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Potential of Remote Sensing Images for Soil
Moisture Retrieving Using Ensemble Learning
Methods in Vegetation-Covered Area

Ya Gao"”, Liguo Wang

Abstract—Soil moisture (SM) plays a critical role in various fields
such as agriculture, hydrology, and land-atmosphere interactions.
This study aims to evaluate the performance of the categorical
boosting algorithm (CatBoost) in comparison to other multiple-
boosting algorithms for SM prediction. Appropriate feature se-
lection is vital for achieving accurate predictions, and this study
focuses on identifying relevant features and assessing CatBoost’s
suitability for the task. The study incorporates several boosting
algorithms including Gradient Boosting Decision Tree (GBDT),
Extreme Gradient Boosting (XGBoost), Light Gradient Boosting
Machine (LightGBM), and CatBoost to estimate SM. Results indi-
cate that radar backscatter coefficient, soil roughness, and digital
elevation model (DEM) are crucial features for SM retrieval. Com-
paratively, CatBoost outperforms GBDT, XGBoost, and Light-
GBM in various feature combinations. The most favorable results
are obtained when utilizing all features as inputs for the algorithm.
These optimal results yield a mean absolute error (MAE) of 2.40
vol. %, mean relative error (MRE) of 0.16 vol. %, root mean square
error (RMSE) of 3.26 vol. %, and Pearson correlation coefficient
of 0.73. Additionally, the study analyzes the inversion results for
different ranges of SM and Normalized Difference Vegetation Index
(NDVI). Within the range of SM from 0 to 25 vol.% and NDVI
from 0 to 0.7, utilizing all features yields the most accurate results.
Using CatBoost, this approach achieves an MAE of 1.52 vol.%,
MRE of 0.12 vol. %, RMSE of 2.11 vol. %, and R of 0.81. The study
suggests that applying boosting algorithms, especially CatBoost,
holds promise in accurately estimating surface SM.

Index Terms—Boosting, categorical boosting algorithm
(CatBoost), extreme gradient boosting (XGBoost), gradient
boosting decision tree (GBDT), light gradient boosting machine
(lightGBM), sentinel-1, soil moisture retrieval.
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1. INTRODUCTION

OIL moisture (SM) is a pivotal parameter in the realm of
S agricultural development, hydrological science, and climate
change studies [1], [2], [3]. Microwave remote sensing technol-
ogy has emerged as a powerful means to retrieve SM due to its
ability to capture the sensitivity of radar signals to variations in
SM [4], [5], [6]. It also works in all times and weather conditions.

Traditional methods of monitoring SM, such as ground-based
sampling, are mainly point-based and have a limited number of
samples. Establishing ground observation stations to monitor
SM in real time is too costly. Remote sensing technology has
gradually become an important tool for monitoring SM in recent
years. Especially with the development of microwave remote
sensing, more and more scholars are using microwave remote
sensing to estimate SM [7].

The presence of vegetation complicates the SM inversion.
Vegetation produces complex scattering that reduces the radar
signal’s sensitivity to SM and contributes to the total backscat-
tering. Therefore, current SM inversion models for vegetation-
covered areas account for both the scattering contribution of veg-
etation and the attenuation of surface backscattering [8], [9]. The
water cloud model (WCM), is widely used to remove the effect of
vegetation during the quantification of SM content. The WCM,
which was proposed by Attema and Ulaby [10], was first used
to explain the mechanism of crop microwave backscattering.
Recently, both physical model-based techniques and machine
learning methods have advanced rapidly for estimating SM using
microwave remote sensing satellite data in vegetation-covered
area [11], [12], [13], [14], [15]. Yadav et al. [16] estimated
and evaluated SM by using modified WCM (MWCM) and
the evaluation of potential of multitarget random forest regres-
sion (MTFER) in the vegetated areas. The results showed that
MTRFR combined with MWCM technology could accurately
retrieve SM [16]. Based on the artificial neural network model
(ANN), Zhang et al. [13] established an ability to estimate
SM at different stages of corn growth. The results suggest that
the method had operational potential in estimating SSM from
Terra-SAR and Landsat-7 data at different stages of early corn
growth. Using Sentinel-1 SAR and Landsat-8 optical data, Yang
etal. (2020) inverted SM by combining the WCM and deep belief
network (DBN). They used tenfold cross-validation to show that
DBN performed more stably with different data when combined
with the WCM model [17]. Using ALOS-2 microwave data,
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Gao et al. [18] developed a genetic algorithm-based method
for optimizing BP neural networks (GA-BP) to estimate SM
in vegetated areas. Cui et al. [19] established an ANN SMC
retrieval algorithm combined with the water cloud model, the
advanced integral equation model, and the Oh model to perform
SM inversion in high spatial resolution over agroforestry areas.
Jarray et al. [20] developed an ANN, extreme gradient boosting
(XGBoost), random forest regressor, combined with WCM to
retrieval SM with Sentinel-1 and Sentinel-2. Wang et al. [21]
used Sentinel-1 and Sentinel-2 data to estimate SM in vegetated
areas by combining the WCM and integrated learning models
(RF and AdaBoost). They found that RF performed better than
AdaBoost when combined with the WCM model [21].

The boosting method begins with a weak learning algorithm
and iteratively learns a series of weak classifiers (also called
basic classifiers), and then combines these weak classifiers to
form a strong classifier in some form. Most of the boosting
methods learn a series of weak classifiers by changing the
probability distribution of the training data set (weights of dif-
ferent samples of the training data) and calling weak classifica-
tion algorithms for data with different probability distributions.
Boosting not only solves the classification problem, but also
the prediction problem. Boosting algorithms such as GBDT,
XGBoost, LightGBM, and CatBoost can be used for SM inver-
sion. Zhang et al. proposed a novel approach for high-resolution
soil water retrieval using ensemble learning. They combined
landSATS optical data with various other data sources to improve
the accuracy of their retrieval method. The ensemble learning
technique integrated two algorithms, namely XGBoost and RF.
The experimental results demonstrated that the XGBoost model
exhibited a slightly superior performance compared to the RF
model [22]. Mehdi Jamei et al. employed the XGBoost and
CatBoost algorithms to investigate the long-term, multi-step ad-
vance day Root Zone Soil Moisture (RZSM) in the severely cold
and warm semi-arid regions of Iran [23]. By utilizing multiple
source datasets, Yang et al. conducted an evaluation of four
ensemble learning models, namely RF, Extreme Random Trees
(ERT), XGBoost, and LightGBM, for the purpose of soil water
retrieval [24]. Liu et al. conducted a comprehensive comparative
analysis of soil moisture active passive (SMAP) downscaling
techniques in the southwestern region of France. The study
employed Classification and Regression Trees (CART), RF,
GBDT, and Extreme Gradient Boosting (XGB) algorithms for
the assessment [25]. However, there is no clear evidence to show
which algorithm is more suitable for this task.

The purpose of this study is to establish a SM inversion
algorithm based on Sentinel-1 and multisource datasets using
the boosting algorithms of ensemble learning algorithm. In
this study, we compared the accuracy of SM inversion using
four boosting algorithms (GBDT, XGBoost, LightGBM, and
CatBoost) in combination with the WCM model. Our aim was to
determine, which method was more suitable for inversion in the
study area. At the same time, we will evaluate the applicability
of the inversion method in different humidity regions.

The rest of this article is organized as follows. Section II de-
scribes the materials and methods used in this study. Section III
presents the results of the SM inversion using different boosting
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Fig. 1. Geographical location map of the study area.
algorithms. Section IV discusses the implications and limitations
of the findings. Finally, Section V concludes this article.

II. MATERIALS AND METHODS
A. Study Area and Materials

The upper Luan River basin was selected as the study area
for this article. Fig. 1 shows the geographical location of the
study area. In this study area, a ground synchronized observation
experiment was conducted for the remote sensing experiment
of SM in the Luan River Basin. The study area has vegetation
cover, including grassland, weedy field, corn field, cauliflower
field, potato field, and carrot field. Data were obtained from http:
//data.tpdc.ac.cn. The simultaneous observation dataset includes
soil temperature and moisture as well as soil roughness. In this
article, we used SM and soil roughness data (SRD) in September
19, 2018. They selected data on SM at a depth of 0-5 cm. The
range of SM is 2 to 40 vol.%. After conducting the screening
process, we obtained 917 points of valid SM data. We divided
the SM data into two sets: 1) a training dataset (60%) and 2)
a validation dataset (40%). The experimental area is located in
the upper reaches of the Luanhe River, where they divided it
into two routes to measure the soil roughness. In the north and
south direction, the terrain is complex and there are many types
of typical surface features, such as grassland, agricultural land,
wasteland, bare land, and forest land. The surface fluctuation of
different surface features in the same large square varies greatly.
The northeast southwest direction features a simple type, which
is mostly grassland. The root mean square height and correlation
length were 0.4 to 3.4 cm and 6 to 34 cm, respectively, in this
article.

To obtain the remote sensing data, we downloaded the
Sentinel-1 and Sentinel-2 data from the Alaska Satellite Facility'
and the Earth Explorer? websites, respectively. We selected the
images that matched the dates of the measured data. Sentinel-1,

1[Online]. Available: https://asf.alaska.edu/
2[Online]. Available: https://earthexplorer.usgs.gov/
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an Earth observation satellite launched by the European Space
Agency (ESA) as part of the Copernicus program, serves as a
crucial asset for obtaining high-quality, continuous radar imag-
ing data. Designed to facilitate the monitoring of Earth’s sur-
face changes, Sentinel-1 offers all-weather and all-day remote
sensing capabilities. Sentinel-2, a crucial facet of the Coper-
nicus program developed and launched by the ESA, serves as
a cornerstone for gathering high-resolution and multispectral
image data. The satellite’s main objectives revolve around the
monitoring of surface alterations, meticulous examination of
terrestrial and coastal ecosystems, and fostering effective land
use and environmental management. In this study, we used data
resolution of 30 m.

The preprocessing steps for Sentinel-1 data encompass sev-
eral vital stages: 1) Data acquisition; 2) Radiometric correction;
3) Atmospheric correction; 4) Geometric correction and registra-
tion; 5) Multitemporal data processing; 6) Image denoising and
filtering; 7) Data clipping and subset extraction; 8) Data format
conversion and storage. The preprocessing steps for Sentinel-2
data typically encompass the following aspects: 1) Geometric
correction, radiometric correction, and atmospheric correction;
2) Image stitching and Mosaic; 3) Data tailoring and subset
extraction; 4) Data format conversion and storage.

The Sentinel-1 synthetic aperture radar (SAR) images were
acquired on September 12, September 16, and September 19,
2018. The Sentinel-2 images were selected to have the same
or similar acquisition time as the Sentinel-1 images. We per-
formed preprocessing on the radar signal and calculated the
backscattering coefficients of VV and VH polarization. We also
calculated the normalized difference vegetation index (NDVI)
from the Sentinel-2 images using band arithmetic: NDVI =
(band8 — band4)/(band8 + band4), where band8 and band4
are the near-infrared and red bands, respectively.

Digital elevation model (DEM) is a vital data source for
studying and analyzing terrain, watershed, and feature identifi-
cation. We used the ASTER global DEM (GDEM) data, which
were derived from observations of NASA’s Terra satellite. This
data set provides the most comprehensive and accurate global
elevation data available. We extracted DEM, slope, and aspect
values from the GDEM as the terrain parameters for this study.
The spatial resolution of the GDEM was 30 m.

B. Ensemble Learning Algorithm

Ensemble learning is a technique that combines multiple mod-
els (weak learners) to achieve better prediction performance. A
proper combination of weak learners can produce a more accu-
rate and robust model. Boosting is a powerful ensemble learning
method, which is also a supervised classification method. It con-
structs a strong classifier by iteratively adding weak classifiers
and adjusting their weights according to the prediction errors.
The boosting algorithm follows these steps.

Step 1: Assign equal weights to each observation and train the
first base learner on the data.

Step 2: Increase the weights of the misclassified observations
and train the next base learner on the weighted data.

Step 3: Repeat step 2 until a predefined number of learners or a
predefined prediction accuracy is reached.
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Algorithm 1: GBDT Pseudocode.
Input: training set {(x1,y1),...,(xn,yn)}, where xi is a
feature vector and yi is a label
Output: a strong classifier H(x)
Initialize the strong model as a constant: FO(x) =
argmin_c sum(L(yi,c)) fori=1,...,n
Fort=1,...,T:
Compute the negative gradient (pseudo response) for
each instance: ri = -[dL(yi,Ft-1(xi))/dFt-1(xi)]
Train a regression tree ht(x) using the feature vector x
and pseudo response r as labels
Compute the optimal multiplier gamma_t for ht(x) by
solving: gamma_t = argmin_gamma
sum(L(yi,Ft-1(xi)+gammaxht(xi))) fori = 1,...,n
Update the strong model as Ft(x) = Ft-1(x) 4+ gamma_t
* ht(x)
Return H(x) = FT(x)

There are many specific algorithms for boosting, and in this
article we choose four of them: GBDT, XGBoost, LightGBM,
and CatBoost.

1) Gradient Boosting Decision Tree: GBDT is a gradient
boosting decision tree, where the output of a GBDT model
is the sum of several decision trees, each of which is a fit to
the residuals of the previous combination of decision trees,
a “correction” to the previous model. Gradient boosting trees
can be used for both regression problems (in this case known
as CART regression trees) and classification problems (in this
case known as classification trees. GBDT is an addition model
based on Boosting’s integration thought. During training, the
front-to-distribution algorithm is used for greedy learning. At
each iteration, a CART tree is learned to fit the residual between
the prediction result of the previous t-1 tree and the real value
of the training sample. Trees in GBDT are regression trees, and
GBDT is used to make regression predictions. GBDT is to sum
up the conclusions of all the trees to make the final conclusion.
The core of GBDT is that each tree learns the residual (negative
gradient) of the conclusion and all the previous trees. This
residual is the cumulative amount of the real value after adding
the predicted value [26].

Where, n is the number of instances in the training set. T
is the number of decision trees. L is the loss function, such as
squared error loss or logistic regression loss. Ft is the strong
model obtained after the rth iteration. ht is the tth round of
iterative training to get the decision tree (decision tree). ri is the
pseudoresponse value (pseudoresponse value) obtained by the
ith instance in the t-round iteration, i.e., the loss function obtains
anegative gradient value for the output value of the strong model.
gamma_t is the optimal multiplier (optimal multiplier) obtained
from the output value of the decision tree in the rth iteration, i.e.,
the loss function is minimized to obtain the step size value.

2) Categorical Boosting Algorithm: CatBoost is a decision
tree model based on gradient boosting. The main problem ad-
dressed is to handle categorical features efficiently and ratio-
nally, which can be seen from its name. CatBoost is composed
of Categorical and Boosting. In addition, CatBoost solves the
problem of gradient bias and prediction bias, thus reducing
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Algorithm 2: CatBoost Pseudocode.

Algorithm 3: XGBoost Pseudocode.

Input: training set {(x1,y1),...,(xn,yn)}, where xi is a
feature vector and yi is a label
Output: a strong classifier H(x)
Initialize the strong model as a constant: FO(x) = argmin_c
sum(L(yi,c)) fori=1,...,n
Fort=1,....T:

Randomly permute the training set

Fori=1,...,n:

Compute the gradient statistics for xi using only the
instances before it in the permutation: gi =
-[dL(yi,Ft-1(xi))/dFt-1(xi)]

Train a regression tree ht(x) using only categorical
features of x and gradient statistics g as labels

Compute the optimal multiplier gamma_t for ht(x) by
solving: gamma_t = argmin_gamma
sum(L(yi,Ft-1(xi)+gammasxht(xi))) fori=1,...,n
Update the strong model as Ft(x) = Ft-1(x) + gamma_t
* ht(x)

Return H(x) = FT(x)

the occurrence of overfitting and, thus improving the accuracy
and generalization of the algorithm [27], [28]. CatBoost is a
GBDT framework based on symmetric decision tree. It mainly
deals with Categorical features rationally by taking examples.
CatBoost is composed of categorical and Boosting. CatBoost
also solves the problem of gradient bias and prediction offset,
thereby reducing the occurrence of overfitting and improving the
accuracy and generalization ability of the algorithm [27], [29].

Where, n is the number of instances in the training set. T is the
number of decision trees. L is the loss function, such as squared
error loss or logistic regression loss. Ft is the strong model
obtained after the rth iteration. ht is the rth round of iterative
training to get the decision tree (decision tree). gi is the gradient
statistic obtained by the ith instance in the t-round iteration,
i.e., the loss function obtains a negative gradient value for the
output value of the strong model, but it is only calculated using
the instance before it in the arrangement to avoid information
leakage. gamma_t is the optimal multiplier (optimal multiplier)
obtained from the output value of the decision tree in the tth
iteration, i.e., the loss function is minimized to obtain the step
size value.

3) Extreme Gradient Boosting: XGBoost is one of the boost-
ing algorithms. the idea of the Boosting algorithm is to integrate
many weak classifiers together to form a strong classifier. Since
XGBoostis aboosting tree model, it integrates many tree models
together to form a very strong classifier. And the tree model used
is the CART regression tree model.

The process can also be divided into two types from the
algorithm pseudocode. The global approximation is to calculate
the quantile points and divide the samples for each feature before
a new tree is generated, after which the approximate division is
used in each splitting process, while the local approximation is
to use the approximation algorithm in the process of splitting
the nodes at a specific time [30]. XGBoost is a modification of

Input: training set {(x1,yl),...,(xn,yn)}, where xi is a

feature vector and yi is a label

Output: a strong classifier H(x)

Initialize the strong model as a constant: FO(x) = argmin_c

sum(L(yi,c)) fori=1,...,n

Fort=1,...,T:
Compute the gradient g_t and hessian h_t for each
instance using the current model: g_ti =
[dL(yi,Ft-1(xi))/dFt-1(xi)], h_ti =
[d2L(yi,Ft-1(xi))/dFt-1(xi)2] fori=1,...,n
Train a regression tree ht(x) using the feature vector x
and (g_t,h_t) as labels
Compute the optimal multiplier gamma_tj for each leaf
j of ht(x) by solving: gamma_tj =
-sum(g_ti)/[sum(h_ti)+lambda] for i in leaf j
Update the strong model as Ft(x) = Ft-1(x) + eta %
sum(gamma_tj * I(x in leaf j)) forj =1,...,J

Return H(x) = FT(x)

GBDT or a gradient lifting tree. The basic idea of XGBoost is
the same as GBDT, but with some optimizations, such as default
missing value handling, adding second derivative information,
regularization terms, column sampling, and parallel computa-
tion [31].

Where n is the number of instances in the training set. T is
the number of decision trees. L is the loss function, such as
squared error loss or logistic regression loss. Ft is the strong
model obtained after the rth iteration. ht is the tth round of
iterative training to get the decision tree (decision tree). g_ti
and h_ti are the gradient value and hessian value obtained by the
ith instance in the t-round iteration, i.e., the loss function obtains
the first-order derivative and the second-order derivative for the
output value of the strong model. gamma_tj is the decision tree
for each decision tree in the rth iteration.

4) Light Gradient Boosting Machine: LightGBM is a frame-
work for implementing the GBDT algorithm, supporting effi-
cient parallel training. lightGBM uses as much data as possible
on a single machine without sacrificing speed. When multiple
machines are in parallel, the communication cost is as low as
possible and the computation can be linearly accelerated [32].
Gradient-based one side sample (GOSS) is a major innovation
proposed by LightGBM to reduce training samples and, thus,
improve efficiency. LightGBM is a gradient boosting framework
that uses decision trees based on learning algorithms. It is
distributed and efficient. It is based on the decision tree algorithm
of Histogram and adopts GOSS [24].

Where n is the number of instances in the training set. T is
the number of decision trees. L is the loss function, such as
squared error loss or logistic regression loss. Ft is the strong
model obtained after the rth iteration. ht is the tth round of
iterative training to get the decision tree (decision tree). g_ti
and h_ti are the gradient value and hessian value obtained by
the ith instance in the t-round iteration, i.e., the loss function
obtains the first-order derivative and the second-order derivative



GAO et al.: POTENTIAL OF REMOTE SENSING IMAGES FOR SOIL MOISTURE RETRIEVING USING ENSEMBLE LEARNING METHODS

Algorithm 4: LightGBM Pseudocode.

Input: training set {(x1,y1),...,(xn,yn)}, where xi is a

feature vector and yi is a label

Output: a strong classifier H(x)

Initialize the strong model as a constant: FO(x) = argmin_c

sum(L(yi,c)) fori=1,...,n

Fort=1,....T:
Compute the gradient g_t and hessian h_t for each
instance using the current model: g_ti =
[dL(yi,Ft-1(xi))/dFt-1(xi)], h_ti =
[d2L(yi,Ft-1(xi))/dFt-1(xi)2] fori=1,...,n
Train a regression tree ht(x) using the feature vector x
and (g_t,h_t) as labels
Compute the optimal multiplier gamma_tj for each leaf
j of ht(x) by solving: gamma_tj =
-sum(g_ti)/[sum(h_ti)+lambda] for i in leaf j
Update the strong model as Ft(x) = Ft-1(x) + eta *
sum(gamma_tj * I(x in leaf j)) forj =1,....,J

Return H(x) = FT(x)

for the output value of the strong model. gamma_tj is the optimal
multiplier (optimal multiplier) obtained from the output value of
each leaf node (leaf node) of the decision tree in the tth iteration,
i.e., the loss function is minimized to obtain the step size value.

C. Retrieval Soil Moisture Method

1) Radar Backscattering Model: WCM is a simple function
model that is widely used to model soil and vegetation pa-
rameters from SAR data and to estimate SM [33], [34], [35].
According to WCM, the total backscattered signal consists of
the backscattered signals of soil and vegetation. To estimate
soil backscattered signal accurately, we need to remove the
backscattered signal of vegetation from the total backscattered
signal [10]. WCM can be calculated as follows:

00y = AVicosf (1 —77) (1)
72 = exp (2B x Va/ cosh) 2)
o 0% — AVy x cosf[1 —exp (—2B x Va5 X sec )]
T..1 =
soi exp (—2B x Va x sect)
3)
0. = F(SM,RSD, sensor — configuration) O]

V1 and V2 are vegetation descriptions. In this study, both V1 and
V2 arerepresented by NDVI. Many studies have shown that there
is no specific parameter for vegetation description, and NDVI,
as a vegetation parameter in WCM, has achieved a good effect
and accuracy [8], [34], [36], [37], [38]. € is angle of incidence,
and A and B are parameters, determined by satellite parameters.
72 is two-way attenuation. ¢ is the total backscattered signal.
oeq and o are backscattered signal of soil and vegetation,
respectively. SM is soil moisture, RSD is soil roughness data
(correlation length and root mean square height), and sensor-
configuration is radar sensor configuration parameters.

We used WCM calculation to obtain the backscatter signal of
soil from SAR data and calculated NDVI from Sentinel-2.
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TABLE I
DIFFERENT COMBINATIONS OF PREDICTOR VARIABLES FOR SM CONTENT

Model No . Variables fusion

MI S-1_VH

MII S-1.VV

MIII S-1 VV+VH

MIV S-1_VV+VH+ SRD

MV S-1_VV+VH+ SRD+DEM

2) Feature Selection and Inversion Method: The soil mea-
sured data included SM, correlation length and root mean square
height, which ranged from 6 to 34 cm and 0.4 to 3.4 cm,
respectively. The range of SM was 2 to 40 vol.%. We also
calculated slope, elevation and aspect from ASTERGDEM.
Therefore, we selected S-1 radar signal, SRD and DEM as
features to retrieve SM. To select the most favorable features for
SM inversion, we calculated the Pearson correlation coefficients
of different feature parameters with SM and observed whether
they had a significant correlation. We then used an ensemble
learning approach based on boosting algorithms to retrieve
SM. During the modeling process of SM retrieval, the remote
sensing feature factor assumes a crucial role in capturing the
correlation between remote sensing data and SM. Moreover, the
effectiveness of combining these feature factors is a significant
determinant when choosing suitable feature combinations. The
degree of alignment between the feature factor subset and the
estimation model further impacts the accuracy of SM estimation.
Therefore, it is imperative to combine and carefully select the
characteristic factors to identify the optimal feature combination
for SM retrieval research.

We performed different feature parameter combinations
with the established system dataset and compared and an-
alyzed, which feature parameter gave the highest accuracy
results when used as input. The feature combinations were
as follows: MI: S-1_VH; MII:S-1_VV; MIII: S-1_VV+VH;
MIV:S-1_VV+VH+ SRD; MV:S-1_VV+VH+ SRD+DEM.
The sampling of soil moisture dataset had 917 points, 60% of
which were used for training and 40% for validation. The specific
methodology employed in this article is outlined as follows.

1) The WCM model was utilized to calculate the backscat-

tering coefficient (VV, VH) of the soil.

2) In conjunction with other multisource data, a feature se-
lection process was conducted to identify parameters that
exhibited a strong correlation with soil moisture.

3) The selected feature factors from Step 2 were then com-
bined.

4) The recombined dataset from Step 3 was employed as
input for four distinct Boosting algorithms, facilitating soil
water retrieval in each case.

Fig. 2 shows the flowchart of SM retrieval using ensemble

learning method. Table I presents the five scenarios.

D. Model Performance Evaluation

To evaluate the accuracy of SM retrieval based on ensemble
learning, we used four metrics: mean absolute error (MAE),
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Fig. 2. Flowchart of SM retrieval.

mean relative error (MRE), root-mean-square error (RMSE),
and Pearson correlation coefficient R [39]. The formulas for
these metrics are as follows:

MAE = )

A

Yi —

MRE = (6)

i

RMSE — \/ Z G —yi)” 7

Elyi—FE [yl]) (yi — E[y])]

R= 8)

where ¥; is the predicted SM value and y; is the true
SM value. E[.] is the mean operator. ¢ and o are the
standard deviation of the in situ SM and estimated SM,
respectively.

III. RESULTS
A. Correlation Analysis of Predictor Indicators and SM

We used Pearson correlation coefficient to compute the rela-
tionship between the input variables derived from S-1, SRE,
and DEM for each of the five conditions. SPSS was used
for correlation and significance analysis. Table II shows that
radar signal VV and VH, CL, and DEM had positive cor-
relations with SM, while RMSH had a negative correlation.
These features were significantly correlated with SM. However,
ASPECT and SLOPE had low significant correlations with
SM. Based on these results, we selected VV, VH, RMSH, CL,
and DEM as the input parameters of the integrated learning
algorithm.
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TABLE II
PEARSON CORRELATION COEFFICIENT ANALYSIS OF INPUT VARIABLES AND
SM
Input Pearson Sig.
variables correlation (2-
tailed)

VV&SM -.159" 0.000 ** Correlation is
significant at the 0.01
level (2-tailed).

VH&SM -.164" 0.000 ** Correlation is
significant at the 0.01
level (2-tailed).

RMSH&SM 174" 0.000 ** Correlation is
significant at the 0.01
level (2-tailed).

CL&SM -.093° 0.000 ** Correlation is
significant at the 0.01
level (2-tailed).

DEM&SM -.103" 0.000 ** Correlation is
significant at the 0.01
level (2-tailed).

ASPECT&SM  0.029 0.383

SLOPE&SM -0.047 0.152

B. Evaluation and Comparison of Scenarios and Different
Combinations of Predictor Variables Models

This study explored the utility of four boosting ensemble
models for SM retrieval using different combinations of pre-
dictor variables. We designed five combinations based on vari-
able characteristics for inverse evaluation analysis. The feature
combinations were as follows: MI: S-1_VH; MII:S-1_VV; MIII:
S-1_VV+VH; MIV:S-1_VV+VH+SRD; MV:S-1_VV+VH+
SRD-+DEM. We estimated SM from Sentinel-1 SAR data using
these ensemble learning methods. Figs. 3—6 and Table III show
the results of the SM retrievals from Sentinel-1 using different
four ensemble learning methods.

Fig. 3 shows the inversion results of GBDT method, which
“n_estimators,” “learning_rate,” ‘“subsample,” “loss” of the
frame parameter we set are 57, 0.12, 0.8, Is, respectively. al—aS
are the inversion results obtained when different parameters are
input. When the system data set has only VH polarization mode
radar signal, we can get MAE = 3.10 vol.%, MRE = 0.22 vol.%,
RMSE = 4.24 vol.%, and R = 0.55 (see Fig. 3, al, Table III).
In MII mode, MAE is 3.19 vol.%, MRE is 0.21 vol.%, RMSE
is 4.21 vol.%, and R = 0.54 (a2). The MV produced a highest
prediction accuracy with MAEis2.91 vol.%,MRE s 0.21 vol.%,
RMSE is 3.92 vol.%, and R = 0.60 (a5), followed by MIV with
MAE is 3.08 vol.%, MRE is 0.21 vol.%, RMSE is 4.00 vol.%,
and R = 0.60 (a4), and MIII with MAE is 3.14 vol.%, MRE is
0.21 vol.%, and RMSE is 4.09 vol.% and R = 0.56 (a3).

The results of LightGBM are shown in Fig. 4 and Table III.
Similarly, we set the parameters for the LightGBM algorithm,
where num_leaves = 1200, learning_rate = 0.17, n_estimators
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= modelcount, metric = “rmse,” bagging_fraction = 0.8, fea-
ture_fraction = 0.8, reg_lambda = 0.9. The results indicated, M1
achieved a lowest prediction accuracy with MAE is 2.86 vol.%,
MRE is 0.19 vol.%, RMSE is 3.60 vol.%, and R is 0.48 (bl).
When all the parameters (MV) are the input set, we get the
optimal result with MAE is 2.59 vol.%, MRE is 0.17 vol.%, and
RMSE is 3.32 vol.% and R = 0.56 (b5). When the input set MV
is compared to MII (b2), MAE increases by 0.29 vol.%, MRE
increases by 0.02 vol.%, and RMSE increases by 0.33 vol.%.
When the input mode is MIII (b3) and MIV (b4), MAE, MRE,
RMSE, R results are 2.77 vol.%, 0.18 vol.%, 3.59 vol.%,0.55
and 2.70 vol.%, 0.18 vol.%, 3.52 vol.%, 0.58, respectively.

Fig. 5 and Table III revealed the forecast results of XGBoost
algorithm. First, we also confirm the parameter settings of
the XGBoost structure with learning_rate = 0.1, n_estimators
= 80, silent = True, objective = “reg:gamma”. When the input
characteristics is only VH polarization, MAE is 3.00 vol.%,
MRE is 0.21 vol.%, RMSE is 4.09 vol.%, and R is 0.54 (see
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Fig. 5(cl), Table III). When the input features of is only VV
polarization, MAE is 2.88 vol.%, MRE is 0.23 vol.%, RMSE is
4.02 vol.%, and R is 0.53 (see Fig. 5(c2), Table III). When the
input dataset are VV and VH polarization, MAE is 2.95 vol.%,
MRE is 0.21 vol.%, RMSE is 3.97 vol.%, and R is 0.56 (see
Fig. 5(c3), Table III). While MIV mode, the MAE is 2.56 vol.%,
MRE is 0.18 vol.%, and RMSE is 3.35 vol.% and R = 0.55(c4).
When using the XGBoost algorithm, the best prediction results
are still achieved in MV, where MAE = 2.50 vol.%, MRE =
0.17 vol.%, RMSE = 3.32 vol.%, and R = 0.61 (c5).

For the CatBoost algorithm, as depicted in Fig. 6 and Table I,
which get the optimal results compared with the other three
algorithms. Setting the structural parameters of the CatBoost
regression model, while iterations = 50, depth = 8, learning_rate
= 0.8, loss_function = “RMSE”. Overall, we found that in
five modes, using the CatBoost algorithm gives approximate
results with highest prediction accuracy. The results of the five
modes are summarized in Table III. The MV mode showed the



8156

40 [ T T T T | T T T T | T T T T ] T T T T 7]
£ © LightGBM MI 1) -
230 - . : ]
g C - . v 7 3
2 L v v v i
2 C v T T T, 4
= 20— Ty e ¢ T v
T s S .
wvi r - v
g - ¥ 3 3 . * -
S oo d M
E 10 C ]
o o -

0 = PRI T R R

0 30 40
Observed Soil Moisture (vol.%)

40 [ T T T T I T T T T | T T T T ] T T T ]
£ - LightGBM _MII 2) -
S 30 - . —
e [ Y ]
2 L .
2 v
<] r LI
=20 ]
el - LR
2 L i
5 10— —
g L i
o - -

00 20 ! 40

Observed Soil Moisture (vol.%)

40 T 1 LI I B B B B A
£  LightGBM MIII  (b3) -
230+ B . —
e [ . g ]
E : v v, v 7 .o . :
a L oo, W TN - A .
o e A L7 S A
& F AN - AL -
3 r oy R }' -'v?\'r'."' o T "
g0 M AR . -
& L v v ]

0_ (AN T T T N T TN T N TN T T W AN SO N N

0 10 20 30 40
Observed Soil Moisture (vol.%)
Fig. 4.
SRD-+DEM.

highest estimation performance, with the lowest MAE, MRE,
and RMSE values and a high R value [MAE = 2.40 vol.%,
MRE = 0.16 vol.%, RMSE = 3.26 vol.%, and R = 0.73 (d5)].
The MIV mode was slightly worse than the MV mode, with a
higher RMSE value but a slightly higher R value (d4). The other
three modes had similar prediction results, especially when the
input data set consisted of only radar signals (MI, MII, and MIII
modes).

C. Inversion Results in Different SM Ranges

C-band radar signals have a limitation in high vegetation cover
areas. This limitation stems from the low penetration depth of
C-band signals into the canopy in areas with more developed
vegetation cover. In densely vegetated areas, the radar signal
may not reach the soil through the plant canopies, resulting in
less accurate estimation of SM. Some studies have shown that,
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the C-band radar signal is insensitive to SM when NDVI > 0.7
[48], [49], [50].

In this study area, there are grassland, crops, and other vegeta-
tion. Fig. 7 shows the types of vegetation cover and the range of
NDVlI in the study area. In Section I1I-B, we analyzed the whole
area without considering the effect of vegetation cover level
on soil sensitivity. Therefore, in this section, we reanalyze the
different sensitivity of C-band to soil when NDVT1 is in different
range.

First, we divided the range of measured SM (2 to 40 vol.%),
which we divided into two parts: dry to slightly moist (0-25
vol.%), based on experience; and very wet (2540 vol.%) [48].
Second, we perform inversion analysis in different NDVI ranges
using four methods.

According to the scope of SM and the scope of NDVI, we
are divided into four cases, namely SM0-25 vol.%NDVIO0.7-1,
SMO0-25 vol.% NDVIO0-0.7, SM25-40 vol.% NDVIO0.7-1, and
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SM25-40 vol.% NDVI0-0.7. At the same time, according to the
method established in the second part, four methods were used
to analyze the prediction results under five models, respectively.
For the results, MAE, MRE, RMSE, and R were calculated, and
the results were shown in Fig. 8 and Tables IV-VIIL.

From Fig. 8 and Tables IV-VII, we can see that CatBoost
algorithm is obviously superior to the other three algorithms
in terms of accuracy under any case and mode. In the case of
SMO0-25 vol.% NDVIO0.7-1 (see Table IV), at the mode MI, we
can find that the MAE, MRE, and RESE values of LightGBM
algorithm are lowest (MAE = 0.72, MRE = 0.05, RMSE =
0.81), but the R value is also very low (R = 0.14). At this point,
the CatBoost algorithm has the highest R with a value of 0.69.
In mode MII, the GBDT algorithm has the highest MAE (3.71),
MRE (0.28), RMSE (4.51), and lowest R(-0.14). LightGBM has

the lowest MAE (0.6), MRE (0.04), RMSE(0.74), and R is 0.1.
Under the pattern MIII, MIV, and MV, with the same rule, the
LightGBM algorithm has lower MAE, MRE, and RMSE values,
but its R value is also lower. The MAE, MRE, and RMSE values
of CatBoost algorithm are slightly higher than LightGBM, but
have higher R values (MIII:0.8, MIV:0.78, and MV:0.78).

In the case of SM25-40 vol% NDVIQ.7-1 (see Table V),
Within this range, we found that all four methods have this
relatively good accuracy. At the mode MI, the MAE is 2.35
vol.%, MRE is 0.17 vol.%, RMSE is 3.06 vol.%, and R = 0.46 of
GBDT. The MAEis 1.6 vol.%, MREis0.12 vol.%,RMSEis2.19
vol.%, and R = 0.76 with the method of CatBoost. And MAE
is 1.81 vol.%, MRE is 0.13 vol.%, RMSE is 2.24 vol.%, and R
= 0.5 of LightGBM. MAE is 2.3 vol.%, MRE is 0.18 vol.%,
RMSE is 2.93 vol.%, and R = 0.5 of XGBoost. At the mode
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SRD+DEM.

MII, with the methods of GBDT, LightGBM, XGBoost, and
CatBoost, the MAE is 1.67 vol.%, 2.00 vol.%, 2.47 vol.%,1.67
vol.%, the MRE is 0.17 vol.%, 0.14 vol.%, 0.2 vol.%, 0.12 vol.%,
the RMSE is 2.11,2.51, 3.12,2.11, and the R is 0.66, 0.47, 0.46,
0.66. Under the MIII, the results of CatBoost is better than other
algorithm, MAE is 1.62, MRE is 0.12 vol.%, RMSE is 2.16
vol.%, and R = 0.72. Under the MIV, and MV of CatBoost,
the MAE, MRE, RMSE, and R is 1.55 vol.%, 0.12 vol.%,
2.13 vol.%, 0.8 and 1.52 vol.%, 0.12 vol.%, 2.11 vol.%, 0.81
severally.

Table VI shows the results of case SM25-40, NDVI0.7-1, we
find that CatBoost has a highest R than the other three algorithms.
In the five modes, the R value is 0.68, 0.76, 0.79, 0.76, and 0.68.
Table VII shows the results of case SM25-40, NDVIO0-0.7. In
this case, the result is similar to MV25-40, NDVI0-0.7.
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Through this part of analysis, we find that CatBoost algorithm
can always get the best result in any case. When NDVI is not so
sensitive to soil, the results are relatively poor, which indicates
that in this range, the accuracy of soil water inversion results is
poor, and other ways should be sought to overcome the influence
of insensitivity to soil under high NDVI.

D. Inversion Results in Different Modes

Through Sections III-B and III-C, we found that using the
CatBoost algorithm can achieve the optimal results compared
with other three algorithms, and at the same time when MV
ranges from 0 to 25 vol.% and NDVI ranges from 0 to 0.7,
the predicted SM results are the most accurate and meaningful.
When MV ranges from O to 25 vol.% and NDVI ranges from
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TABLE III
PREDICTION PERFORMANCE OF ENSEMBLE LEARNING METHOD

Algorithm Mode MAE MRE RMSE R
(vol.%) (vol.%) (vol.%)
MI 3.10 0.22 424  0.55
MII 3.19 0.21 421 054
GBDT MIII 3.14 0.21 4.09  0.56
MIV 3.08 0.21 4.00 0.60
MV 2.91 0.21 3.92  0.60
MI 2.86 0.19 3.60 048
MII 2.85 0.19 3.65 055
LightGBM MIII 2.77 0.18 3,59  0.55
MIV 2.70 0.18 3,52 0.58
MV 2.59 0.17 332 0.56
Ml 3.00 0.21 4.09 0.54
MII 2.88 0.23 4.02  0.53
XGBoost  MIII 2.95 0.21 397  0.56
MIV 2.56 0.18 335  0.55
MV 2.50 0.17 332 0.61
MI 2.45 0.16 3.56  0.75
MII 2.53 0.18 352 0.72
CatBoost ~ MIII 2.46 0.17 345  0.74
MIV 2.40 0.16 339 075
MV 2.40 0.16 326  0.73

Fig. 7.

Land cover map and NDVI range diagram.

0 to 0.7, we analyzed the SM inversion results using CatBoost
algorithm under five input modes (mentioned in Section II-C2).

Fig. 9 and Table V shows the SM inversion results under
different modes. Overall, under MV mode, the optimal result
was still obtained. The MAE was 1.52 vol.%, the MRE was
0.12 vol.%, the RMSE was 2.11 vol.%, and the R was 0.81
compared with MI, MII, MIII, and MIV modes. Compared with
the highest MAE under MII mode, the MAE of MV dropped by
0.08vol.%. Compared with the highest RMSE under MI mode,

8159

TABLE IV
PREDICTION PERFORMANCE OF ENSEMBLE LEARNING METHOD WITH RANGE
OF SMO0-25 VOL.%, NDVI0.7-1

MAE MRE RMSE
Mode  (019%) (vol%) (vol%) R
GBDT MI 371 028 451 -0.14
MII 406 028 479 022
MII 357 029 441 -0.11
MIV 298 0.9 356 038
MV 253 017 296 0.54
LightGBM MI 072 005 081 0.14
MII 0.6 004 074 0.1
MII 063 004 071 0.18
MIV 199 013 235 038
MV 204 013 245 046
XGBoost MI 109 009 136 032
MII 096 008 115 0.16
MII 328 022 3.6 -0.08
MIV 298 019 356 044
MV 251 018 34 025
CatBoost MI 243 017 32 069
MII 278 019 379 062
MIII 19 012 274 08
MIV 211 0.4 281 078
MV 206 015 301 078

its value dropped by 0.08vol.%. The highest R increased by 0.15
compared with the lowest.

Fig. 10 shows the comparison error between predicted and
real SM under five modes. The blue scatter chart displays the
predicted SM values, the red line chart shows the real SM values,
and the black line shows the error between the real and predicted
values. Under MI mode, the error between the predicted SM
values and the true SM values ranges from —4 vol.% to 4 vol.%
[see Fig. 10(a)]. Fig. 9(b) shows that under MII mode, the error
between the predicted SM value and the true SM value ranges
from —3 vol.% to 4 vol.%. Under MIII mode, the error between
the true values and the predicted values ranges from —3 vol.% to
6 vol.% [see Fig. 10(c)]. Fig. 9(d) shows that under MIV mode,
the error between the predicted SM value and the true SM value
ranges from —2 vol.% to 8 vol.%. Under MIV mode, the error
between the true values and the predicted values ranges from
—2 vol.% to 3 vol.% [see Fig. 10(e)].

IV. DISCUSSION

In this study, we demonstrated that CatBoost algorithm has
great potential in soil moisture retrieval. Many studies have
used radar polarization data, soil roughness data and DEM data
to invert SM [19], [40]. DEM, CL, RMSH together with VV
polarization and VH polarization, have a good correlation with
SM and perform well in SM inversion. Soil roughness is widely
used in SM inversion. However, it is not easy to obtain soil
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Fig. 8.
LightGBM, 3 is XGBoost, 4 is CatBoost.

roughness data in areas with vegetation. Moreover, DEM data
also showed a strong correlation with SM in a Pearson correla-
tion analysis. The study area we selected is located in the upper
Luanhe River area. The terrain of this area is complex, with high
elevations in the northwest and low elevations in the southeast;
the altitude ranges from 750 to 1829 m. We designed different in-
put data combination modes (MI: S-1_VH; MII:S-1_VV; MIII:
S-1_VV+VH; MIV:S-1_VV+VH+SRD; MV:S-1_VV+VH+
SRD-+DEM) and obtained the following conclusion. By adding
soil roughness data and DEM data (MV), we can achieve
higher accuracy in SM inversion. Hence, the DEM and soil
roughness factors influence the accuracy of SM inversion. These
factors are very important characteristic parameters in model
inversion.
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NDVIis one of the more important parameters in soil moisture
inversion, especially in vegetation cover areas. This is because
the vegetation cover affects the signal of the soil. Also NDVI
is used as an important parameter when removing the influence
of vegetation signal using water cloud model, which reduces
the influence of vegetation cover on soil signal [41]. The WCM
presents a distinct advantage in the context of areas character-
ized by low vegetation coverage. As a result, its application
for the purpose of vegetation removal is particularly advanta-
geous in study areas where vegetation is predominantly low
in height. This approach provides an effective means to miti-
gate the potential impact of vegetation on soil signal detection,
thereby allowing for more accurate analyses of the underlying
data.
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Fig. 9. Inversion results of CatBoost in different modes.

Studies by many scholars have shown that radar signals VV
and VH together give better soil moisture prediction results than
VV or VH signals alone [42] .In particular, DEM can be used
as reliable data for inversion of soil moisture when topography
has some control on soil moisture movement [43], [44]. Soil
roughness is also an important parameter for soil moisture
inversion, but the actual measurement of soil roughness is a
difficult task [45], [46]. Especially at the time that has passed,
we cannot get the soil roughness value at that time. In this study,
we found that the CatBoost algorithm can get the optimal soil
moisture inversion results, and also we used different parameter
combinations and found that we got the optimal results when
there is soil roughness, but the CatBoost algorithm can still
get good soil moisture prediction results when there is no soil
roughness. This brings more possibilities to our research. Due
to the complexity of the soil moisture inversion process and
the many parameters, we often cannot get all the parameters
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for soil moisture prediction. This is where the selection of the
appropriate method and parameters is particularly important.
Our study highlights the importance of selecting appropriate
methods and parameters in soil moisture predictions, given the
complexity of soil moisture inversion processes. By dividing
our dataset into different combinations for analysis, this study
provides insights into the method’s versatility in various data
availability situations that aid in soil moisture inversion.
Simultaneously, it is crucial to acknowledge that different
algorithms possess inherent strengths and weaknesses of their
own. The GBDT algorithm exhibits the capability to flexibly
handle various types of data and requires less tuning time. How-
ever, an obstacle associated with this algorithm is its difficulty
in parallel training. The XGBoost algorithm employs multiple
strategies to mitigate the risk of overfitting. Nevertheless, this
algorithm is accompanied by a multitude of parameters, ren-
dering the tuning process relatively intricate. The LightGBM
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represents the number. Due to the large amount of data, we randomly selected 16 groups of data for display and analysis).

algorithm is distinguished by its rapid training speed and low
memory consumption. Nevertheless, it also presents a challenge
due to the excessive number of parameters and the intricacy
of parameter adjustment. However, the CatBoost algorithm ex-
hibits remarkable robustness, thereby minimizing the require-
ment for extensive hyperparameter tuning and reducing the risk
of overfitting. This characteristic enhances the versatility of the
model, enabling it to effectively handle diverse types of data. Itis
plausible that this attribute contributes to the superior outcomes
observed in this study’s soil water inversion using the CatBoost
algorithm.

Although there are important discoveries revealed by these
studies, there are also limitations. First, the use of NDVI in
the water cloud model aims to eliminate the signal interference
caused by vegetation. However, it is necessary to validate
whether applying different indices in the water cloud model may
have varying effects, depending on the specific study area. This
warrants further investigation and verification to ensure accurate

results. Second, we evaluated the efficacy of the CatBoost
algorithm for estimating soil water content using various input
datasets and different ranges of NDVI and SM. The selected
region for our study is relatively small and we were initially un-
aware of the potential for the CatBoost algorithm to achieve high
levels of accuracy in large regions. This represents a limitation
of our study and highlights the importance of thoroughly investi-
gating suitable algorithms to ensure optimal results. In summary,
the CatBoost algorithm has demonstrated exceptional accuracy
in predicting soil water content through rigorous analysis and
verification. This breakthrough carries significant implications
for future research. Nonetheless, due to some identified
limitations, further exploration and implementation of CatBoost
must be conducted to expand its spectrum of applications.
Simultaneously, it is imperative to compare various algorithms
to validate their suitability in diverse research domains and
data scenarios. This process aims to attain more optimal
outcomes.
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TABLE V
PREDICTION PERFORMANCE OF ENSEMBLE LEARNING METHOD WITH RANGE
OF SM 0-25 VOL.%, NDVIO-0.7

TABLE VII
PREDICTION PERFORMANCE OF ENSEMBLE LEARNING METHOD WITH RANGE
OF SM 25-40 vOL.%, NDVI0-0.7

MAE ~ MRE RMSE
Mode  (0196) (vol%) (vol%) X

GBDT MI 235 017  3.06 0.46
MII 167 012 211 066
MII 236 0.17 298 0.49
MIV 223 017 285 0.2
MV 227 017 292 051

LightGBM MI 181 013 224 05
MII 2 014 251 047
MII 189 0.14 239 041
MIV 206 015 258 048
MV 213 016 266 05

XGBoost MI 23 018 293 05
MII 247 02 312 046
MII 208 0.6 261 045
MIV 221 017 283 05
MV 208 017 275 051

CatBoost MI 16 012 219 076
MII 167 012 211 0.66
MII 162 012 216 0.72
MIV 155 012 213 08
MV 152 012 211 081

TABLE VI

PREDICTION PERFORMANCE OF ENSEMBLE LEARNING METHOD WITH RANGE
OF SM 25-40 voL.%, NDVI0.7-1

MAE MRE  RMSE

Mode ol (vol%) (vol%) R
GBDT MI 1.66  0.05  2.02 -0.29
MII 3.1 0.1 3.68 04
MII 202 007 282 -0.07
MIV 1.1 004 129 -032
MV 3.74 012 432 -0.03
LightGBM MI 649  0.18  7.04 0
MII 649  0.18  7.04 0
MII 649 018  7.04 0
MIV 649 0.8  7.04 0
MV 649  0.18  7.04 0
XGBoost MI 219 007 246 -0.21
MII 095 003 127 045
MII 274 009 3.12 -049
MIV 237 008 256 -0.16
MV 091  0.03 12 0.05
CatBoost MI 204 007 268 0.68
MII 176  0.06 232 0.76
MIII 1.7 005 221 0.79
MIV 1.76  0.06 229 0.76
MV 201 006 266 0.68

MAE MRE RMSE
Mode  019%) (vol.%) (vol%) N
GBDT MI 352 011 43 0.04
MII 217 007 289 057
MIII 18 006 211 -0.08
MIV 187 006 236 0.12
MV 293 009 348 023
LightGBM MI 37 013 426 0
MII 37 013 426 0
MIII 37 013 426 0
MIV 37 013 426 0
MV 37 013 426 0
XGBoost MI 16 006 198 046
MII 15 005 196 026
MII 164 006 195 0.09
MIV 218 007 252 031
MV 216 007 252 033
CatBoost MI 173 006 272 0.5
MII 147 005 21 081
MII 142 005 221 08
MIV 136 005 214 084
MV 143 005 221 082

V. CONCLUSION

In this study, an ensemble learning approach is used to predict
SM using the five modes (MI: S-1_VH; MIIL:S-1_VV; MIII:
S-1_VV+VH; MIV:S-1_VV+VH+SRD; MV:S-1_VV+4+VH+
SRD+DEM) from Sentinel-1and other remote sensing images.
Ensemble learning is a meta-learning method that combines
multiple base learners into a single strong learner to improve the
predictive performance of a machine learning task. Boosting
is one of the types of ensemble learning, and in this article,
we choose four boosting algorithms. The purpose of this study
is to establish a SM inversion algorithm based on Sentinel-1
and multisource data by using the four boosting algorithms of
ensemble learning, and to explore their applicability for SM
inversion. We use Sentinel-1, Sentinel-2, and other multisource
data to build training and validation sets for boosting algorithms.
We can come to the following conclusion.

1) We use Pearson correlation analysis to select the feature
factors for inversion. The results show that VV, VH,
RMSH, CL, and DEM are significantly correlated with
SM. Therefore, we can select these features as inputs for
the boosting algorithm to invert SM.

2) All four boosting ensemble learning algorithms can invert
SM, but CatBoost algorithm achieves higher accuracy
than GBDT, XGBoost, and LightGBM. CatBoost is
a gradient boosting algorithm that handles categorical
features well and reduces overfitting by using ordered
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3)

4)

5)
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boosting. GBDT, XGBoost, and LightGBM are also
gradient boosting algorithms that use different tree
structures and regularization methods.

We designed five different combinations of feature pa-
rameters to invert SM (MI: S-1_VH; MIL:S-1_VYV;
MIIL: S-1_VV+VH; MIV:S-1_VV+VH+SRD; MV:S-
1_VV+VH+ SRD+DEM). We found that the best in-
version results were obtained by using all features as
algorithm inputs, with MAE = 2.40 vol.%, MRE = 0.16
vol.%, RMSE = 3.26 vol.%, and R = 0.73.

We also analyzed the SM inversion results under different
SM and NDVI conditions. We found that higher accuracy
results can be obtained when MV ranges from 0 to 25
vol.% and NDVIranges from 0to 0.7. The reason is that C-
band radar signals are more sensitive to SM in this range.
We analyzed the inversion results of CatBoost algorithm
in five modes when MV ranges from O to 25 vol.% and
NDVI ranges from 0 to 0.7. We found that the best results
were still obtained by M5 mode, with MAE = 1.52 vol.%,
MRE = 0.12 vol.%, RMSE = 2.11 vol.%, and R = 0.81.

This study demonstrates the efficacy of a boosting algorithm
utilizing C-band radar data in effectively inverting SM and
achieving improved accuracy. However, it is important to

note
year
will

that the study only utilized September data from a single
and focused on a single study area. Future investigations
involve expanding the research to encompass multiple

months and study areas, thereby enhancing the applicability
of the boosting ensemble learning algorithm. Moreover, future
research endeavors will incorporate additional parameters that
exhibit sensitivity to soil moisture, aiming to attain even higher

accu

racy in SM inversion results.
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