedup
reached a bottleneck after eight compute resources because only
eight detection targets were selected during the data fusion and
detection process, resulting in only eight tasks being split. In this
case, even if the number of compute resources is increased, the
runtime will not decrease. In addition, we can reasonably predict
the speedup situation when the data volume is sufficiently large.
As long as the number of compute resources is less than the
number of task partitions in the data, the method can reduce
the computation time when the number of compute resources is
increased. The speedup ratio will only stop increasing when the
number of task partitions and the number of compute resources
are the same.

Fig. 6. Big data execution time under different computing resources.
(a) Original data. (b) Twice the original data. (c) 4 times the original data. (d)
6 times the original data. (e) 8 times the original data. (f) 10 times the original
data.

V. CONCLUSION

This article presents a parallel target detection method de-
signed to tackle the challenges of poor detection performance
and long processing times in the context of low-resolution
hyperspectral imaging. To improve detection accuracy, CEM
algorithm is employed, which utilizes background reconstruc-
tion. In addition,to overcome the low spatial resolution of hy-
perspectral data, multispectral and hyperspectral data are fused,
leveraging the advantages of both spectral data types for clear
and accurate target detection. Facing the challenge of managing
large, information-rich remote sensing image data, a parallel op-
timization scheme is proposed for the detection method, which
greatly enhances algorithmic efficiency on processing large
datasets. The extensive experiments conducted demonstrate that
our target detection method is both accurate and robust, par-
ticularly when handling large datasets. As such, our approach
offers a novel solution to the challenges associated with target
detection in the context of low-resolution hyperspectral imaging.
By leveraging parallel optimization, spectral data fusion, and
weight-based updates, we have demonstrated a highly effective
target detection method capable of handling large, complex
datasets in a practical setting.



8284 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

REFERENCES

[1] L. Zhang and L. Zhang, “Artificial intelligence for remote sensing data
analysis: A review of challenges and opportunities,” IEEE Geosci. Remote
Sens. Mag., vol. 10, no. 2, pp. 270–294, Jun. 2022.

[2] A. Nisha and A. Anitha, “Current advances in hyperspectral remote sensing
in urban planning,” in Proc. 3rd Int. Conf. Intell. Comput. Instrum. Control
Technol., 2022, pp. 94–98.

[3] D. Zhu, B. Du, and L. Zhang, “Target dictionary construction-based
sparse representation hyperspectral target detection methods,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 12, no. 4, pp. 1254–1264,
Apr. 2019.

[4] Q. Du and C.-I. Chang, “A signal-decomposed and interference-
annihilated approach to hyperspectral target detection,” IEEE Trans.
Geosci. Remote Sens., vol. 42, no. 4, pp. 892–906, Apr. 2004.

[5] Y. Zhang, K. Wu, B. Du, and X. Hu, “Multitask learning-based reliability
analysis for hyperspectral target detection,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 12, no. 7, pp. 2135–2147, Jul. 2019.

[6] W. Sun, C. Liu, J. Li, Y. M. Lai, and W. Li, “Low-rank and sparse matrix
decomposition-based anomaly detection for hyperspectral imagery,” J.
Appl. Remote Sens., vol. 8, no. 1, 2014, Art. no. 083641.

[7] D. Hong, L. Gao, X. Wu, J. Yao, and B. Zhang, “Revisiting graph
convolutional networks with mini-batch sampling for hyperspectral im-
age classification,” in Proc. 11th Workshop Hyperspectral Imag. Signal
Process.: Evol. Remote Sens., 2021, pp. 1–5.

[8] D. Manolakis and G. Shaw, “Detection algorithms for hyperspectral imag-
ing applications,” IEEE Signal Process. Mag., vol. 19, no. 1, pp. 29–43,
Jan. 2002.

[9] X. Zhang, B. Hu, Z. Pan, and X. Zheng, “Dictionary learning based target
detection for hyperspectral image,” in Proc. 5th Symp. Novel Optoelectron.
Detection Technol. Appl., 2019, p. 49.

[10] W. Li, Q. Du, and B. Zhang, “Combined sparse and collaborative repre-
sentation for hyperspectral target detection,” Pattern Recognit., vol. 48,
no. 12, pp. 3904–3916, Dec. 2015.

[11] S. Matteoli, N. Acito, M. Diani, and G. Corsini, “An automatic approach
to adaptive local background estimation and suppression in hyperspectral
target detection,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2,
pp. 790–800, Feb. 2011.

[12] B. Du, Y. Zhang, L. Zhang, and D. Tao, “Beyond the sparsity-based target
detector: A hybrid sparsity and statistics-based detector for hyperspectral
images,” IEEE Trans. Image Process., vol. 25, no. 11, pp. 5345–5357,
Nov. 2016.

[13] M. A. Cho, P. Debba, R. Mathieu, L. Naidoo, J. van Aardt, and G.
P. Asner, “Improving discrimination of savanna tree species through a
multiple-endmember spectral angle mapper approach: Canopy-level anal-
ysis,” IEEE Trans. Geosci. Remote Sens., vol. 48, no. 11, pp. 4133–4142,
Nov. 2010.

[14] J. Harsanyi and C.-I. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Trans. Geosci. Remote Sens., vol. 32, no. 4, pp. 779–785, Jul. 1994.

[15] W. H. Farrand and J. C. Harsanyi, “Mapping the distribution of mine
tailings in the Coeur D’alene river valley, Idaho, through the use of
a constrained energy minimization technique,” Remote Sens. Environ.,
vol. 59, no. 1, pp. 64–76, 1997.

[16] F. Robey, D. Fuhrmann, E. Kelly, and R. Nitzberg, “A CFAR adaptive
matched filter detector,” IEEE Trans. Aerosp. Electron. Syst., vol. 28, no. 1,
pp. 208–216, Jan. 1992.

[17] D. Manolakis, C. Siracusa, and G. Shaw, “Hyperspectral subpixel target
detection using linear mixing model,” IEEE Trans. Geosci. Remote Sens.,
vol. 39, no. 7, pp. 1392–1409, Jul. 2001.

[18] Y. Xu, Z. Wu, F. Xiao, T. Zhan, and Z. Wei, “A target detection method
based on low-rank regularized least squares model for hyperspectral im-
ages,” IEEE Geosci. Remote Sens. Lett., vol. 13, no. 8, pp. 1129–1133,
Aug. 2016.

[19] L. Gao, X. Sun, X. Sun, L. Zhuang, Q. Du, and B. Zhang, “Hyperspectral
anomaly detection based on chessboard topology,” IEEE Trans. Geosci.
Remote Sens., vol. 61, Feb. 2023, Art. no. 5505016.

[20] L. Zhang, L. Zhang, D. Tao, and X. Huang, “Sparse transfer manifold em-
bedding for hyperspectral target detection,” IEEE Trans. Geosci. Remote
Sens., vol. 52, no. 2, pp. 1030–1043, Feb. 2014.

[21] L. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, “Hyperspectral remote
sensing image subpixel target detection based on supervised metric learn-
ing,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 4955–4965,
Aug. 2014.

[22] R. Senchuri, A. Kuras, and I. Burud, “Machine learning methods for road
edge detection on fused airborne hyperspectral and LiDAR data,” in Proc.
11th Workshop Hyperspectral Imag. Signal Process.: Evol. Remote Sens.,
2021, pp. 1–5.

[23] D. Wang et al., “Automated vein detection for drill core analysis by
fusion of hyperspectral and visible image data,” in Proc. 23rd Int. Conf.
Mechatron. Mach. Vis. Pract., 2016, pp. 1–6.

[24] L. Gao, D. Wang, L. Zhuang, X. Sun, M. Huang, and A. Plaza, “BS3LNET:
A new blind-spot self-supervised learning network for hyperspectral
anomaly detection,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5504218.

[25] W. Rao, L. Gao, Y. Qu, X. Sun, B. Zhang, and J. Chanussot, “Siamese trans-
former network for hyperspectral image target detection,” IEEE Trans.
Geosci. Remote Sens., vol. 60, Mar. 2022, Art. no. 5526419.

[26] B. Xi et al., “Multi-direction networks with attentional spectral prior for
hyperspectral image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, Jan. 2022, Art. no. 5500915.

[27] W. Xie, J. Lei, J. Yang, Y. Li, Q. Du, and Z. Li, “Deep latent spectral
representation learning-based hyperspectral band selection for target de-
tection,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 3, pp. 2015–2026,
Mar. 2020.

[28] X. Wang, C. Xing, Y. Feng, R. Song, and Z. Mu, “A novel hyperspectral
image change detection framework based on 3D-wavelet domain active
convolutional neural network,” in Proc. IEEE Int. Geosci. Remote Sens.
Symp., 2021, pp. 4332–4335.

[29] D. Zhu, B. Du, and L. Zhang, “Two-stream convolutional networks for
hyperspectral target detection,” IEEE Trans. Geosci. Remote Sens., vol. 59,
no. 8, pp. 6907–6921, Aug. 2021.

[30] H. Ren and Y.-L. Chang, “A parallel approach for initialization of high-
order statistics anomaly detection in hyperspectral imagery,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp., 2008, pp. II–1017–II–1020.

[31] J. Liu et al., “A distributed and parallel anomaly detection in hyperspectral
images based on low-rank and sparse representation,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2018, pp. 2861–2864.

[32] L. Zhang, Z. Wu, J. Sun, Y. Xu, and Z. Wei, “A distributed and parallel
method of hyperspectral computational imaging via collaborative tucker3
tensor decomposition,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2022, pp. 1808–1811.

[33] Q. Du, B. Tang, W. Xie, and W. Li, “Parallel and distributed computing
for anomaly detection from hyperspectral remote sensing imagery,” Proc.
IEEE, vol. 109, no. 8, pp. 1306–1319, Aug. 2021.

[34] R. Macias, S. Bernabé, D. Báscones, and C. González, “FPGA implemen-
tation of a hardware optimized automatic target detection and classification
algorithm for hyperspectral image analysis,” IEEE Geosci. Remote Sens.
Lett., vol. 19, Jul. 2022, Art. no. 6011605.

[35] J. Liu, Z. Wu, L. Xiao, J. Sun, and H. Yan, “A truncated matrix decom-
position for hyperspectral image super-resolution,” IEEE Trans. Image
Process., vol. 29, pp. 8028–8042, Jul. 2020.

[36] L. Zhang, W. Wei, C. Bai, Y. Gao, and Y. Zhang, “Exploiting cluster-
ing manifold structure for hyperspectral imagery super-resolution,” IEEE
Trans. Image Process., vol. 27, no. 12, pp. 5969–5982, Dec. 2018.

[37] Y. Xu, Z. Wu, J. Chanussot, and Z. Wei, “Nonlocal patch tensor sparse
representation for hyperspectral image super-resolution,” IEEE Trans.
Image Process., vol. 28, no. 6, pp. 3034–3047, Jun. 2019.

[38] R. Dian, S. Li, and L. Fang, “Learning a low tensor-train rank representa-
tion for hyperspectral image super-resolution,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 30, no. 9, pp. 2672–2683, Sep. 2019.

[39] R. Dian and S. Li, “Hyperspectral image super-resolution via subspace-
based low tensor multi-rank regularization,” IEEE Trans. Image Process.,
vol. 28, no. 10, pp. 5135–5146, Oct. 2019.

[40] J. Wright, M. Ben-Ezra, Y. Matsushita, Y.-W. Tai, R. Kawakami, and K.
Ikeuchi, “High-resolution hyperspectral imaging via matrix factorization,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 2329–2336.

[41] J.-F. Hu, T.-Z. Huang, L.-J. Deng, T.-X. Jiang, G. Vivone, and J. Chanussot,
“Hyperspectral image super-resolution via deep spatiospectral attention
convolutional neural networks,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 33, no. 12, pp. 7251–7265, Dec. 2022.

[42] F. Palsson, J. R. Sveinsson, and M. O. Ulfarsson, “Multispectral
and hyperspectral image fusion using a 3-D-convolutional neural net-
work,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 639–643,
May 2017.

[43] W. Dong, C. Zhou, F. Wu, J. Wu, G. Shi, and X. Li, “Model-guided
deep hyperspectral image super-resolution,” IEEE Trans. Image Process.,
vol. 30, pp. 5754–5768, May 2021.



YU et al.: PARALLEL ALGORITHM FOR HYPERSPECTRAL TARGET DETECTION BASED ON WEIGHTED ADMM 8285

[44] J. Yang, Y. Zhao, J. C.-W. Chan, and C. Yi, “Hyperspectral image classi-
fication using two-channel deep convolutional neural network,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., 2016, pp. 5079–5082.

[45] T. Huang, W. Dong, J. Wu, L. Li, X. Li, and G. Shi, “Deep hyperspectral
image fusion network with iterative spatio-spectral regularization,” IEEE
Trans. Comput. Imag., vol. 8, pp. 201–214, Feb. 2022.

[46] V. H. Pham and H.-S. Ahn, “Distributed stochastic MPC traffic signal
control for urban networks,” IEEE Trans. Intell. Transp. Syst., vol. 24,
no. 8, pp. 8079–8096, Aug. 2023.

[47] T. Rahman, Y. Xu, and Z. Qu, “Continuous-domain real-time distributed
ADMM algorithm for aggregator scheduling and voltage stability in distri-
bution network,” IEEE Trans. Automat. Sci. Eng., vol. 19, no. 1, pp. 60–69,
Jan. 2022.

[48] X. He, Y. Zhao, and T. Huang, “Optimizing the dynamic economic dispatch
problem by the distributed consensus-based ADMM approach,” IEEE
Trans. Ind. Inform., vol. 16, no. 5, pp. 3210–3221, May 2020.

[49] M. G. McGaffin and J. A. Fessler, “Alternating dual updates algorithm for
X-ray CT reconstruction on the GPU,” IEEE Trans. Comput. Imag., vol. 1,
no. 3, pp. 186–199, Sep. 2015.

[50] T.-H. Chang, W.-C. Liao, M. Hong, and X. Wang, “Asynchronous dis-
tributed ADMM for large-scale optimization–part II: Linear conver-
gence analysis and numerical performance,” IEEE Trans. Signal Process.,
vol. 64, no. 12, pp. 3131–3144, Jun. 2016.

Kun Yu was born in Jiangsu, China, in 1995. He
received the B.Sc. degree in computer science and
technology from the School of Computer Science and
Technology, Huaiyin Normal University, Huaiyin,
China, in 2018. He is currently working toward the
Ph.D. degree in parallel computing with the Nan-
jing University of Science and Technology, Nanjing,
China.

His research interests include hyperspectral im-
age processing, parallel computing, and big data
processing.

Shanshan Wu received the B.Sc. degree in computer
science and technology from the Nanjing University
of Science and Technology, Nanjing, China, in 2003.

She is currently an advanced Researcher with the
Nanjing Research Institute of Electronics Engineer-
ing. Her research interests include image processing
and intelligent computing.

Zebin Wu (Senior Member, IEEE) received the B.Sc.
and Ph.D. in computer science and technology from
Nanjing University of Science and Technology, Nan-
jing, China, in 2003 and 2007, respectively.

He is currently a Professor with the School of Com-
puter Science and Engineering, Nanjing University
of Science and Technology. From August 2018 to
September 2018, he was a Visiting Scholar with the
GIPSA-lab, Grenoble INP, Grenoble, France, Uni-
versité Grenoble Alpes, Grenoble. He was a Visiting
Scholar with the Department of Mathematics, Uni-

versity of California Los Angeles, Los Angeles, CA, USA, from August 2016 to
September 2016 and from July 2017 to August 2017. From 2014 to 2015, he was
a Visiting Scholar with the Hyperspectral Computing Laboratory, Department of
Technology of Computers and Communications, Escuela Politécnica, University
of Extremadura, Cáceres, Spain. His research interests include hyperspectral
image processing, parallel computing, big data processing, and their applications
in railway foreign object detection.

Jin Sun (Member, IEEE) received the B.S. and M.S.
degrees in computer science from the Nanjing Uni-
versity of Science and Technology, Nanjing, China,
in 2004 and 2006, respectively, and the Ph.D. degree
in electrical and computer engineering from the Uni-
versity of Arizona, Tucson, AZ, USA, in 2011.

He is currently a Professor with the School of Com-
puter Science and Engineering, Nanjing University of
Science and Technology. From 2012 to 2014, he was
with Orora Design Technologies, Inc., as a Member
of technical staff. His research interests include cloud

computing, edge computing and edge intelligence, and embedded systems.

Yi Zhang received the B.S. and Ph.D. degrees in
computer science from the School of Computer Sci-
ence and Engineering, Southeast University, Nanjing,
China, in 2005 and 2011, respectively.

He is currently an Associate Professor with the
School of Computer Science and Engineering, Nan-
jing University of Science and Technology, Nanjing.
In 2009, he was an Intern with the IBM China Re-
search Laboratory, Beijing, China. In 2011, he joined
Huawei Tech. Co., Nanjing, as a Technical Research
Staff Member. His research interests include project

scheduling, workflow optimization, and resource management and allocation in
cloud computing, mobile computing, and edge computing.

Yang Xu (Member, IEEE) received the B.Sc. de-
gree in applied mathematics and the Ph.D. degree
in pattern recognition and intelligence systems from
the Nanjing University of Science and Technology
(NUST), Nanjing, China, in 2011 and 2016, respec-
tively.

He is currently a Lecturer with the School of Com-
puter Science and Engineering, NUST. His research
interests include hyperspectral image classification,
hyperspectral detection, image processing, machine
learning, and their applications in railway foreign
object detection.

Zhihui Wei (Member, IEEE) was born in Jiangsu,
China, in 1963. He received the B.Sc. and M.Sc. de-
grees in applied mathematics and the Ph.D. degree in
communication and information system from South
East University, Nanjing, China, in 1983, 1986, and
2003, respectively.

He is currently a Professor and a Doctoral Su-
pervisor with the Nanjing University of Science and
Technology (NUST), Nanjing. His research interests
include partial differential equations, mathematical
image processing, multiscale analysis, sparse repre-

sentation, compressive sensing, and their applications in railway foreign object
detection.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


