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Multiscale Context-Aware Feature Fusion
Network for Land-Cover Classification

of Urban Scene Imagery
Abubakar Siddique , Zhengzhou Li , Member, IEEE, Abdullah Azeem , Yuting Zhang , and Bitong Xu

Abstract—Recently, several land-cover classification models
have achieved great success in terms of both accuracy and com-
putational performance. However, it remains challenging due to
interclass similarities, intraclass variations, scale-related inaccura-
cies, and high computational complexity. First, these methods fail
to establish a correlation among different feature maps during mul-
tiscale feature extraction, leading to interclass similarities and intr-
aclass variations. Second, they underutilize feature interdependen-
cies of the context contained in each layer of the encoder–decoder
architecture, causing scale-related inaccuracies. Third, they cause
checkerboard artifacts and blurry edges, which can negatively
impact the accuracy and generate segmentation map at increased
computational cost. To address these problems, this article proposes
a novel multiscale context-aware feature fusion network (MCN)
for high-resolution urban scene images. MCN mainly consists of
three modules: First, a multiscale feature enhancement module for
backbone network to extract rich spatial information dynamically
by incorporating dense correlation among feature maps with dif-
ferent receptive fields; second, multilayer feature fusion module
as skip connections to produce a single high-level representation
of the local–global context by capturing low-, mid-, and high-level
interdependencies at different encoder–decoder stages; and third,
pixel-shuffle decoder to reduce the blurry edges and checkerboard
artifacts while upsampling with reduced number of parameters.
Experiments on three high-resolution aerial and satellite urban
scene datasets show that MCN consistently outperforms the main-
stream land-cover classification models. Specifically, MCN achieves
an OA of 93.51 on Potsdam, 90.18 on Vaihingen, and an mIoU of
73.73 on DeepGlobe.

Index Terms—Attention mechanism, multiscale context
aggregation, remote sensing, semantic segmentation, similarity
fusion, urban scene images.
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I. INTRODUCTION

S EMANTIC segmentation is typically regarded as a problem
of land-cover classification and aims at providing a category

label for each pixel in an urban scene image. It plays a vital role
in land-cover mapping [1], [2] urban planning, change detection
[3], road extraction, and environmental protection. With the ad-
vancement of sensor technology, plenty of high-resolution (HR)
urban scene images have been captured. Urban scene images
with rich potential semantic content and abundant spatial details
can provide data support for segmentation. However, large-scale
variation, unbalanced distribution of the ground objects and
their categories, interclass similarities, intraclass variations, and
difficulty in extracting comprehensive feature information have
challenged land-cover classification approaches to accurately
identify and segment objects in HR urban scene images.

Earlier methods had made some progress employing the tradi-
tional feature design and convolution neural networks (CNNs),
making the data-driven feasible for multiscale feature learn-
ing for urban scene images. Conventional methods often use
handcrafted features (such as spectral, spatial, and textural) and
traditional machine learning methods (such as support vector
machine and random forest) to segment the urban scene images.
However, the traditional methods depend on handcrafted fea-
tures, consistently achieving unsatisfactory performance. Thus,
designing good feature extractors for multiscale stimuli for
solving urban scene image semantic segmentation problems is
essential. It requires feature extractors to use larger receptive
fields to identify context at multiscale.

Unsurprisingly, CNNs learn multiscale features through a
stack of convolutional operators. This ability of CNNs leads to
effective representations for solving several vision tasks (i.e.,
classification, object detection, and semantic segmentation).
Compared with traditional methods, CNN-based approaches
have shown tremendous success in semantic segmentation. In
modern computer vision systems, CNNs are the most common
choice of visual encoders. The most popular encoders include
AlexNet [4], VGGNet [5], ResNet [6], InceptionNet-v4 [7], and
InceptionResNet-v2 [7]. Recently, CNNs have been challenged
by vision transformers (ViTs) [8], which have demonstrated
good performance in several vision tasks. ViTs are designed
either locally or globally and can gather information from a
larger region using a larger window size. In contrast, these meth-
ods are usually computationally heavy and require significant
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memory to capture the global context. Contrastingly, attention
mechanisms are widely adopted for semantic segmentation due
to their advantages in acquiring long-range context information.
DANet [9] and CBAM [10] are state-of-the-art approaches that
incorporate spatial and channel attention mechanisms to enhance
the feature representation abilities of models.

With the widespread adoption of CNNs for vision tasks,
significant advancements have been made for natural image se-
mantic segmentation, producing spectacular results. Fully con-
volutional network (FCN) [11] is pioneering work in semantic
segmentation tasks, employing FCNs without fully connected
layers for end-to-end dense pixel prediction. U-Net [12] in-
troduces skip connections in encoder–decoder architecture and
U-Net++ [13] dense skip connections to bridge the seman-
tic gap between encoder–decoder feature maps. PSP-Net [14]
leverages the pyramid pooling module (PPM) and DeepLabV3+
[15] atrous spatial pyramid pooling (ASPP) to steadily segment
targets at multiscale to capture object and image context.

The above-mentioned CNN-based semantic segmentation
methods have three limitations. First, these methods construct a
multiscale model using single-sized fixed convolutional kernels,
dilated convolution with different dilation rates, or pooling grids
without enabling correlation among different feature maps. Sec-
ond, they underutilize feature interdependencies of the context
contained in each layer of the encoder–decoder architecture,
causing scale-related inaccuracies. Finally, these methods usu-
ally use deconvolution or bilinear-based upsampling techniques
to recover image resolution, causing checkerboard artifacts and
blurry edges at increased computational cost. Thus, it is essential
to design good feature extractors to simultaneously identify local
and global contexts. Redesigned skip connections to prevent
the loss of fine- and coarse-grained details at shallower and
deeper layers, and upsampling techniques to fully fuse feature
information at reduced computational cost for HR urban scene
image’s semantic segmentation tasks.

To mitigate the above-mentioned limitations, this work pro-
poses an alternative simple yet effective multiscale context-
aware feature fusion network (MCN) for HR urban scene im-
ages. Concretely, MCN includes three fundamental components:
multiscale feature enhancement (MFE) module, multilayer fea-
ture fusion (MLF) module, and pixel-shuffle decoder (PSD)
module. MFE is exploited for the backbone network to identify
the local and global context of ground objects while suppressing
the background noise and capturing complementary features by
enabling correlation among different levels of feature maps.
MLF is introduced as skip connections where features from
different MFE layers are merged before the supervision to
produce a single high-level representation of the input data by
leveraging the strength of each layer in capturing low-, mid-,
and high-level features. The network can better segment the
image into various semantic classes by merging these learned
representations from all layers. PSD is used to enhance the
resolution of the feature maps in the decoder and fully fuse fea-
ture information from various scales. Unlike other upsampling
methods, PSD can better fix blurry edges and checkerboard arti-
facts with fewer parameters while improving network speed and
accuracy.

The contributions to this work are given as follows.
1) A novel MCN with three fundamental modules is proposed

to solve the interclass similarities, intraclass variations,
scale-related inaccuracies, and high computational com-
plexity issues.

2) We adopted the well-extracted multiscale information to
identify local and global contexts simultaneously. Re-
designed skip connections to leverage the strengths of
each layer in capturing different levels of features and
upsampling technique to fully fuse feature information
at various receptive fields while reducing the number of
parameters.

3) Extensive experiments are conducted on the ISPRS 2-D
semantic labeling datasets and DeepGlobe to demonstrate
the effectiveness of MCN, which yields notable perfor-
mance gains compared with the existing architectures but
with much fewer parameters.

II. RELATED WORKS

This section discusses similar techniques commonly em-
ployed in the semantic segmentation of HR urban scene images,
including multiscale feature learning, skip connections, upsam-
pling methods, and visual attention mechanisms.

A. Encoder–Decoder Architecture

One of the first semantic segmentation efforts using CNNs
is an FCN [11]. However, during downsampling, FCN reduces
spatial information by a larger factor. Thus, during upsampling,
it becomes difficult to reproduce fine details even after using
transpose convolution, which results in coarse output. To tackle
this issue, Ronneberger et al. [12] introduce skip connections
in the encoder–decoder module. However, due to the fixed
receptive field of convolutional kernels, U-Net [12] suffers from
extracting multiscale features. Zhao et al. [14] introduce an
effective PPM to capture multiscale features by applying pool-
ing operations at different grids. However, the pooling-based
approach (i.e., PPM) may lose pixel-level fine detail information
because distinct pixels may use the same contextual information.
Chen et al. [15] introduced DeepLabv3+, which utilizes a more
effective ASPP module that deploys multiple parallel filters with
different dilation rates to capture multiscale features without
adding extra computational costs. However, it can only manage
scale variation to some degree. In addition, sparse sampling leads
to spatial information loss, and a larger dilation rate produces
gridding artifacts.

1) Multiscale Feature Learning: The accurate semantic seg-
mentation of urban scene imagery requires the multiscale feature
information of the region of interest. Extracting ground object
features at various scales can help address interclass similarities
and intraclass variances for diverse situations. The AlexNet [4]
stacks filters sequentially and achieves significant performance
gain over traditional methods. VGGNet [5] stacks filters of
smaller kernels to increase the network depth and receptive field.
Although VGGNet provides a more robust multiscale feature
representation than AlexNet, due to stacking filters directly,
AlexNet and VGGNet had a relatively fixed receptive field
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for each layer. Szegedy et al. [7] introduced InceptionNet-v4
with different filter sizes in parallel to increase receptive fields
and InceptionResNetv2 with inception and residual connec-
tions to enhance the efficiency of multiscale feature learning.
SegFormer [16] presents a hierarchical transformer encoder to
extract multiscale features and employs a multilayer perception
(MLP) decoder to aggregate information from different layers.
In urban scene semantic segmentation, Xu et al. [17] proposed a
network to solve the problem of existing backbones in extract-
ing multiscale features due to a large downsampling factor. In
[18], an ensemble learning paradigm is employed to adaptively
fuse the features from different scales and a pointwise convo-
lution method to reduce the parameters while improving the
model’s accuracy. Extracting essential contextual information
about ground objects requires CNN models to process features at
various scales for effective semantic segmentation. In summary,
to adequately utilize the rich spatial information in HR urban
scene images and improve feature extraction’s robustness among
diverse and complex ground scenes, we introduce kernels of
different sizes (i.e., 3 × 3, 5 × 5, and 7 × 7) in our work.

2) Skip Connections: Skip connections were introduced to
solve different problems in different architectures, such as
ResNets [6], for degradation and U-Net [12] for encoder–
decoder architecture to prevent the loss of fine-grained details
(i.e., object boundaries). U-Net++ [13] introduces dense skip
connections to replace the plain skip connections in U-Net to
bridge the semantic gap between encoder–decoder feature maps.
However, due to the skip connections scheme and fixed receptive
field of each layer, it is challenging for both U-Net and U-Net++
to model the global multiscale context for HR urban scene
images. In urban scene semantic segmentation, 2DSegFormer
[19] designed dilated residual connections as skip connections
to further increase the receptive field of deep feature maps.
MAResU-Net [20] redesigned skip connections in U-Net based
on linear attention mechanism and ResNet. MSCA-Net [21]
presents skip connections with atrous convolution to deal with
the segmentation problems of multiscale urban scene images.
MACU-Net [22] introduces skip connections with a channel
attention mechanism to combine the multiscale features. We
found that skip connections are helpful for several reasons in HR
urban scene image segmentation. First, residual connections [6]
allow the network to learn more complex feature mappings and
facilitate faster convergence without being affected by vanishing
gradient problems. Second, skip connections [12] are essential
for encoder–decoder-based architectures as they allow the de-
coder to directly access the feature maps from corresponding
levels of the encoder, thus preserving fine-grained details that
might, otherwise, be lost as the spatial resolution decreases. It
makes U-Net [12] particularly effective for tasks, such as image
segmentation, where precise localization of object boundaries
is essential. In summary, we used a residual connection in MFE
and redesigned kip connections as MLF.

3) Upsampling Methods: CNNs are popular and highly per-
formant choices for dense-level prediction. One commonly re-
quired component in CNNs is to increase the low-resolution
feature maps for network visualization. Interpolation and de-
convolution are the most common upsampling methods for

recovering spatial information from convolution or max-poling
layers. Interpolation upsampling methods include the nearest
neighbor, bicubic, and bilinear interpolation. These methods
lack the “learnable” aspect, blur the images, and aliasing dis-
tortions. Deconvolution upsamples low-resolution images using
learnable kernels while improving upsampling during training.
However, “uneven overlap” can easily occur during deconvo-
lution, meaning that the convolutional kernel operates more in
some places than others, causing checkerboard artifacts. De-
convolution was first proposed in FCN [11] and has been used
in later segmentation models, i.e., U-Net [12]. In contrast to
interpolation and deconvolution, Shi et al. [23] introduced the
parameter and checkerboard artifacts free upsampling method,
i.e., pixel shuffle (PS), also known as subpixel convolution for
single-image super-resolution (SISR), which was later used in
semantic segmentation tasks. PS provides a larger receptive field
to capture more contextual information with minimal loss of
information while maintaining the quality of generated segmen-
tation. In urban scene semantic segmentation, many methods
based on PS have been proposed. Chen et al. [24] proposed
an end-to-end semantic segmentation network by inserting a
shuffling layer in DeepLab architecture. They designed a field-
of-view method to enhance the prediction while using an en-
semble method to improve the model performance. Zhang et al.
[25] proposed a network that simultaneously solves the super-
resolution semantic segmentation and super-resolution image
reconstruction by using low-resolution images to generate an
HR segmentation image. We found that methods having upsam-
pling layers, i.e., deconvolution or bilinear interpolation cause
images to be distorted by checkerboard artifacts. In summary,
the proposed work uses a PS operation in the decoder to improve
the resolution of output feature maps and leverage the advantage
of the MCN in capturing multiscale context. Using PS further
improved the network speed and accuracy while alleviating the
edge blur and artifacts caused by information loss.

B. Visual Attention Mechanism

The attention mechanism can improve the saliency repre-
sentation of important features while suppressing interference
from redundant features. SPOL [26] analyzed the importance
of shallow features and used global average pooling to suppress
background noise. In urban scene semantic segmentation, SCAt-
tNet [27] combines channel and spatial attention mechanisms to
refine the feature map. Zhang et al. [28] proposed a network
to adaptively recalibrate feature responses and simultaneously
aggregate global information along the channel and spatial
dimensions to improve feature representation. Li et al. [29]
propose a dual-channel scale-aware segmentation network with
position and channel attention. PGNet [30] uses transformer-
based architecture to fully leverage the long-range dependencies
and global contextual information to segment objects of varying
sizes. Ding et al. [31] proposed a network that utilizes CNN
encoder and global–local attention-based transformer decoder
to model global and local information. Gao et al. [32] proposed
a network that used a dual-branch encoder based on CNN
transformer to model local and global semantic information and
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Fig. 1. Overview of the proposed segmentation method MCN, including MFE module for backbone network, MLF module as skip connections, and PSD module
as a decoder.

designed a multilayer dense connectivity network as a decoder
to aggregate the dual-branch semantic information. MANet
[33] uses a multiscale strategy and self-attention mechanisms
to aggregate relevant contextual features. ABCNet [34] uses
a spatial path and a contextual path to extract contextual and
fine-grained information to increase the segmentation accuracy
of the network. BIBED-Seg [1] proposed a block-in-block edge
detection network using an attention mechanism. In summary,
an attention mechanism can improve the object region features
while suppressing interference from redundant features. As a
result, we designed MFE and MLF for feature enhancement and
correlation modeling using an attention mechanism.

One of the fundamental concepts underlying these strategies
is the multilevel context to enhance segmentation prediction.
Although these methods can prevent global contextual infor-
mation loss, they are computationally expensive and redundant
while collecting rich and multiscale contextual information. The
following shows that the MCN provides comparable results or
excels on benchmark methods with fewer parameters.

III. METHODOLOGY

Fig. 1 shows MCNs three-module architecture. The first mod-
ule is MFE (see Fig. 2), which takes input from ResNet50,
the backbone network. Initially, MFE utilizes 3 × 3, 5 × 5,
and 7 × 7 convolution kernels to extract feature information at
low, middle, and high levels, respectively. Second, MFE refines
the extracted multiscale features using an attention mechanism
(see Fig. 3), which helps to decrease the influence of redundant
background feature information. Finally, it uses a similarity
function to capture the complementary features by establishing
the correlation among different levels of feature maps. The

second module is MLF (see Fig. 5), which merges the shallow
and deep layers in the encoder–decoder network by using a larger
receptive field and attention mechanism to deal with various
layers simultaneously and improve the multiscale representation
capability at a finer grained level. The third module is PSD
(see Fig. 7), which alleviates the blurry edges and checker-
board artifacts while upsampling with reduced parameters. The
proposed MCN is an end-to-end segmentation network that
uses hierarchical processing to refine feature information and
improve segmentation performance to obtain accurate semantic
segmentation results.

A. MFE Module

In recent years, many efforts have been made to improve the
performance of CNNs from convolutional operations and bottle-
neck layers to more efficient architectures. The most common
way in CNNs to enlarge the receptive field is to stack smaller
kernels than a single larger kernel. According to the theory of
effective receptive field (ERF) [35], ERF is proportion to O(

√
l).

ERF size grows linearly with kernel size k and sublinearly over
the neural network’s layers (depth). Moreover, increasing the
network depth introduces optimization difficulty, where the de-
sign of larger kernels requires fewer layers to obtain larger ERF
and avoids the optimization problems introduced by increasing
the network depth. Therefore, we argue using a single larger
kernel (i.e., 5 × 5 or 7 × 7) rather than stacking smaller kernels.
Unlike natural images, urban scene images usually cover large
areas; therefore, it is essential to consider the context of the
objects in the image when performing semantic segmentation.
Larger kernels can capture more global spatial context by consid-
ering a larger area around each pixel. This allows the network to
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Fig. 2. Structure of MFE.

Fig. 3. Given an intermediate feature map, the operation process of the CAM
is divided into two parts, including average-pooled features and max-pooled
features, to capture both the overall importance and the most discriminative
features of each channel. After pooling, the two 1-D vectors are sent to the
multilayer perceptron network and added to generate 1-D channel attention.
Then, the channel attention is multiplied by the input elements to obtain the
refined feature map.

Fig. 4. Feature maps are selected from the first layer of a trained MCN by
convolutional filters of different sizes. It is indicated that smaller convolutional
filters are more effective at extracting fine structures, such as the sharp corners of
buildings and intricate patterns of vegetation. In comparison, coarse structures
respond to larger filters. (From Top to Bottom) First and second rows demonstrate
the Potsdam and Vaihingen train set, respectively.

consider the relationships between different objects and features
in the scene, which can help reduce interclass similarities. In
addition, urban scene images contain fine-grained details, such
as small objects and textures, that can be difficult to capture
using larger kernels. We found that larger kernels can capture
these details even better while maintaining a larger receptive
field to capture global context, as shown in Fig. 4. To summarize,
extracting essential contextual information about ground objects
requires CNN models to process features at various scales for

effective semantic segmentation. While larger kernels (i.e., 5
× 5 or 7 × 7) can detect coarser features, and smaller kernels
(i.e., 3 × 3) can capture fine-scale details in urban scene images.
Different kernel sizes, such as 3 × 3, 5 × 5, and 7 × 7, can
effectively capture features at various scales and leverage local
and global contexts in urban scene semantic segmentation. Thus,
to adequately utilize the rich spatial information and improve
the robustness of feature extraction among diverse and complex
ground scenes, we introduce larger kernels in our work and
designed MFE, as shown in Fig. 2.

To extract multiscale features from urban scene images for the
input feature map, we use convolution kernels of different sizes,
specifically 3 × 3, 5 × 5, and 7 × 7. In each convolution branch,
we also introduce a 1 × 1 convolution to reduce the number of
channels and control the calculation parameters. This allows us
to efficiently extract multiscale features while minimizing com-
putational cost. Overall, the process for extracting multiscale
features can be described as follows:⎧⎨

⎩
X1 = ϑk=3 (ϑk = 1 (X))
X2 = ϑk=5 (ϑk = 1 (X))
X3 = ϑk=7 (ϑk = 1 (X))

⎫⎬
⎭ (1)

where ϑ(·) denotes the convolution, and k is the size of different
kernels.

At each convolutional layer, a group of filters expresses
neighborhood spatial connectivity patterns along input channels.
These filters are extremely useful in learning edges and a particu-
lar texture in the images, making CNNs produce image represen-
tations that capture hierarchical patterns. These representations
can be strengthened by explicitly modeling the interdependen-
cies of their convolutional feature channels. Channel attention
provides a weight for each channel to enhance those particular
channels, which are essential for feature learning. To improve
the extracted multiscale features and mitigate the influence of
overlapping background feature information, we utilize a chan-
nel attention module (CAM) to learn how to prioritize various
features for calibration. This process of feature calibration is
described as follows:

CA
(
X

′
i

)
= δ (Θ (AP (Xi)) + Θ (MP (Xi))) (2)

where δ represents a sigmoid function, Θ represents an MLP
network, AP represents the average pooling, MP represents
the max pooling, Xi = 1,2,3 represents the three input feature
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maps, and CA(X
′
i = 1,2,3) represents the three generated channel

attention maps.
It is essential to correctly utilize information at various scales

to achieve precise semantic segmentation of urban scene images.
Due to the inherent distinctions between the three branch feature
maps, simply adding or concatenating them could cause more
unnecessary information or data repetition in the final output.
It is, therefore, essential to consider other techniques that can
blend the feature maps in an efficient way while minimizing
these issues. To capture the complementary features of three
branches, we introduce a cosine similarity function that captures
the similarity of objects among different feature maps. The MFE
employs cosine similarity to quantify the relevance of the three
branch feature maps. The obtained similarity scores are then
normalized and used as weights to combine the maps into a
single multiscale representation. This combined representation
is refined and integrated into the final feature vector through
optimization. For three branches of channel attention maps (i.e.,
X

′
1, X

′
2, X

′
3), we introduce the cosine similarity function to

first compute the similarity between each pair of feature maps
representing distinct channels, (X

′
1, X

′
2) and (X

′
1, X

′
3). Next,

we multiply the similarity score with an elementwise product
of the respective feature maps. This process is repeated for all
three branches to create their corresponding feature maps. This
approach allowed us to focus on specific channels and highlight
their importance within the overall feature map. The feature
similarity computation can be expressed as follows:

Z =
X

′
1 ·X ′

2

||X ′
1 ‖∗‖X ′

2||
⊗ X

′
1 ·X ′

3

||X ′
1 ‖∗‖X ′

3||
(3)

where � represents the elementwise multiplication, (·) repre-
sents the dot product, (∗) represents the cross product, and (|| ||)
represents the length of two vectors (X

′
1, X

′
2) and (X

′
1, X

′
3),

respectively.
When a neural network uses different branches to extract

features from an input, the resulting feature maps may have
differences due to variations. This can make it challenging to
completely understand the input by correlating these feature
maps. To overcome this limitation, it is essential to consider these
distinctions between feature maps and find ways to integrate
them more effectively. Otherwise, the accuracy and effectiveness
of the network’s predictions or results may suffer. To address
this issue, a gate mechanism is implemented in this study.
This mechanism aims to optimize similar features and merge
them with feature maps at various scales. The gate unit used
in this research is different from previous work [39], which
usually uses the sigmoid function to restrict the value between
0 and 1. Instead, we employ a ReLU function as it accelerates
the training process of MCN and avoids potential issues with
gradient dispersion

⎧⎨
⎩
X

′′
1 = σ ((Z ⊗X1) +X1)

X
′′
2 = σ ((Z ⊗X2) +X2)

X
′′
3 = σ ((Z ⊗X3) +X3)

⎫⎬
⎭ (4)

where σ(·) represents the ReLU, and � represents the element-
wise multiplication.

For the feature map obtained by different branches, the fusion
feature Xh×w×c

c is obtained by feature concatenation, where
c = 3 · c/4

Xc = concat (X
′′
1 , X

′′
2, X

′′
3). (5)

Convolutional kernels with trainable weights are repeatedly
applied to feature maps to extract new features. During feature
extraction, the input of a layer depends on the weights of the
previous layer. Small changes in image batches or shallow
feature maps accumulate and amplify along the network depth by
making training layers fit these distribution changes rather than
the valuable and actual content. As a result, a neural network
suffers from covariant shift, decreasing performance and train-
ing speed. Batch normalization (BN) can avoid covariant shifts
by normalizing the feature map along the channel direction. BN
keeps the representation capacity of the neural network by re-
translating and rescaling the normalized feature map. Therefore,
we use BN and LReLU to increase the numerical stability and
activate the output nonlinearly. Moreover, the 1 × 1 convolution
is introduced to get Xh×w×c feature map, where c = c

MFE (X) = σ (γ(ϑk = 1 (Xc)) + β (6)

where scaling (γ) and shifting (β) are two trainable parameters
of the BN layer. σ denotes the activation function of LReLU.

A residual network connection is added to achieve constant
training. It takes activation from one layer and feeds it to a layer
far deeper in the network, facilitating the training and learning of
more complex features. Residual connections allow gradients to
flow backward during backpropagation. The performance will
not degrade even if some data are lost during feature extraction,
as it will flow through residual connections during forward
propagation

XE
i = MFE (X) +X (7)

where X
E(h×w×c)
i is the final enhanced feature map at encoder

stages i (i.e., MFE-1, MFE-2, MFE-3, and MFE-4).

B. MLF Module

Features from deeper layers are high in semantic details, while
features from shallow layers are less semantic but contain more
local information that helps in defining object boundaries more
accurately. In U-Net [12] and similar architectures that use plain
skip connections, these deep and shallow features are supervised
directly, pushing the network to learn better representations.
Unfortunately, direct form of supervision does not prove to be
very beneficial for urban scene semantic segmentation due to the
following limitations: First, limited receptive field of shallow
features can lead to less semantic information and introduce
more noise, whereas a larger receptive field can help to get
more accurate segmentation results; second, merging shallow
and deep features through direct concatenation can result in a
large number of parameters and computations where indirect
supervision in which features from different layers are merged
prior to supervision can be beneficial for urban scene semantic
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Fig. 5. Shows the structure of MLF architecture. A multiplicative mechanism correlates the different branches (MFE-1, MFE-1, and MFE-3) that separately
learn representations of the input data. The gradients in one branch can be affected by the performance of other branches, as the error signals propagate through the
network during training. Errors in one branch can be amplified when multiplied by the activations from another branch. This can lead to large gradients, and the
final prediction will be wrong. For instance, different branches, such as MFE-2 and MFE-3, are dependent on MFE-1, which conveys that the different branches
have some level of interaction and interdependence. When MFE-1 learns better representations, it can improve the other branches’ performance, ultimately leading
to more accurate predictions when all the branches are fused together.

Fig. 6. (From Top to Bottom) First and second rows demonstrate the Potsdam and Vaihingen train set, respectively. The figure displays visualizations of input
and output features from three MLF modules, respectively. The input image in each MLF module represents low-, mid-, and high-level features from the MFE
modules, while the output image represents the processed features.

segmentation at a lower computational cost. Despite signifi-
cant advancements made by prior skip connections oriented
approaches; two major challenges remain.

1) Deep Coarse Features: Due to the successive downscal-
ing operations, the feature maps over the past few layers become
severely coarse (i.e., 8 × 8 in ResNet50), resulting in a loss of
spatial resolution. Despite their limited impact on classification
accuracy, these coarse feature maps can significantly affect
object localization. However, when the feature maps are too
coarse, it becomes difficult to precisely localize objects since
their exact position within the image is unclear. Even if the
network correctly classifies an image containing an object, it will
struggle to localize it if the feature maps are too coarse. To tackle
this problem, techniques, such as upsampling or deconvolution,
can be utilized to recover some of the lost spatial information,
allowing for more precise object localization even with coarse
feature maps. However, this comes at the cost of increased com-
putational cost. Therefore, we utilized an alternative upsampling

method (PSD) to recover some of the lost spatial information
better but with reduced computational cost.

2) Shallow and Deep Features: Without additional boundary
information from input data, it is hard to refine objects’ complete
and sharp boundaries. Shallow layers capture low-level features,
such as edges, corners, and textures, making object boundaries
sharper. On the other hand, deeper layers capture higher level
features that are most abstract and semantic, such as object
categories. Thus, effectively combining both shallow and deep
features is critical for achieving precise semantic segmentation
of HR urban scene images. Using an appropriate strategy can
lead to a more effective generation of feature maps, benefiting
both shallow and deep features, just as MLF. Compared with
plain skip connections, we designed MLF (see Fig. 5) as skip
connections, where features of different layers (i.e., MFE-1,
MFE-2, and MFE-3) are merged before the supervision to
produce a single, high-level representation of the input data.
Our approach leverages the strengths of each layer’s features,
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such as shallower layers capturing low-level features (i.e., edges
and textures), middle layers capturing mid-level features (i.e.,
shapes and patterns), and deeper layers capturing high-level
features (i.e., object categories). Combining these learned rep-
resentations from all three MFE layers allows the network to
better segment the image into various semantic classes, as shown
in Fig. 6. Our MLF is helpful in specific scenarios, such as
improved segmentation accuracy, robustness to noise, better
generalization, more flexible design, and reduced computational
complexity. MLF improves the overall network performance by
emphasizing low-level features embedded in shallow layers and
high-level features embedded in deep layers.

For the input feature maps from MFE layers, XE ∈
Rh1×w1×c1 , XE ∈ Rh2×w2×c2 , and XE ∈ Rh3×w3×c3 , three
parallel 3 × 3 convolutions are utilized in a hierarchical
way to achieve X1 ∈ Rh1×w1×c1 , X2 ∈ Rh2×w2×c2 , and X3 ∈
Rh3×w3×c3 with an increased receptive field for subsequent lay-
ers, where h, w, and c represent the height, width, and channels
of feature map, respectively. As mentioned above, the limited
receptive field of shallow features can lead to less semantic
information and introduce more noise. In contrast, a larger
receptive field can better segment larger spatial context and
global information in urban scene images. Therefore, to increase
the receptive field of MFE layers, we utilized three convolutional
filters of size 3 × 3 and hierarchically connected different filters
to improve the multiscale representation ability and variation
of receptive fields at a more granular level to capture details,
as given in (8). Each feature map has a corresponding 3 × 3
convolutional filter ϑ. We denote the output of ϑ by X1, X2,
and X3. With each iteration of the function, the output feature
map’s receptive field can be increased. Each, except for XE ∈
Rh1×w1×c1 , can inherit features from all preceding feature maps.
Concretely, XE ∈ Rh1×w1×c1 continues to propagate forward
to X1. X1 is upsampled to the same resolution and added with
the following feature map XE ∈ Rh2×w2×c2 , and then fed into
ϑ. So, ϑ obtains the information of both XE ∈ Rh1×w1×c1 and
XE ∈ Rh2×w2×c2 , and so on

⎧⎨
⎩

X1 = σ
(
γ
(
ϑk = 3

(
XE

))
+ β

)
X2 = σ(γ(ϑk=3

(
X1 +XE

)
) + β)

X3 = σ(γ(ϑk=3

(
X2 +XE

)
) + β)

⎫⎬
⎭ . (8)

The presence of noise in feature data can severely hinder the
accuracy of predictive models. Our approach differs from [10],
which only focuses on one layer at a time. Instead, we deal
with multiple layers simultaneously in a unique way. Before
fusing features from different layers, we deploy CAM to filter
out irrelevant features across various layers simultaneously and
improve the quality of the processed data. By leveraging the
interdependence of features, channel attention allows for effi-
cient information processing and enhanced learning capabilities
within the network. Our findings suggest that this method is
highly effective in improving the accuracy of predictive mod-
eling, mainly when dealing with complex data, such as urban
scene images.

For all three feature maps, CAM is exploited to achieve X1 ∈
Rh1×w1×c1 , X2 ∈ Rh2×w2×c2 , and X3 ∈ Rh3×w3×c3 with the

same shape R1×c given as follows:

CA (X ′
i) = δ (Θ (AP (Xi)) + Θ (MP (Xi))) (9)

where δ represents the sigmoid function, Θ represents the mul-
tilayer perceptron network, AP represents the average pooling,
MP represents the max-pooling, Xi = 1,2,3 represents the three
input feature maps, and CA(X

′
i = 1,2,3) represents the three

generated channel attention maps.
After CAM, we employ three parallel 1 × 1 convolutions to

achieve X
′′
1, X

′′
2, and X

′′
3. As a result, a latent representation

Z = X
′′
1 ·X ′′

2 ·X ′′
3 is obtained using elementwise multipli-

cation, where c′ = 256. The latent representation obtained
through elementwise multiplication results in a coupled feature
representation. As a result, we can conduct channel attention for
several layers simultaneously

Z = ϑk=1

(
X

′
1

)
⊗ ϑk = 1

(
X

′
2

)
⊗ ϑk = 1

(
X

′
3

)
(10)

where � represents the elementwise multiplication.
Finally, the latent representation is multiplied by X1, X2,

and X3. Based on the latent representation, our MLF performs
channel attention for each relevant layer via the multiplicative
operation. The variation of receptive fields and concatenation
strategy can enhance the efficiency of convolutions in processing
features. This approach allows for efficient multilayer feature
refinement, thereby improving the performance of the proposed
network ⎧⎨

⎩
XF

1 = X1 ⊗ (ϑk=1 (Z))
XF

2 = X2 ⊗ (ϑk=1 (Z))
XF

3 = X3 ⊗ (ϑk=1 (Z))

⎫⎬
⎭ (11)

where X
F (h×w×c)
i is the final fused feature map at skip con-

nections’ stages i (i.e., MLF-1, MLF-2, and MLF-3).

C. PSD Module

PS [23] was initially introduced for SISR, where we aim to
train a CNN that generates super-resolved images at the original
resolution. Without adding extra parameters and computation
costs, PS provides another way to fit semantic segmentation for
large-scale urban scene images under memory limits. On this
basis (see Fig. 7), we design the PSD module to leverage the
advantage of the MCN in capturing multiscale information. PSD
upsamples by rearranging pixels of the feature map and reduc-
ing the number of channels by four times, which significantly
reduces parameters of the subsequent convolution, followed by a
composite function comprising three different operations (3× 3,
BN, and PReLU) and concatenation with corresponding MLF
layers from the skip connections path. To achieve dense-level
prediction, high-level features generated at the last encoder stage
MFE_4 are upsampled and concatenated with skip connections
stage MLF_3. Take PSD_3 as an example; Fig. 1 shows how to
generate feature maps. First, refined feature maps of correspond-
ing skip connections path MLF_3 are concatenated with decoder
stage PSD_3. Next, a PS operation with a scaling factor r = 2 is
applied. It rearranges pixels of feature map of the shape Xh×w×r2

to an upsampled feature map of shape Xrh×rw×c/r2 without the
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Fig. 7. Structure of PSD.

loss of information and reduced number of parameters

X̄
2h×2w×c/4

De(s) = PS
(
Xh×w×c

De(s−1) ⊕Xh×w×c
MLF(s)

)
(12)

where PS is a pixel shuffle operator that rearranges pixels in
a periodic shuffling manner to upscale the features map. By
retaining feature information, PS can better alleviate the edge
blur and artifacts caused by information loss. Xh×w×c

MLF(s) is the

current MLF stage, Xh×w×c
De(s−1) is the previous decoder stage, and

X̄
2h×2w×c/4

De(s) is an intermediate upsampled feature map with PS
at stage s.

Upsampled feature maps are further convolved with one stan-
dard convolution 3 × 3 to lessen the aliasing distortion, and
nonlinearity is added to generate the final feature map at the
decoder stage s

X
2h×2w×c/4
De(s) = σ(γ(X̄

2h×2w×c/4
De(s) ∗ ϑk = 1) + β) (13)

where X2h×2w×c/4
De(s) is the final generated feature map at decoder

stages s (i.e., PSD-1, PSD-2, PSD-3, and PSD-4).γ andβ are two
trainable parameters of the BN layer. σ denotes the activation
function of PReLU.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Semantic Segmentation Datasets

The performance of MCN is assessed using three publicly
available datasets, Potsdam, Vaihingen, and DeepGlobe.

1) Potsdam Dataset: The Potsdam dataset consists of 38
HR aerial images, each with an average size of 6000 × 6000
pixels and a ground sampling distance (GSD) of 5 cm. Potsdam
RGB images are annotated with six distinct landscape classes:
impervious surface (road), building, low vegetation, trees, car,
and clutter, where clutter class is not considered in the assess-
ment. For Potsdam, we split images into training, validation, and
testing sets with 23, 1, and 14 images, respectively.

2) Vaihingen Dataset: The Vaihingen dataset consists of 33
HR aerial images, each with an average size of 2494 × 2064
pixels and a GSD of 9 cm. Vaihingen IRRG images are annotated
with six distinct landscape classes: impervious surface (road),
building, low vegetation, trees, car, and clutter, where clutter
class is not considered in the assessment. For Vaihingen, we
split images into training, validation, and testing sets with 15, 1,
and 17 images, respectively.

Fig. 8. Sample images from land-cover classification datasets, Potsdam, Vai-
hingen, and DeepGlobe, respectively.

3) DeepGlobe Dataset: The DeepGlobe dataset consists of
803 HR satellite images, each with an average size of 2448
× 2448 pixels and a GSD of 50 cm pixels. These images are
annotated with seven distinct landscape classes: forest land,
urban land, barren land, agriculture land, rangeland, water, and
unknown, where unknown class is not considered in the assess-
ment. Following [36], we split images into training, validation,
and testing sets with 454, 207, and 142 images, respectively.

B. Evaluation Metrics

We use the following assessment metrics to evaluate the
performance MCN, overall accuracy (OA), mean intersection
over union (mIoU), and mean F1-score (mF1), which can be
defined as follows:

OA =
TP

TP + FP + TN + FN
(14)

IoU =
TP

TP + FN + FP
(15)

F1 = 2× precision × recall
precision + recall

(16)

precision =
TP

TP + FP
, recall =

TP
TP + FN

(17)

where TP, TN, FP, and FN denote the true positive, true negative,
false positive, and false negative, respectively.
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TABLE I
ABLATION STUDIES OF MFE, MLF, AND PSD ON ISPRS DATASETS

TABLE II
MODEL COMPLEXITY OF MFE, MLF, AND PSD MODULES ON ISPRS DATASETS

C. Implementation Details

The experiments were conducted on a single NVIDIA RTX
3090 GPU, utilizing the PyTorch framework. We chose the
U-Net [12] as the baseline model and employed ResNet50
[6] as the backbone network for the MCN. In our work, we
utilized only the first three bottleneck layers of the pretrained
ResNet50 to reduce the number of trainable parameters. For
optimization, we employed the Adam optimizer with AMSGrad
[37], using a weight decay of 2 × 10−5. In addition, we applied
polynomial decay (L) to 1− cur_iter/max_iter)0.9, where the
maximum number of iterations was set to 108. We also set
2×L for all bias parameters. The initial learning rate was set
to 8.5 × 10−5/�2 for the ISPRS dataset and 8.5 × 10−4/�2 for
the DeepGlobe dataset. We implemented a stepwise schedule
method to decrease the learning rate and improve the training
process. For the ISPRS dataset, we reduced the learning rate
by a factor of 0.85 after every 15 epochs. Similarly, for the
DeepGlobe dataset, we employed a reduction in the learning
rate by a factor of 0.85 after every 4 epochs. During training and
validation, we used randomly sampled 5000 patches of size 256
× 256 from the ISPRS and DeepGlobe datasets. These patches
were augmented by mirroring and flipping, each with a 50%
probability. To improve the predictions, we employed test time
augmentation (TTA) by averaging the predictions of overlapping
TTA regions. To handle the problem of imbalanced data in the
ISPRS dataset, we utilized a cross-entropy loss function that
incorporated median frequency balancing weights, as described
by the equation. Conversely, the DeepGlobe dataset employed
a cross-entropy loss function

L = − 1

N

N∑
n=1

C∑
c=1

l(n)c log
(
p(n)c

)
Wc (18)

Wc =
median({fc|c ∈ C})

fc
(19)

where N denotes the number of samples in a minibatch, Wc is
the class weight, fc is the pixel frequency, pc(n) is the probability
of sample n, Ic(n) is the label of sample n in class c, and C is set
for all classes.

D. Ablation Study

To verify the effectiveness of MCN, we conducted exten-
sive ablation experiments on ISPRS datasets using different
settings. Tables I and II present the ablation experiments of
different modules of MCN, while Tables III and IV present
the ablation experiments of MCN using different upsampling
methods.

1) Effectiveness of MFE Module: MFE is designed for ex-
tracting rich spatial information among various and complex
urban objects while suppressing background noise and enabling
correlation among different levels of feature maps. Table I
presents that compared with the baseline, MFE module increases
the mF1 by 3.28/4.02%, OA by 3.22/2.20%, and mIoU by
5.20/5.79% on ISPRS datasets, respectively. Fig. 9 shows the
visualization results of MFE module on ISPRS datasets, which
produced the overall better segmentation results, but there are
instances where some pixels are misclassified, such as low veg
category.

2) Effectiveness of MLF Module: MLF is designed as skip
connections to prevent the loss of fine- and coarse-grained
details at shallower and deeper layers. MLF makes the utmost
low-level features embedded in shallow layers and high-level
features embedded in deep layers by improving the overall
network’s performance. Table I presents that compared with the
baseline, MLF module increases the mF1 by 2.35/4.24%, OA
by 2.48/2.12%, and mIoU by 4.00/6.52% on ISPRS datasets, re-
spectively. Furthermore, when comparing MFE+MLF with the
MLF module, there was a further improvement of 0.24/1.12%
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TABLE III
ABLATION STUDIES OF MCN WITH DECONVOLUTION, BILINEAR, AND PSD-BASED UPSAMPLING METHODS ON ISPRS DATASETS

TABLE IV
MODEL COMPLEXITY OF MCN WITH DECONVOLUTION, BILINEAR, AND PSD-BASED UPSAMPLING METHODS ON ISPRS DATASETS

Fig. 9. Qualitative comparisons of MFE, MLF, and PSD modules. (From Top to Bottom) First and second rows demonstrate the Potsdam and Vaihingen test
dataset, respectively.

in mF1, 0.24/0.80% in OA, and 1.12/1.81% in mIoU on IS-
PRS datasets, respectively. Fig. 9 shows the visualization re-
sults of MLF and MFE+MLF modules on ISPRS datasets.
Compared with the baseline method, MLF demonstrates
noticeable enhancements in segmentation results. Similarly,
MFE+MLF significantly improves over MLF by effectively
reducing the number of misclassified pixels while generating
sharp boundaries.

3) Effectiveness of PSD Module: PSD is designed for the
decoder to improve the resolution of the feature maps and fully
fuse feature information of different receptive fields while better
fixing blurry edges and checkerboard artifacts with the reduced
number of parameters. Table I presents that compared with the
baseline, PSD module increases the mF1 by 1.42/3.05%, OA
by 1.59/1.57%, and mIoU by 1.77/4.57% on ISPRS datasets,
respectively. Compared with MFE+MLF and PSD modules,
MFE+MLF+PSD further improves the semantic segmentation
accuracy, with mF1, OA, and mIoU reaching 92.85/89.25%,
93.51/90.18%, and 86.81/80.86% on ISPRS datasets, respec-
tively. Fig. 9 shows the visualization results of PSD and
MFE+MLF+PSD modules on ISPRS datasets. Compared with
the baseline method, PSD demonstrates noticeable enhance-
ments in segmentation results. Similarly, MFE+MLF+PSD
exhibits significant improvements over MFE+MLF and PSD
by classifying the correct number of classes while reducing the
checkerboard artifacts and blurry edges.

4) MCN With Different Upsampling Methods: Deconvolu-
tion and bilinear are the most common upsampling methods
for recovering spatial information from convolution or max-
poling layers. In contrast to both upsampling techniques, we de-
signed PSD based on subpixel convolution, which can better fix
blurry edges and checkerboard artifacts with fewer parameters
while further improving network speed and accuracy. Table III
presents the quantitative results of ISPRS datasets, respectively.
Compared with deconvolution, MCN with PSD improved the
segmentation accuracy in terms of mF1 by 1.36/0.87%, OA by
2.02/0.68%, and mIoU by 2.39/1.43%. While compared with
bilinear, MCN with PSD improved the segmentation accuracy
in terms of mF1 by 0.87/0.29%, OA by 1.48/0.19%, and mIoU
by 1.51/0.47%. Fig. 10 shows that MCN with PSD can better
alleviate the edge blur and artifacts caused by information loss
than other upsampling methods.

5) Model Complexity: Considering that the complexity of
the model is significant to assess the metric of a framework,
we report the training time for each epoch, inference time,
parameters, flops, and model size of different modules and
upsampling methods in Tables II and IV, which demonstrates
that the design of MCN is computationally efficient. Table II
presents the model complexity of MCN using different modules.
Tables I and II present that compared with the baseline, MCN
outperforms ISPRS datasets in terms of mF1 by 4.39/5.43%,
OA by 4.94/3.19%, and mIoU by 7.14/8.07% while reducing
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Fig. 10. Qualitative comparisons of MCN with deconvolution, bilinear, and PSD-based upsampling methods. (From Left to Right) row demonstrates the Potsdam
and Vaihingen test dataset, respectively.

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON POTSDAM TEST SET

the number of parameters by 66% and model size by 65%.
Table IV presents the model complexity of MCN using different
upsampling methods. These results indicate that compared with
deconvolution, MCN with PSD reduces the number of parame-
ters and model size by 18%.

Compared with deconvolution, MCN with PSD has the same
flops but is 7 s faster and requires less training time of 11 s.
Compared with bilinear, MCN with PSD is 11 s faster and
reduces the number of parameters by 13%, flops by 20%, model
size by 16%, and training time of 4.

E. Comparison Methods

To conduct a quantitative comparison, we have carefully
selected a comprehensive set of benchmark methods that are
specifically designed for semantic segmentation of urban scene
imagery. Note that all experimental findings are provided by the
source code or the author in Tables V–VIII

1) CNN-Based Context Aggregation Networks: Collabora-
tive network with PS layer (ColNet) [25], class perception
network (C-PNet) [38], ensemble full CNN-based network
(EFCNet-UNet) [18], one-shot neural architecture search for

a backbone network (RSBNet) [39], feature-selection network
with hypersphere embedding (FSHRNet) [17], and deep feature
enhancement method for land cover (EG-UNet) [40].

2) CNN-Based Attentional Networks: Lightweight attention
network (LiANet) [41], segmentation network with spatial and
channel attention (SCAttNet) [27], dual-channel scale-aware
network with position and channel attention (DSPCANet) [29],
attentive bilateral contextual network (ABCNet) [34], multi-
attention network (MANet) [33], and squeeze and excitation
residual network (SERNet) [28].

3) Transformer and With or Without CNN-Based Context
Enhancement Networks: Fusing swin transformer and CNN-
based network (STransFuse) [32], wide-context transformer net-
work (WiCoNet) [31], positioning guidance network (PGNet)
[30], enhancing multiscale representations with transformer
network (EMRT) [42], distilling segmenters from CNNs and
transformers (DSCT) [43], a billion-scale foundation model
(UperNet) [44], and foreground saliency enhancement network
(RSSFormer) [45].

4) Segmentation Models Based on Redesigned Skip
Connections: Multistage attention network (MAResU-Net)
[20], semantic segmentation network using multiscale skip
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Fig. 11. Visualization results of different land-cover classification methods on ISPRS datasets. (From Left to Right) First four and second four columns demonstrate
the Potsdam and Vaihingen test dataset, respectively.

connection (MSCA-Net) [21], segmentation network for fine-
resolution remotely sensed images (MACU-Net) [22] and 2-D
transformer model (2DsegFormer) [19].

5) Segmentation Models Designed for Ultrahigh-Resolution
Images (UHR): Collaborative global–local network (GLNet)
[36], progressive semantic segmentation network (MagNet)
[45], integrating shallow and deep features network (ISDNet)
[46], patch proposal network (PPN) [47], image segmentation
via locality-aware contextual correlation network (LCC) [48],
and one model is enough for image semantic segmentation
(OME) [49].

F. Comparative Study

1) Results on Potsdam Dataset: Table V presents the experi-
mental results of different methods on test sets of Potsdam. Our
model on Potsdam outperforms the existing land-cover classi-
fication methods with an OA of 93.51%, mF1 of 92.85%, and
mIoU of 86.81%. Regarding details, our model ranks first in the
F1-score for (building and low veg) and second for (imperious
surface and trees) subclasses. Fig. 11 shows the visualization
results of MANet [33], MAResUNet [20], ABCNet [34], EG-
UNet [40], U-Net [12], and proposed method MCN on test
set of Potsdam. Compared with popular semantic segmentation
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TABLE VI
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THE VAIHINGEN TEST SET

TABLE VII
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON DEEPGLOBE TEST SET

methods, we can observe that MCN can better handle situations
with a shadow or complex texture and generate complete shapes
of objects, such as buildings, trees, cars, and imperious surfaces
with clear boundary separating objects.

2) Results on Vaihingen Dataset: Table VI presents the ex-
perimental results of different methods on test sets of Vaihingen.
Our model on Vaihingen outperforms the existing land-cover
classification methods with an OA of 90.18%, mF1 of 89.25%,
and MIoU of 80.86%. Regarding details, our model ranks first
in the F1-score for (low veg and car), and second for (building
and imperious surface) subclasses. MCN has better capability
in handling highly imbalanced classes, such as a car with an
increased receptive field in Table VI. Notably, on Vaihingen,
the F1-score for the car class is 87.40%. The visualization
results, as shown in Fig. 11, compare the performance of MCN
with five other semantic segmentation methods (MANet [33],
MAResNet [20], ABCNet [34], EG-UNet [40], and U-Net [12]),
on the test set of the Vaihingen. The findings indicate that MCN
outperforms these methods in handling challenging scenarios in-
volving shadows or intricate textures, generating precise shapes
for objects, such as buildings, trees, low veg, and roads, and
accurately distinguishing between objects with clear boundaries
(i.e., cars).

3) Results on DeepGlobe Dataset: Tables VII and VIII
present the experimental results of different methods on test

TABLE VIII
QUANTITATIVE COMPARISON OF DIFFERENT UHR METHODS ON DEEPGLOBE

TEST SET

sets of DeepGlobe. Our model on DeepGlobe outperforms
the existing land-cover classification methods with an mIoU
of 73.73%, OA of 90.56%, and mF1 of 89.60%. Regarding
details, our model ranks first in the IoU score for all subclasses
except the barren class. Fig. 12 shows the visualization results
of MANet [33], MAResUNet [20], ABCNet [34], EG-UNet
[40], U-Net [12], and proposed method MCN on the test set of
DeepGlobe. DeepGlobe consists of classes with similar visual
features and irregular shapes, making their classification chal-
lenging. However, our MCN accurately distinguishes between
these land-cover categories, resulting in precise segmentation
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Fig. 12. Visualization results of different land-cover classification methods on the DeepGlobe test dataset.

TABLE IX
ISPRS PERFORMANCE COMPARISON OF VARIOUS METHODS USING RESNET50

BACKBONE

results. These visualized results further convincingly validate
the effectiveness of our MCN on satellite images.

4) Discussion: Our model consistently outperforms CNN
and transformer-based networks in terms of OA, mF1, and mIoU
on well-established benchmark datasets, such as ISPRS and
DeepGlobe, demonstrating competitive performance despite
utilizing fewer parameters. Using MFE, MCN can effectively
capture local and global contextual information. MFE enables
the extraction and encoding of features from multiple levels of
abstraction, allowing the model to perceive intricate details and
holistic scene understanding. Using MLF, MCN can effectively
combine features extracted from different levels of abstraction
to improve the accuracy and performance of the model. Fusing
these features leads to the generation of sharper boundaries,
distinguishing between different objects or classes in an image.
In addition, our model benefits from PSD. Incorporating PSD
enhances the model’s ability to generate precise and artifact-free
segmentations while minimizing computational requirements.

5) ISPRS Datasets Performance Comparison: Table IX
presents a comparison of various methods that employ the
ResNet50 backbone. The comparison is based on two key
aspects: overall accuracy and the number of parameters.
Compared with these methods, MCN achieved an OA of
93.51% on Potsdam and 90.18% on Vaihingen datasets with
19.56 million parameters, maintaining both the number of
parameters and high accuracy simultaneously.

V. CONCLUSION

This article proposes a novel MCN with three fundamental
modules to solve the interclass similarities, intraclass variations,
scale-related inaccuracies, and high computational complexity
issues. MFE is introduced as a feature enhancement module
for the backbone network to identify the local and global con-
text of ground objects while suppressing the background noise
and capturing complementary features by enabling correlation
among different levels of feature maps. MLF is introduced as
skip connections where features from different MFE layers are
merged before the supervision to produce a single high-level
representation of the input data by leveraging the strength of each
layer in capturing different levels of features. PSD is introduced
as a decoder, which can better fix blurry edges and checkerboard
artifacts with fewer parameters while improving network speed
and accuracy. Ablation studies and comparative experiments
conducted on the ISPRS datasets demonstrate the effectiveness
of the proposed method. On all three Potsdam, Vaihingen, and
DeepGlobe, MCN achieves the best performance compared
with the existing land-cover classification models with fewer
parameters.
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