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Remotely Sensed Vegetation Green-Up Onset Date
on the Tibetan Plateau: Simulations

and Future Predictions
Ruyin Cao , Xiaofang Ling , Licong Liu, Weiyi Wang, Luchun Li, and Miaogen Shen

Abstract—Vegetation green-up onset date (VGD) is a key in-
dicator of ecosystem structure and processes. As the largest and
highest alpine ecoregion, the Tibetan plateau (TP) has experi-
enced markable climate warming during the past decades and
showed substantial changes in VGD. However, the existing process-
based phenology models still cannot simulate interannual vari-
ations in satellite-derived VGD. In this study, we developed a
data-driven VGD model for the TP based on the Long short-term
memory neural network (called VGD-LSTM). VGD-LSTM con-
siders the complicated nonlinear relationship between VGD and
multiple climatic and environmental drivers, including the time
series of temperature (daytime, daily minimum, and daily mean)
and precipitation, as well as nonsequential variables (elevation
and geolocation). Compared with the benchmark process-based
VGD model for the TP (i.e., the hierarchical model), VGD-LSTM
greatly improved the simulation of interannual VGD variations. We
calculated the correlation coefficients (R) between satellite-derived
VGDs and VGD simulations during 2000–2018; the percentages of
pixels with R values above 0.5 increased from 15% for the hierar-
chical model to 41% for VGD-LSTM. The advanced trend in the
satellite-derived VGD on the entire TP during 2000–2018 (−0.37
day/year) was captured well by VGD-LSTM (−0.33 day/year) but
was underestimated by the hierarchical model (−0.08 day/year).
According to VGD-LSTM simulations, VGDs on the TP are pro-
jected to advance by 8–10 days by 2100 relative to 2015–2020 under
high shared socioeconomic pathway scenarios. This study suggests
the potential of artificial intelligence in phenology modeling for
which the physiological processes are difficult to be fully repre-
sented.

Index Terms—Alpine ecosystem, land surface phenology,
phenological model, Qinghai–Tibet plateau, start of vegetation
growing season.
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I. INTRODUCTION

V EGETATION phenology is the study of the periodically
recurring change patterns of vegetation annual growth and

development [1]. As an important phenological stage, vegetation
green-up onset date (VGD) estimated from satellite observations
characterizes the start time of increasing vegetation greenness
and is recognized to be a key parameter that affects various
ecosystem processes and functions, such as ecosystem carbon
and water cycles [2], [3], plant community structure [4], [5],
and the ecosystem feedback to climate systems [6], [7]. In
the context of climate warming, VGD also appears to be a
direct and sensitive vegetation indicator that exhibits an initial
response [8]. The Tibetan Plateau (referred to as TP hereafter)
is located in southwestern China (26°–39.8°N, 73.3°–104°E)
and is the largest and highest alpine ecoregion in the world,
covering over 2.5 million km2, with an average elevation above
4000 m. Since the 1980s, the TP has experienced more rapid
climate warming than the global average, with rates of increase
of 0.27, 0.19, and 0.36 °C per decade in terms of the annual mean
temperature, maximum temperature, and minimum temperature,
respectively [9]. Because spring vegetation phenology in alpine
ecosystems is expected to be highly sensitive to temperature
changes [10], many studies have investigated the temporal shifts
in VGD of the TP and their driving factors using both field
phenological datasets and satellite observations (see reviews by
Shen et al. [11]).

Generally, VGD on the TP is recognized to be mainly con-
trolled by the heat accumulation in a period before VGD (i.e.,
preseason temperature; [12], [13]). Although the temporal shift
in VGD averaged over the entire TP has exhibited an advancing
trend during the past four decades, VGD was found to be post-
poned in some areas of the southwestern TP since 2000, which
was attributed to limited water availability in these local semiarid
areas [14]. Ganjurjav et al. [15] performed a manipulative ex-
periment and found interactive effects of preseason temperature
and precipitation on spring phenology on the TP: increasing pre-
season precipitation could offset the warming-induced delaying
trend of spring phenology in drier areas. Winter temperature reg-
ulates VGD in some ecosystems (e.g., temperate forests) because
a certain amount of low-temperature accumulation (chilling) is
required to break endodormancy before starting ecodormancy
[16]. Yu et al. [17] reported that insufficient fulfilment of the
chilling requirements may explain the delayed VGD of the TP
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during 1997–2006. However, some later studies argued against
this assumption, as winter temperature is still rather low despite
warming [18], [19]. Recently, several studies highlighted the
asymmetric impacts of daytime and nighttime warming on VGD
[20], [21], [22], [23], [24]. Unlike northern middle and high
latitudes, where VGD is more sensitive to daytime temperature,
VGD on the TP is more closely related to daily minimum temper-
ature, which is hypothesized as a low-temperature constraint on
plant development on this cold plateau [25], [26]. These findings
suggest that asymmetric warming in the diurnal course is crucial
to explore in our investigations of the temperature sensitivity of
VGD.

Various climate drivers serve the development of phenology
simulation models. There have been some attempts to simulate
VGD of the TP, and the existing models are either process
based or statistically regressed. The spring warming model is
the simplest process-based phenology model, which considers
only the influence of the accumulated preseason temperature
and assumes that VGD occurs when the heat accumulation
(Sf ) reaches a critical value (F ∗). It is generally formulated
as follows:

Sf =

VGD∑
i=ts

max (0, Ti − Tbase) ≥ F ∗ (1)

where Ti is the daily mean temperature at the ith day, Tbase is the
base temperature above which heat accumulation occurs, and ts
is the starting date for heat accumulation. The spring warming
model was found to perform poorly for simulating VGD in
grasslands due to the exclusion of other driving factors, such
as preseason precipitation that has a strong influence on VGD in
the southwestern TP [27], [28]. The temperature–precipitation
coupling model of Chen et al. [27] assumes that both the
heat requirement and the accumulated preseason precipitation
should reach critical values to trigger VGD on the TP. They
further evaluated both the air temperature–precipitation parallel
model and the sequential model in which the start dates of the
state of forcing in temperature and precipitation are assumed
to occur parallelly or sequentially. Simulations for 18 herba-
ceous species at 19 phenological stations on the TP showed
that the temperature–precipitation sequential model performed
better than the parallel model at more phenological stations,
highlighting the complex interactions between the heat and
preseason precipitation accumulations [27]. Besides seasonal
climate factors, the asymmetric influence of daytime and night-
time temperature was further considered in VGD simulations in a
growing season index model [28], [29] and a hierarchical model
[25]. The hierarchical model assumes spatially different climate
drivers for VGD in different areas of the TP and, thus, includes
five submodels (for details of the submodels, see Section II-C).
It achieved a smaller mean absolute error (MAE) for VGD
simulations across the entire TP than previous models.

The performances of current phenology models are still far
from satisfactory [30], [31]. Because satellite observations pro-
vide phenology data with full coverage of space, it is possible to
parameterize phenology models for each pixel [32], [33]. How-
ever, these phenology models still lack the ability to simulate
interannual changes in VGD, which greatly limits our ability to

predict future changes in VGD. In fact, it is easier to simulate
spatial patterns of VGD owing to large spatial variations (e.g.,
>1 month for the TP), but it is much more difficult to capture
temporal change trends in VGD due to small temporal variations
in VGD [30]. A literature review revealed that few studies
investigated the synchronization of the time-series data between
the simulated and observed VGD. Liu et al. [34] evaluated
the temporal trends in VGD simulation during 1982–2012 in
the northern hemisphere obtained with multiple process-based
phenology models and found that simulated VGD showed much
smaller temporal trends than observed VGD. The poor perfor-
mance of current process-based models could originate from
the complex interactive influence of multiple factors on VGD
that cannot be fully considered. For example, VGD is regulated
by not only the sum but also the specific processes of thermal
forcing [35], [36]. A more rapid increase rate in preseason
temperature was shown to induce earlier VGD in a year even if
the accumulated sum of preseason temperature in that year was
smaller [35]. Besides thermal forcing, the time distribution and
duration of precipitation may also affect VGD on the TP [18].
However, the subtle differences in the characteristics of these
climate factors are difficult to incorporate into the process-based
phenology models.

Machine learning techniques, particularly deep learning (DL)
models, are increasingly being employed to estimate various
environmental parameters [37]. The data-driven DL models
potentially better approximate the complicated nonlinear re-
lationship between the environmental parameters and climate
factors, owing to multilayer learning through deep artificial
neural networks [38]. Therefore, DL may be a promising tool
to model the complex interactions of preseason temperature and
precipitation on VGD. Zhou et al. [39] simulated global vege-
tation phenology during 2001–2015 by performing a DL-based
experiment. Their one-dimensional (1-D) convolutional neural
network regression model captures spatial patterns of VGD well,
whereas the simulation of the interannual changes in VGD, even
for simulation assessment at the hemispheric scale averaging
over all pixels, seems to be less satisfactory (quantitative indices
were not given in their Fig. S11). Toward VGD prediction on the
TP, it is worth exploring a model with a more effective ability
to simulate VGD, particularly the interannual changes in TPs
VGD.

In this study, we, therefore, developed a data-driven phenol-
ogy model based on the long short-term memory to simulate
VGD on the TP (referred to as VGD-LSTM). Multiple climate
drivers are incorporated into the VGD-LSTM model, including
the time series of temperature (daytime, daily minimum, and
daily mean) and precipitation from the previous winter season to
the current spring season. The strong data mining ability of long
short-term memory (LSTM) benefits the learning of multilevel
features from these time-series data. We tested the performance
of VGD-LSTM in simulating satellite-derived VGD on the TP,
particularly with regard to modeling interannual variations in
VGD. We also estimated future VGD changes on the TP until
the end of this century by driving the VGD-LSTM model using
climate projection from the Coupled Model Intercomparison
Project Phase 6 (CMIP6) under four different shared socioe-
conomic pathway (SSP) scenarios [40].
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TABLE I
DETAILS OF THE 13 CMIP6 MODELS USED IN THIS STUDY

II. MATERIALS AND METHODS

A. Climate Datasets on the TP

We collected the China meteorological forcing dataset
(CMFD) to drive VGD simulations on the TP. The CMFD dataset
was generated by the data assimilation and modeling center
for multispheres, Institute of Tibetan Plateau Research, Chinese
Academy of Sciences, and has been widely used in previous
studies [41]. It provides air temperature and precipitation data
for 1979–2018 with a temporal resolution of 3 h at a cell size
of 0.1° × 0.1° (http://data.tpdc.ac.cn/en/data/8028b944-daaa-
4511-8769-965612652c49/). Air temperatures were produced
by merging station meteorological observations made by the
China Meteorological Administration and the corresponding
Princeton forcing data [42]. Precipitation data were produced
from China Meteorological Administration station observations,
tropical rainfall measuring mission satellite precipitation anal-
ysis data [43], and Asian precipitation−highly resolved obser-
vational data integration towards evaluation of water resources
precipitation data [44]. In this study, we used only 2000–2018
climate data from CMFD because the MODIS observations date
back to 2000.

To predict VGD changes under future climates on the TP, we
collected the daily outputs of 13 climate models participating
in the CMIP6. All 13 models (see Table I) provide four cli-
mate variables, including daily mean temperature (“tas”), daily
maximum temperature (“tasmax”), daily minimum temperature
(“tasmin”), and daily precipitation (“pr”), under four SSP sce-
narios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). There
are still some missing data in some of the climate models.
We processed these missing data as follows.

1) Some “tas” data are missing in the historical data (2000–
2014) for BCC-CSM2-MR and CanESM5, and they were
filled as “(tasmax+tasmin)/2.”

2) Some “tasmin” data are missing in some years during
2021–2030 for NorESM2-MM under the SSP370 sce-
nario, and they were filled as “2×tas - tasmax.”

3) “tasmax” data are missing in 2034 and 2093 in FGOALS-
g3, and they were filled as “2×tas - tasmin.”

All these climate data were resampled to the same spatial
resolution of 0.1° × 0.1° by the bilinear interpolation.

B. Satellite-Derived VGDs on the TP

To estimate VGD on the TP, we collected the 2000–2018
MODIS vegetation index (VI) product (MOD13A1, version
6) from the U.S. Geological Survey, which provides both the
normalized difference vegetation index (NDVI) and the en-
hanced vegetation index (EVI) data with 250-m and 16-day
spatiotemporal resolution. Although the maximum value com-
position technique has been applied to MOD13Q1, there is still
residual noise in the original VI time-series data that needs to
be processed [58], [59]. Specifically, we first filled the VI values
contaminated by clouds and cloud shadows by the linear interpo-
lation of the VI time series. We then followed Zhang et al. [60] to
employ the background VI value of each pixel to replace the VI
values contaminated by snow and ice in winter. The background
VI value was determined as the average of historical high-quality
VI values during the period from the previous December to the
current March. Finally, we smoothed the VI time-series data
using the Savitzky–Golay filter [61], [62].

We estimated VGD for only those vegetation pixels with
seasonality of greenness on the TP. As suggested by previous
studies, two criteria were adopted to screen these pixels: First,
having multiple-year average VI values during July–September
higher than a threshold (NDVI > 0.1; [14]); and second, the
July–September average NDVI value is larger than 1.1 times
the average NDVI during December–February. These selected
pixels with their vegetation types are shown in the upper panel
of Fig. 1.

VGD was detected from NDVI and EVI time-series data using
the threshold-based and inflection-point-based methods [63].
We used the double logistic functions to fit the VI time-series
data of each pixel

VI (t,m) = m1 +m2

(
1

1 + em3−m4t
+

1

1 + em5−m6t

)

(2)
where m1–m6 are the fitting parameters. VGD was determined as
the first date when VI increases by 20% of its annual amplitude
(i.e., relative threshold) or the date of the first local maximum
in the rate of change of the curvature of the fitted logistic
function (i.e., inflection point; [64]). VGD estimates from the
two methods and two VIs were averaged to reduce uncertainty
in estimates [11]. To be compatible with the spatial resolution
of CMFD, we followed Shen et al. [11] to resample the VGD
data to 0.1° × 0.1° by averaging all available VGD estimates
within each 0.1° × 0.1° grid if their percentage within the grid
exceeds 10%. The spatial distribution of the mean VGD during
2000–2018 exhibits a clear longitudinal pattern with delayed
VGD from the eastern to western TP (Fig. 1, lower panel), which
is generally consistent with previous observations [11], [65].

http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
http://data.tpdc.ac.cn/en/data/8028b944-daaa-4511-8769-965612652c49/
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Fig. 1. Spatial distribution of vegetation types for the pixels with VGD
estimates (upper) and the mean VGD estimates (0.1° × 0.1°) during 2000–2018
(lower).

C. Previous Hierarchical Model for the TP

We employed the hierarchical model as the benchmark
process-based model for comparisons, which was reported to
perform better than other process-based models for VGD sim-
ulations on the TP [25]. The hierarchical model consists of
five submodels, each with different combinations of dominant
climate drivers. The candidate climate drivers include the presea-
son accumulated precipitation (AP ) and four temperature vari-
ables, daily mean temperature (T daily), daytime temperature
(T daytime), and daily minimum temperature (Tmin) during
the preseason period, and the winter daily mean temperature
(Twinter). The dominant climate drivers for VGD simulations
in each pixel are identified by the partial least square regression
according to the variable importance in a partial least square
regression projection. Using the satellite-derived VGD as the
reference values, the hierarchical model was found to better
simulate VGD on the TP than other phenology models, including
the traditional one-phase spring warming model, the two-phase
chilling-forcing model, and the temperature–precipitation par-
allel or sequential models. For the structure of the hierarchical
model, refer to [25, Table I].

D. Proposed VGD-LSTM Model for the TP

As a variant of a recurrent neural network, the LSTM neural
network adds a cell state parameterized structure and internal
memory to store previous information, and it has proven to be
more powerful in modeling and forecasting time series [66]. We
proposed a two-layer LSTM neural network to simulate VGD
on the TP (VGD-LSTM). Fig. 2 shows the network structure
of VGD-LSTM, which is driven by the input data, including
the time series of four climate variables (i.e., daytime, daily
minimum, and daily mean temperature and precipitation) and
the nonsequential variables (elevation, latitude, and longitude).
These nonsequential variables were considered because they

Fig. 2. Neural network structure of VGD-LSTM, which includes two input
layers, two LSTM layers, two dropout layers, one flatten layer, one concatenate
(concat) layer, one FC layer, and one output layer. BN: Batch normalization;
relu: Rectified linear unit.

may affect the relationship between VGD and climate variables.
For example, the thermal forcing threshold to trigger VGD may
be affected by elevations and geographic locations [11].

For the network, we used the built-in algorithm hyperband
[67] in Keras Tunner [68] to determine the best hyperparameters.
The two unidirectional LSTM layers have 64 and 32 hidden
units, respectively. We added the corresponding batch normal-
ization and rectified linear unit to the network to avoid gradient
vanishing and accelerate the convergence. A flattened layer was
included to convert the extracted features to 1-D feature vectors
and to further concatenate them with the nonsequential variables
(see Fig. 2). In addition, we added the dropout layer after each
LSTM layer to improve the generalization of the network. The
ratio value in the dropout layer was set to be 0.2, meaning
that 20% of the parameters of each layer will be removed
from training in each iteration. A fully connected (FC) layer
followed by an activation function (i.e., rectified linear unit)
was added to integrate features to give the prediction of VGD.
The VGD-LSTM model uses a total of 100 epochs and a batch
size of 256.

Since VGD on the TP normally occurs before the end of July,
the input time series of four climate variables has a length of 300
days from October of the previous year to July of the current year.
To reduce the number of model parameters, the original daily
climate variables were composited to 3 days, forming 100-D
data for each climate variable. Both the input climate variables
and the input nonsequential variables were normalized to [0,
1] using their respective minimum and maximum values. The
network parameters were optimized with the Adam (adaptive
moment estimation) optimization algorithm [69] by minimiz-
ing the root-mean-square error between model-estimated and
satellite-derived VGDs. We used an initial network learning
rate of 0.001, and then changed it dynamically according to the
network iterations: when the loss of the validation set after two
iterations does not drop, the learning rate is reduced by 10%.
The settings of the training set, validation set, and testing set in
our experiments are described in Section III.
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III. EXPERIMENTS AND ASSESSMENTS

We compared the proposed VGD-LSTM model with the
previous hierarchical model in terms of the performance of
VGD simulations on the TP using the climate dataset CMFD
(2000–2018). To make the evaluations more robust, we adopted
the leave-one-out cross-validation method. For the hierarchical
model, every time we chose VGD data in 1 year from the total of
19 years (2000–2018) as the testing data, we used the VGD data
in the remaining 18 years to calibrate the phenology model (i.e.,
parametrization) at each pixel. The optimal parameters were
estimated by a genetic algorithm (sko. GA) in the scikit-opt-0.6.3
package of Python-3.7.6. For the VGD-LSTM model, every time
we chose VGD data in two continuous years as the testing and
validation datasets, respectively, and the VGD data in the re-
maining 17 years were used as the training dataset. For example,
when using VGD data in 2000 as the testing dataset, we trained
the VGD-LSTM model with the VGD data during 2002–2018
by setting the VGD data in 2001 as the validation dataset. An
exception is the case of the testing dataset in 2018, where VGD
data in 2017 were chosen as the validation dataset. We performed
quantitative assessments by comparing VGD simulations with
testing datasets. Two statistical indices were used, including the
MAE and correlation coefficient (R).

We further employed the VGD-LSTM model and the hierar-
chical model to simulate the projections of VGD under future cli-
mate scenarios provided by the 13 CMIP6 climate models with
four SSP scenarios. The hierarchical models were calibrated
for different CMIP6 climate models using the corresponding
historical simulations (2000–2014). The VGD-LSTM model for
each CMIP6 climate model was trained with the VGD data in
the historical period (2000–2013) by setting the VGD data in
2014 as the validation dataset. We investigated the projections
of VGD during 2015–2100 on the TP simulated by VGD-LSTM
and the hierarchical model.

IV. RESULTS

Fig. 3 shows the spatial distribution of the MAE values for
VGD simulations by the VGD-LSTM and hierarchical models.
Notably, the experiments were conducted using the leave-one-
out method in which we simulated VGD year-by-year. For each
pixel in Fig. 3, the MAE value was averaged over 19 years
(2000–2018). In general, most of the areas on the TP have MAE
values between 4 and 8 days except some local areas in the
southwestern TP with values larger than 10 days. This spatial
pattern is unrelated to vegetation types (cf. Fig. 3 and upper panel
in Fig. 1). The VGD-LSTM performed slightly better than the
hierarchical model in terms of the absolute difference between
VGD simulations and satellite-derived VGD observations (mean
MAE: 7.03 versus 7.18 days).

We further investigated the performance of the VGD-LSTM
and the hierarchical models in simulating the interannual varia-
tions in VGD for each pixel. We calculated Pearson’s correlation
coefficients (R) between VGD simulations and satellite-derived
VGD observations for 2000–2018. Results show that VGD-
LSTM performed obviously better than the hierarchical model
[R averaged over all pixels: 0.431 versus 0.105; Fig. 4(a) and

Fig. 3. Spatial distribution of the MAE values for VGD simulations. The MAE
value for each pixel is averaged over 19 years (2000–2018) because we adopted
the leave-one-out cross-validation method. The mean MAE shown in each panel
was averaged across all pixels.

Fig. 4. (a) and (b) Spatial distribution of the correlation coefficient (R) values
for VGD simulations. The R value of each pixel is calculated between VGD
simulations and satellite-derived VGD observations during 2000–2018. The
mean R was averaged across all pixels. (c) and (d) Spatial distribution of pixels
with a significant R (P < 0.05).

(b)]. For the VGD-LSTM model, the percentages of pixels with
R values between 0.2 and 0.5 and >0.5 are 46% and 41%,
respectively, whereas the percentages are only 27% and 15%
for the hierarchical model. VGD-LSTM successfully simulated
the interannual VGD variations (i.e., a significant positive cor-
relation, P < 0.05) for about 50% of the pixels, whereas only
24% of the pixels showed a significant positive correlation for
the hierarchical model [see Fig. 4(c) and (d)]. Previous studies
also reported that the process-based phenology models lack the
ability to capture the interannual variations in VGD on the TP
(see [25, Fig. 5]). This great improvement provided by the
VGD-LSTM allows us to predict the variations of VGD on
the TP under future changing climates.

We averaged the satellite-derived VGD data or VGD simula-
tions over all pixels on the TP for each year and investigated
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Fig. 5. Time series of satellite-derived VGD observations (red line) and VGD
simulations (blue line) averaged over the TP during 2000–2018. The MAE and
correlation coefficient (R) between VGD observations and simulations are shown
in each panel.

Fig. 6. Projected annual mean temperature and accumulated precipitation on
the TP under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, based on the CMIP6
multimodel ensemble. The ranges indicated by light color represent the standard
deviation of predictions from the 13 CMIP6 climate models (see Table I).

the synchronization between time series of the two datasets
(see Fig. 5). Results show that VGD on the TP exhibited an
advanced trend during 2000–2018 at a rate of 3.7 days per decade
(P < 0.05). This temporally advanced trend was well captured
by the VGD-LSTM (3.3 days per decade, P < 0.05) but was
greatly underestimated by the hierarchical model (0.8 days per
decade, P > 0.05). The correlation coefficient between VGD
observations and VGD simulations is >0.92 for VGD-LSTM,
further highlighting the robustness of the new data-driven phe-
nology model.

Fig. 6 shows the projected annual mean temperature and ac-
cumulated precipitation from the CMIP6 multimodel ensemble
under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The annual
mean temperature on the TP is expected to increase with an am-
plitude of approximately 6 °C (from−3 to 3 °C) under SSP5-8.5
(high greenhouse gas emission) by 2100. Under SSP1-2.6 (low
greenhouse gas emission), however, the increase in annual mean
temperature halts around 2040. Regarding annual accumulated
precipitation, more substantial increases were observed under
SSP5-8.5 and SSP3-7.0 than in the other two scenarios.

We employed the proposed VGD-LSTM model to predict the
TPs VGD changes from 2015 to 2100 under future climates (see
Fig. 7). Relative to 2015–2020, the averaged VGD is projected
to advance by 8–10 days by 2100 under the relatively high
greenhouse gas emission scenarios (SSP3-7.0 and SSP5-8.5).
However, under the low-emission scenarios (SSP1-2.6), VGD
is projected to slightly advance before 2040 and then this trend
will be halted.

We further examined the spatial distributions of projected
VGD changes between the mean VGD in 2015–2020 and that
in 2095–2100 (see Fig. 8). Under the SSP5-8.5 scenario, VGD
predicted by VGD-LSTM exhibits evident spatial heterogeneity.

Fig. 7. Relative to 2015–2020, projected future VGD until 2100 averaged
over all pixels under SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, based on the
CMIP6 multimodel ensemble. The ranges indicated by light color represent the
standard deviation of VGD predictions using 13 CMIP6 climate models.

Fig. 8. Spatial distributions of projected VGD in 2095–2100 relative to 2015–
2020 under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, based on the
CMIP6 multimodel ensemble.

It can be observed that VGD in 2095–2100 relative to 2015–2020
advanced by more than 10 days in most areas in the western
and southwestern TP (negative values in Fig. 8), but this more
obvious advanced trend was offset by a delayed trend for some
areas in the eastern TP (positive values in Fig. 8) when all
pixels on the TP were averaged. The interesting delay in VGD
in the VGD-LSTM predictions in some eastern areas was due
to the combined effect of multiple climate variables, which will
be further explained in Section V-B (see Fig. 9).

V. DISCUSSION

A. Performances of VGD Simulations by VGD-LSTM

The correlations between VGD on the TP and various envi-
ronmental factors have been documented in many studies, but
current process-based phenology models still perform poorly in
VGD simulations, particularly in the simulation of interannual
VGD variations [11]. One reason may be due to the lack of
mechanistic understanding of different drivers, such as the roles
of winter chilling and the interactive effects between temperature
and precipitation on VGD. In addition to accumulated tempera-
ture and precipitation, the temporal distribution of precipitation
and the specific processes of thermal forcing at daily time scales
were also found to affect VGD [26], [35], [36]. Apparently, the
complex effects of these driving factors on VGD are difficult
to properly express in the process-based phenology models
because these models can normally include at most three or
four climate variables (e.g., two-phase phenology models). In
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Fig. 9. Histogram distribution of projected relative changes in VGD in the ab-
lation experiment (2095–2100 relative to 2015–2020). We show the (a) original
data and the (b) exchange of the time series of temperature, (c) precipitation,
(d) both temperature and precipitation, (e) nonsequential variables, and (f) all
variables. The red dashed line in each panel represents the mean value of the
projected relative changes in VGD.

contrast, as a DL-based phenology model, VGD-LSTM has the
ability to characterize the influence of the time-series process of
multiple climate variables on VGD (see Fig. 2). Our experiments
showed that the simulations of interannual variations in VGD
have been substantially improved by the VGD-LSTM model.
About 50% of pixels have a significant positive correlation
between satellite-derived and simulated VGD when using VGD-
LSTM, but only 24% do for the previous hierarchical model
(see Fig. 4). The advanced trend in the satellite-derived VGD
on the entire TP during 2000–2018 (0.37 day/year, P < 0.05)
was captured well by the VGD-LSTM model (0.33 day/year,
P < 0.05; Fig. 5).

The VGD-LSTM model has many more parameters than the
process-based hierarchical model. Thus, there may be concern
whether the performance of VGD-LSTM was exaggerated due
to model overfitting. Notably, some recent phenology studies
adopted the spatial sampling strategy to calibrate and validate
phenology models (e.g., [33] and [39]). They selected different
pixels with spatial random sampling or uniform sampling to
generate the training, validation, and testing sets; however, the
selected pixels in the three sets may not be independent of each
other owing to spatial autocorrelations, resulting in an overesti-
mation of phenology model performance. To address this issue,
we adopted the leave-one-out cross-validation strategy to test
VGD-LSTM in which every time VGD data in one year were
used as the testing set, VGD data in another year were used as the
validation set, and VGD data in the remaining years were used as
the training set. Although this strategy is very time-consuming,
it ensures a robust assessment of the model’s performance [70].

B. Projections of VGD Under CMIP6 Models

We applied VGD-LSTM to simulate the projections of VGD
until the end of this century under four SSP scenarios based
on the ensemble of 13 CMIP6 climate models. Relative to
2015–2020, VGD averaged over all pixels during 2095–2100
is predicted in advance by 8–10 days under SSP5-8.5 and
by 1–2 days under SSP1-2.6 (see Fig. 7), which is generally
consistent with the prediction of the hierarchical model in a

recent study [11]. However, the spatial distributions of projected
VGD changes are substantially different between the two phe-
nology models (cf. Fig. 8 and [11, Fig. S3]). VGD predicted by
VGD-LSTM does not exhibit advanced trends in some eastern
areas by 2100 even under the high greenhouse gas emission
scenario (SSP5-8.5). Here, we conducted an additional ablation
experiment to examine which of the driving factors account for
this observation. Specifically, we first selected the pixels with
positive relative changes (values > 0 in Fig. 8, referred to as
“Pixels > 0”) and the pixels with relative changes smaller than
−12 (values<−12 in Fig. 8, referred to as “Pixels<−12”). For
each pixel in “Pixels > 0,” we then replaced the driving factors
(time series of climate variables or nonsequential variables) with
the corresponding driving factors of a randomly selected pixel
in “Pixels < −12.” Based on the replaced driving factors, we
used VGD-LSTM to simulate the projections of VGD until 2100
for all pixels in “Pixels > 0” again. Our results show that the
original VGD relative changes with a mean value of 0.90 day
decrease to a mean value of −8.35 days and −0.87 day when
only the time-series data of temperature or precipitation were
replaced, respectively [see Fig. 9(b) and (c)]. If the temperature
and precipitation time-series data were replaced simultaneously,
the mean value of VGD relative changes further decrease to
−13.15 days [see Fig. 9(d)]. In contrast, the original VGD
relative changes vary little when only nonsequential variables
related to vegetation type (elevation, latitude, and longitude)
were replaced [see Fig. 9(e)], suggesting that local climates, not
vegetation types, are the main factors determining the spatial
heterogeneity of the projections of VGD from VGD-LSTM.
This additional experiment highlights the influence of the tem-
poral profiles of intra-annual temperature and precipitation and
the complex interactions between the two variables on VGD.
However, we should acknowledge great uncertainties in the
prediction of daily temperature and precipitation data by current
climate models, being the main obstacle besides phenology
models for reliable VGD simulations.

C. Limitations in the Simulations of VGD-LSTM

Several limitations remain in the simulations of VGD-LSTM.
First, the physiological mechanisms controlling VGD are dif-
ficult to explain with the VGD-LSTM model because of the
well-known black box problem for data-driven DL models. For
example, VGD-LSTM still lacks the ability to reveal the specific
processes and mechanisms underlying the complex interactions
between the time series of temperature and precipitation. The
coupling of process-based field physiological experiments and
machine learning models might provide a solution to further
reduce the uncertainties in VGD simulations and predictions
in the future [71], [72]. Second, it is impossible to include all
driving factors in phenology models. The VGD-LSTM model
includes the main drivers (temperature and precipitation) as the
direct inputs and considers some other climate and environmen-
tal variables indirectly. For example, VGD-LSTM includes the
precipitation time-series data since October 1 of the previous
year, suggesting the considerations of the influence of winter
snowfall on VGD. However, the mechanism for this influence
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is still unclear because of the large time interval (nearly two
months) between spring snow melt date and VGD on the TP [11].
Photoperiod is also considered in VGD-LSTM to some extent
when using the geographic locations (longitude and latitude)
as inputs. However, the effects of livestock grazing [73] and
nitrogen addition [74] on VGD are not considered because
these data are difficult to collect and parameterize across the
entire TP. Third, the projections of VGD until 2100 should
be treated with caution due to uncertainties in the performance of
phenology models and in the projected future climate scenarios
in CMIP6. Although VGD-LSTM improved the simulations of
interannual VGD variations, the performance for about half
the pixels was still poor (see Fig. 4). Moreover, vegetation
adaptation to future climate changes is not considered in the
VGD predictions. Fourth, the performance of VGD-LSTM may
be further improved by using longer VGD time-series data to
train the model. Currently, VGD on the TP since 1982 can be
estimated from the advanced very-high-resolution radiometer
(AVHRR) NDVI time-series data. However, sensor degradation
in AVHRR and the inconsistency among different generations
of AVHRR sensors greatly hinder the application of this satellite
dataset [75]. Therefore, more accurate MODIS data since 2000
were used in this study.

VI. CONCLUSION

We utilized the strong learning ability of the LSTM neural
network and developed a DL-based phenology model to simulate
VGD across the TP (VGD-LSTM). We tested the performance
of VGD-LSTM with the leave-one-out cross-validation method
for simulating VGD on the TP. By comparing the new model
with the benchmark process-based model, VGD-LSTM per-
formed slightly better than the hierarchical model developed
for TP in terms of MAE error, but the simulations of interan-
nual variations in VGD were substantially improved. Pearson’s
correlation coefficients (R) between satellite-derived VGDs and
VGD simulations during 2000–2018 exhibit significant pos-
itive values (P < 0.05) in only 24% of the pixels for the
hierarchical model but was improved to 49% of the pixels for
VGD-LSTM. By averaging VGD over all vegetation pixels on
the TP, VGD-LSTM achieved better synchronization between
the time series of satellite-derived and simulated VGDs than the
hierarchical model (R: 0.926 versus 0.531; Fig. 5), suggesting
the effectiveness of the new data-driven phenology model. We
further applied VGD-LSTM to estimate VGD changes on the
TP in the 21st century by using climate projection from 13
CMIP6 models under four SSP scenarios. Results from an en-
semble of 13 CMIP6 models project that, relative to 2015–2020,
VGD averaged over all pixels will advance by 8–10 days by
2100 under high greenhouse gas emission scenarios (SSP3-7.0
and SSP5-8.5), whereas the advanced trend in VGD will be
halted around 2040 under the low-emission scenario (SSP1-2.6).
Because VGD is a key ecosystem parameter, we expect that
more realistic simulation of VGD by VGD-LSTM can further
improve our understanding of the influence of the Asian mon-
soon system on the TPs terrestrial ecosystem processes.
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