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Shallow-Water Bathymetry Retrieval Based on an
Improved Deep Learning Method Using GF-6
Multispectral Imagery in Nanshan Port Waters

Wei Shen , Muyin Chen , Zhongqiang Wu , Member, IEEE, and Jiaqi Wang

Abstract—In a seaport, accurate bathymetric maps are valuable
for both environmental and economic reasons. One of the main
complementary methods for measuring shallow-water depth is the
retrieval of the water depth by satellite. The results of the water
depth inversion are greatly influenced by factors related to water
quality. The proposed updated quasi-analysis algorithm (UQAA)
allows for the calculation of water quality factors, and their spatial
distribution characteristic strongly correlates with the trend in
water depth distribution. By using satellite-derived bathymetry,
these parameters can be used in the model training to extract the
underwater terrain. This article proposes the idea of combining
the UQAA with a convolutional neural network (CNN) based
deep learning framework to retrieve the depth of the water and
automatically extract the underwater terrain. We compare four
different existing machine learning algorithms as baselines, using
GF-6 multispectral remote-sensing images and in situ depth data in
Nanshan Port as a priori validation set. We find that the result of the
CNN model using the UQAA is better than other baselines, where
the root-mean-square error was down to 0.55 m, the mean relative
error was 6.63%, and the R2 was 0.92. The developed method,
which introduces the water quality factors containing geographic
information as feature quantities, provides a new direction for
further improvement.

Index Terms—Bathymetry, convolutional neural networks
(CNNs), deep learning, GF-6, inherent optical properties (IOPs).

I. INTRODUCTION

ACCURATE bathymetric mapping plays a crucial role
in environmental conservation, resource utilization, and
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efficient port management. Shallow-water depth information is
essential for informed decision making and supports various hu-
man activities, contributing to both environmental sustainability
and economic prosperity in seaport regions [1].

Mapping shallow-water depth in port areas is of utmost impor-
tance for various maritime activities. Traditionally, sound nav-
igation and ranging (SONAR) and light detection and ranging
(LiDAR) have been employed for this purpose. However, these
methods have limitations in terms of cost and spatial cover-
age [2]. SONAR technology exhibits high operational efficiency
but is limited in its applicability for large-scale usage due to
its high cost. On the other hand, LiDAR technology offers a
cost-effective solution for bathymetric applications, albeit with
relatively lower operational efficiency compared at the same
time.

The implementation of satellite-derived bathymetry (SDB)
revolutionizes the mapping of shallow-water depths in port
areas, facilitating improved navigation safety, port management,
and coastal zone planning. Its cost effectiveness and spatial-
extensive nature make it an attractive choice for monitoring and
managing shallow-water areas. It has made great technological
advances since the launch of artificial satellites and the rapid
development of computer science. It has become one of the main
complementary means for shallow-water depth measurement
due to the advantages of repeatable observation, wide view, and
low cost.

Different wavelengths of light have different reflectances
when penetrating water. Based on this principle, remote-sensing
satellite data can be utilized to retrieve the water depth. The tradi-
tional SDB methods are generally categorized as physics-based
methods and empirical methods. The first method focuses on
the interaction of light in water from a theoretical perspective
[3], [4], whereas the second method investigates the empirical
relationship between the spectral radiation patterns and the op-
tical parameters. By using a logarithmic conversion ratio model
to retrieve the water depth, it is found to reduce the impact of
different sediments in the shallow sea to a certain extent [5].
As we have mentioned, most traditional sounding algorithms do
not consider the spatial correlation between sounding points and
surrounding pixels. The linear relationship is not sufficient to in-
vestigate and extend the mathematical and physical relationship
between the features and the labels.

Although building a universal algorithm to explain the rela-
tionship between multidimensional spectral value and in situ
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data is challenging, statistical methods can be employed to
investigate the numerical model and search for the optimal solu-
tion [6]. Various machine learning algorithms have been applied
to the field of extraction of water depth and underwater terrain
inversion. A support vector machine was employed to estimate
water depth at two different ports in the cities of Luarca and
Candás in the Principality of Asturias (Spain) [7]. Furthermore,
there have been instances where these technologies have been
applied to the port of China [8]. Through these studies, it is
shown that, at this time, the empirical-based method is more
applicable than the physic-based method in water areas with
turbid and complex water environments, such as a port.

Deep learning frameworks have also been employed to im-
prove the accuracy of inversion. Owing to their capabilities in
image processing and feature analysis [9], [10], [11], deep learn-
ing techniques have gained significant attention in various Earth
observation and remote-sensing applications. Chen et al. [12],
[13] developed a deep learning model that integrated local aggre-
gation and global attention mechanisms, which could effectively
extract the spectral and spatial features of hyperspectral images
by using a spectral-induced aligned superpixel segmentation
technique and achieve high-accuracy classification results. The
authors in [14] and [15] proposed a graph convolutional network
for hyperspectral image classification, which can model the
relations between samples using graph structures and improve
the spatial–spectral feature representations. A cross-channel
reconstruction module was introduced for multimodal remote-
sensing data classification, which can exchange information
between modalities by reconstruction strategy and learn more
compact fusion representations [16]. A novel deep learning
called grid network was proposed to rethink the feature extrac-
tion of hyperspectral images from anisotropic perspectives and
to fully explore the spectral and spatial features in multistage
and multipath processes [17].

In the context of port surveys, the wavelet neural network
model was developed utilizing the spectral reflectance values
obtained from top-of-atmosphere computations. The utilization
of this neural network model demonstrated its effectiveness as
a powerful tool in the field [18]. In the study, a convolutional
neural network (CNN) was utilized to perform depth estimation
in the Devil’s Lake area (North Dakota, USA). The task of depth
estimation was approached as a classification problem, leverag-
ing the capabilities of the CNN architecture [19]. Furthermore,
the accurate estimation of coastal water depth in the turbid water
was achieved using Sentinel-2 Level 2A imagery, particularly in
regions characterized by clear seawater [8]. Al Najar et al. [20]
demonstrated a promising direction for the applicability of deep
learning models in the field of marine surveying. Although they
both use the deep learning framework, they are limited by the
spectral information as the training data, which does not give
full play to the huge potential of deep learning, and the results
obtained still have room for improvement. Introducing water
factors to improve the results was less studied before.

Many existing studies indicate that inherent optical properties
(IOPs) can be referred as another candidate factor to improve
SDB accuracy [21]. The value of IOPs exhibits significant
variations with water depth, establishing a strong correlation

between the spatial distribution of water quality and the
distribution of water depth. Yang et al. [22] introduced IOPs
in turbid waters to retrieve the euphotic zone depth in inland
waters using a modified quasi-analytical algorithm (QAA).
Zhang et al. [23] proposed a linear model known as the inherent
optical parameter linear model (IOPIM) to estimate shallow-
water depth using high-spatial-resolution multispectral images.
The findings from the IOPIM study demonstrated the potential of
using inherent optical parameters (IOPs) to enhance the accuracy
of water depth estimation. Huang et al. [24] proposed an updated
quasi-analytical algorithm (UQAA) and verified its feasibility.
Wu et al. [25] calculated that the UQAA was raised to calculate
the phytoplankton pigment absorption coefficient and the
chlorophyll-a concentration, functioning as the characteristic
factors of water depth estimation.

In this study, a novel framework was proposed that combines
the UQAA with CNN. The authors aim to improve the accuracy
and efficiency of the water depth inversion by combining the
UQAA with a CNN-based deep learning framework. The UQAA
can calculate the water quality factors that affect the water depth,
and the CNN can automatically extract the underwater terrain
features from the satellite images. The proposed model was
compared with other four classical ML methods (i.e., the back-
propagation neural network (BP-NN) [26], random forest (RF)
[27], eXtreme Gradient Boosting (XGBoost) [28], and support
vector regression (SVR) [7]) to verify the bathymetric ability.
The results determine that the proposed framework outperforms
other baseline cases. The concept of incorporating additional
features beyond optical channels as supplementary training data
can be extended to other geographical regions or scenarios that
demand precise bathymetric mapping, including applications
in coastal erosion monitoring, coral reef preservation, marine
habitat mapping, and underwater archaeology. This approach
holds the potential for enhancing the accuracy and applicability
of bathymetric estimation in various environmental settings.

II. DATA AND METHODS

The main body of the study consists of two steps: Data
preprocessing and model training (see Fig. 1).

In the data preprocessing part, the remote-sensing data used in
this study were acquired from the GF-6 wide-field-view (WFV)
multispectral optical satellite, while the in situ measurement
data were obtained from SONAR measurements. To enhance the
accuracy of bathymetry estimation, the remote-sensing data un-
derwent preprocessing steps, including radiation correction and
flare removal. The estimation of Chlorophyll-a concentration
(C) and the absorption coefficient of colored dissolved organic
matter (CDOM) at 440 nm [ag(440)] were conducted using the
UQAA. Subsequently, bathymetric points were extracted from
in situ SONAR data, serving as a priori information. All data
were stored in floating-point format. Through resampling, the
Rrs values for the blue, green, and red bands, along with the two
water quality factors, were matched with control points derived
from GF-6 images within a specified window size at each point.

In the model training part, the collected data were uti-
lized in three distinct training methods, depending on specific
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Fig. 1. General workflow of the proposed system by using different ap-
proaches.

Fig. 2. Study area at Nanshan port waters area.

conditions. Some SONAR data that were not incorporated into
the network were reserved for validation purposes, enabling the
evaluation of accuracy. Evaluation metrics, such as root-mean-
square error (RMSE), mean relative error (MRE), and R2 were
employed to assess the accuracy of the bathymetry estimation
in comparison with other baselines.

A. Data Preprocessing

1) Study Area: The article selects optical shallow-water ar-
eas of Nanshan Port within Sanya, Hainan province as the study
area. The geolocation of the study area is shown in Fig. 2.
The water quality in this area is clear, the seabed topography
changes gently, and a small variety of bottom sediments. The
water environmental conditions of Nanshan Port are typically
characterized by turbidity. However, incorporating water qual-
ity factors can enhance the accuracy of bathymetric inversion.
Therefore, the sea area of Nanshan Port was carefully selected
to test the feasibility and accuracy of our proposed model. We
conducted a qualitative evaluation of the variable bathymetry
inversion model specifically for this region.

2) GF-6 WFV Data: We obtained GF-6 WFV images from
the land observation satellite service [http://www.sasclouds.
com/chinese/normal/ (accessed on July 17, 2021)]. Information
on the GF-6 satellite is shown in Table I.

TABLE I
GF-6 IMAGE BAND INFORMATION

A resampling of the input GF image is done to match the
same image dimension of the in situ data. The geographical
location of each point is defined by its longitude and latitude.
From the longitude and latitude, a coordinate projection is made
using the WGS84 ellipsoid using geospatial data abstraction
library package in Python. We reduce the spatial positioning
error generated by projecting the measured points onto the image
by minimizing E as much as possible

E =
∑
n=1

(lon− x)2 +
∑
n = 1

(lat− y)2 (1)

a) Image preprocessing: The GF-6 image was radiometric
calibrated using the FLAASH algorithm, while the glint effects
were eliminated using Hedley’s method [29], [30]. The state
of the water surface will seriously affect the bathymetry of the
shallow sea terrain. When there are wind waves in the scene,
the solar flare on the water surface turns out to be very serious.
It is necessary to eliminate the flare in the image such that the
accuracy of water depth inversion can be improved. In this study,
we employ Hedley’s method to exploit the linear correlation
between the reflectance values of the near-infrared band and
other bands, aiming to mitigate the flare effects.

The image was resampled to a spatial resolution of 5 m by
bilinear interpolation [31], the same as the in situ data. Finally,
the corresponding reflectance data were taken as a part of the
features.

To reduce information redundancy and the dimension of data,
the optimum index factor (OIF) is often used to derive the
optimal band feature combination [32]. The expression is given
as follows:

ROIF =
S1 + S2 + S3

R12 +R13 +R23
(2)

where S1, S2, and S3 represent the standard deviations of any
three wavebands, and R12, R13, and R23 represent the correlation
coefficients between any three selected bands.

The basic principle behind this method is that the amount
of information contained in an image is directly proportional
to its standard deviation. A higher standard deviation indicates
a larger amount of information. Conversely, the independence

http://www.sasclouds.com/chinese/normal/
http://www.sasclouds.com/chinese/normal/
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Fig. 3. OIFs of the GF-6 image.

of an image is inversely proportional to the correlation coeffi-
cient between its spectral bands. A lower correlation coefficient
indicates a lower degree of information redundancy and better
independence. This method combines the interband correlations
and the information content of individual band images to achieve
widespread application.

The fifth and sixth bands of the GF-6 image are the red
edge bands, which are mainly used for the agricultural survey.
They are not suitable for underwater information detection. We
calculated the OIFs of the remaining six bands in Fig. 3. The first,
second, and third bands of the GF-6 image are blue, green, and
red bands, which were input into the training model. Moreover,
these bands are like other satellites, which are better suited to
verify the applicability of the UQAA.

b) Updated QAA: The QAA is a semianalytical model
based on the bio-optical model proposed by Zhao et al. [26].
Regarding multispectral satellites on the market that only have
three–four wavebands of valid ocean data, it is meaningful to
limit the number of unknown parameters of the QAA as it
reduces the impact of incorrect data on the model. It is shown by
Mateo-Perez et al. [27] that the absorption coefficient of chloro-
phyll at 440 nm and the backscattering coefficients at 550 nm
can be presented in terms of the chlorophyll-a concentration C
as follows:

bbp (λ0 = 550) = 0.0111∗C0.62 (3)

aphy(λ1 = 440) = 0.06∗C0.65. (4)

In clear water, we have the following:

bbp (λ) = bbp (λ0) (λ0/λ)
Y (Y= 0.67875) (5)

b (λ) = bw (λ) + bbp (λ) (6)

ag (λ) = ag (λ1) ∗exp (−0.015∗ (λ − λ1 )) (7)

aphy (λ) = [a0 (λ) + a1 (λ) ln (aphy(λ1))] aphy(λ1) (8)

a (λ) = aw (λ) + aphy (λ) + ag (λ) (9)

u (λ) =
b (λ)

a (λ) + b (λ)
(10)

λ0 = 550, λ1 = 440. (11)

Therefore, we can construct an equation equal to u(λ) by
using ag(440) and chlorophyll-a concentration C.

Fig. 4. Derivation process of UQAA.

Note that in the QAA, we have

rrs (λ) =
Rrs (λ)

0.52 + 1.7Rrs (λ)
(12)

u (λ) =
−g0 +

[
g20 + 4g1rrs (λ)

]1/2
2g1

. (13)

Introducing Rrs from multispectral images, we can represent
the below-surface remote-sensing reflectance (rrs) and construct
an equation set. In this set, g0 and g1 are the constants given by
0.08945 and 0.1247, respectively. The values a0 and a1 were
from [33] by employing the interpolation function in MATLAB.
The quantity a represents the total absorption coefficient of the
water body, aphy represents the absorption coefficient of chloro-
phyll, ag represents the absorption coefficient of CDOM, which
is represented by the ag(440), aw represents the absorption co-
efficient of pure water, which is obtained directly, bw represents
the backscattering coefficient of pure water, which is obtained
directly as well, bbp represents the backscattering coefficient,
which is represented by bbp (λ0 = 550), and λ represents the
central wavelength of input bands.

Hypothetically, the difference between the actual value of
subsurface Rrs of optical in deep water and the predicted value
of the semianalytical method tends to be fairly slight. Hence,
the optimum values of ag(440) and C can be solved by using the
Levenberg–Marquardt method (see Fig. 4).

Fig. 5(a) and (b) shows that the water quality factors of
Nanshan Port strongly correlate with the trend of water depth
distribution. The nearshore, especially the port, is a high-value
area of absorption coefficient, which is reflected in Fig. 5.
When the mixing dilution effect of seawater is more obvious,
the absorption coefficient value is smaller, so the absorption
coefficient of deep water will be smaller [34]. The relative
relationship between the absorption coefficient and the measured
water depth is depicted in Fig. 5(c) and (d). The regression
line, represented by a thick red line, is shown to align with the
theoretically inferred distribution pattern. The results of UQAA
contain obvious data information, which may be introduced into
the detection of underwater topography.
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Fig. 5. Distribution and correlation regression plots of water quality factors
in the port.

Fig. 6. Distribution of measured water depth in Nanshan port.

3) SONAR Data: From July 11, 2021 to July 13, 2021, we
used the wide band multibeam system (WBMS) produced by
NORBIT of Norway to survey the water depth in the experi-
mental area in a shipborne way. The acquired water depth data
exhibit a substantial quantity and a high level of precision. The
plane positioning accuracy is better than 0.5 m, and the depth
measurement accuracy is better than 0.2 m. We extracted a total
of approximately 200 000 measurement depth point cloud data
with a resolution of 5 m to generate the training and testing
sets required for the study. Nanshan Port contains a vast water
area and complex boundaries. To enhance the robustness of the
experiment, another set of 50 control points is selected from the
nautical chart (http://webapp.navionics.com) as a supplement
to the whole dataset. We took 5000 water depth points from the
measured water depth dataset as samples. Among those samples,
4500 points were selected as training set and the rest 500 points
were selected as test set. In Fig. 6, we show the distribution of
the measured sample points used in this experiment. Each point
in Fig. 6 represents the mean value of the water depth control
points within a range. The datum used for the water depth here
is the theoretical lowest tidal level in the experimental area. This
is in line with the local chart datum. To provide input images in

deep learning networks, the entire dataset should have the same
dimensions and spatial resolution as the in situ dataset.

B. Model Training

The subsequent model is constructed based on the flowchart,
as depicted in Fig. 1, and it is categorized into two types of
comparison approaches and the one proposed approach.

1) Train Model:
a) Proposed approach: CNN-based deep learning frame-

work: CNN models have advantages in image processing, as
well as statistical regression analysis. These networks can min-
imize an objective function and are trained to approximate a
mapping between inputs and outputs. Here, we designed a two
dimensions CNN-based deep learning framework to retrieve the
water depth. To train the model, we registered the in situ control
point with the pixel value in the multispectral images. The center
pixel is viewed as weighted averages of nearby known pixels.
This method considered the impact of adjacent pixels on water
depth retrieval through 2-D CNN to better realize underwater
terrain extraction.

We show in Fig. 7 the structure of the CNN-based deep
learning framework. The convolutional kernel of our proposed
model is used to extend the channels to extract more features.
Pooling is used to reduce the width and height of the input data to
extract important information. The rectified linear unit (ReLu)
function serves as the activation function between the convolu-
tional layer and the pooling layer, which is plotted in Fig. 7, with
a yellow dashed line. Although it exhibits a linear appearance
and behavior, this activation function is in fact nonlinear. Neural
networks utilizing this activation function effectively mitigate
the issue of vanishing gradients during the training process. The
expression is given as follows:

f(x) = max(0,x) (14)

where x represents the input-independent variable and f (x)
represents the function value.

Unlike the conventional activation Sigmoid function, the
ReLu function is less likely to cause gradient explosion or gradi-
ent disappearance. The whole operation process is optimized as
the cost of the neural network is reduced by the ReLu function
as well.

We used a conventional CNN-based framework with the input
layer being five neurons with UQAA and three neurons without
UQAA. We chose the architecture from ResNet20 [35], which
is a small version of a residual architecture achieving state-of-
the-art performance on many computer vision tasks. The water
depth points extracted from in situ measurements were used as a
priori bathymetric points. A 7 × 7 subimage was extracted from
the multispectral image with a priori bathymetric point as the
center. We introduced the input feature of size 5(or 3) × 7 × 7
(bands × width × height) into the model. The prior water depth
was used as a label for model learning. The two dimensions
CNN model has five layers, which contain 64, 128, 256, 256,
and 512 neurons, respectively. To reduce the gradient descent,
the ReLU function was used as the activation function of the

http://webapp.navionics.com
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Fig. 7. CNN model structure.

hidden layers. Finally, we predicted the water depth by using
the linear activation function.

In the study, we chose the strategy called minibatch to it-
eratively train the model [36], which helps to improve the
operation efficiency of our proposed model. By dividing the
training set into equal subsets as per a certain number randomly,
these subsets are referred to as minibatch. This method not only
solved the low operation efficiency issue but also improved the
convergence speed of the network.

In the proposed network model, a for loop is adopted to
traverse every minibatch data, making a gradient descent for
each batch. We then update the slope parameter and intercept
parameter in backpropagation. We calculated the network’s
prediction error via the loss function over every batch of the
training set. Following the calculation of the gradient of the
loss function, an optimizer was introduced for updating the
different parameters of the network to reduce the loss of the
model. We trained the network by using Adam [37] (β1 = 0.9
and β2 = 0.999), which is a standard CNN optimization method
based on the stochastic gradient descent. It iterates continuously.
When the iteration (epoch = 60 and minibatch size = 20) stops,
the loss function converges at the same time, and the training of
the model is finished.

b) Baseline: Simple BP-NN: The simple BP-NN, as a
traditional artificial neural network, mimics the learning process
of neurons from feedback. The simple network includes only one
hidden layer. The interconnection between adjacent neurons is
balanced, involving weights and bias tuned during the process
of backward propagation.

We implemented the model by using Python. In the simple
BP-NN, the only hidden layer was constructed involving 300
nodes, and the transfer function was the hyperbolic tangent
(tanh) function. The optimizer was Adam, with a learning rate
of 0.05, and the StepLR was selected as the training scheduler.
Moreover, the maximum number of training, learning rate, and
momentum coefficient were given by 1000, 0.05, and 0.9, re-
spectively. Following the preposing procedures, the data were
imputed into the model with bathymetric retrieval computer
configuration.

c) Baseline: RF: In this integrated supervised learning
model, multiple predicted outcomes are calculated, and the

prediction results are studied simultaneously to improve the
prediction accuracy. Self-help sampling is performed in each
decision tree, and error estimation is performed by using the
sample data outside the bag. The variables are randomly chosen
when the decision tree is generated.

In the RF regressor, the training data contained five features
(Rrs of red/green and blue bands) with UQAA and three features
(Rrs of red/green and blue bands) without UQAA. We describe
the setting of the RF algorithm as follows. The detailed con-
figurations included 1000 decision trees (ntree), where the max
depth of each tree was 50.

d) Baseline: XGBoost: XGBoost is based on the gradient
boosting decision tree. It carries out the second-order Taylor
expansion of the loss function by using the lifting learning algo-
rithm. To avoid overfitting, we constructed the GridSearchCV
function from the sklearn package’s model_selection module in
Python. By giving a value interval, we performed the search in
sequence until the best combination of parameters (eta, gamma,
max_depth, and n_estimators) was achieved.

Serving as an integrated learning model, the learning rate was
0.05. The maximum depth of regressors was set as 3, and the
number of estimators was given by 500.

e) Baseline: SVR: SVR is a type of generalized linear
classifier that performs binary classification of data with an
optional supervised learning method. It can also be applied
to nonlinear situations. Functional regression is realized by
constructing decision functions in high-dimensional space. It
is often employed to generate some multidimensional small
sample regression models. In this article, radial basis function
(RBF) was selected as the kernel method for regression.

The RBF was given as the kernel function searching for the
optimal solution. We imported the Standscaler function from the
sklearn package’s preprocessing module in Python to solve the
problem that the dimensions of dependent variables are different
and cannot be compared.

2) Model Evaluation: The depth estimation accuracy of all
models can be calculated by using the following errors:

MRE =

(
1

n

n∑
i=1

∣∣∣hi − ĥi

∣∣∣ /hi

)
∗100% (15)
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RMSE =

(
n∑

i=1

(
hi − ĥi

)2
/n

)1/2

(16)

R2 = 1−
∑n

i=1

(
hi − ĥi

)2
∑n

i=1

(
hi − ĥi

)2 (17)

where hi represents the measured depth, ĥ represents the esti-
mated depth, and n represents the number of input data.

We performed the accuracy evaluation based on three sta-
tistical parameters, including MRE and RMSE. Lower MRE
and RMSE values indicate a higher accuracy for bathymetric
retrieval. RMSE quantifies the absolute error between predicted
and observed values, while MRE captures the relative deviation
or bias. Both metrics provide valuable insights into the perfor-
mance and quality of a model’s predictions. R2 was also used to
describe the model-fitting effect. A high R2 value reflects good
fitting effect of the model.

The relative bathymetric error (RBE) is adopted to capture the
error at a specific position. The absolute value |RBE| is given by

|RBE|=
(∣∣∣hi − ĥi

∣∣∣ /hi

)
∗100%. (18)

III. RESULTS

To evaluate the prediction results, the assessment was carried
out through two parallel experiments, and the bathymetry map-
ping was conducted in Section IV. These two experiments are
titled “Water Depth Estimation Accuracy in Different Sizes of
Dataset” and “Water Depth Estimation Accuracy in Different
Datasets.”

The first experiment aims to validate the optimization capa-
bility of the proposed UQAA across various dataset sizes and
ensure that it does not result in adverse effects. The second
experiment aims to demonstrate the superiority of the authors’
proposed method over other approaches, establishing its poten-
tial for further investigation and broader application.

A. Water Depth Estimation Accuracy in Different Sizes of
Dataset

In this article, the water depth control points collected
by acoustic-sounding instruments were selected as the priori
dataset. It is more accurate and more timely compared with
spaceborne laser bathymetry. This is due to the fact that sound
waves are transmitted from the transducer to the seabed and
return at a very fast speed. They are not easy to be lost. We can
also use sonar data to test the consistency of water depth. With
the help of traditional acoustic instruments as data validation,
underwater terrain extraction is more conducive. In order to
deeply explore the influence of UQAA on water depth estimation
accuracy, different sizes are selected as training sets, which are
displayed in Fig. 8, as the X-axis. We observed from Fig. 8
that the accuracy with UQAA was greater than that without
it in almost every model. The incorporation of the improved
quantitative algorithm for aquatic applications (UQAA) enables

Fig. 8. Bathymetric retrieval accuracies of different algorithms are compared.

subsequent improvements in the obtained outcomes while en-
suring the mitigation of any adverse impacts.

We found that the RMSEs and MREs of the BP-NN and the
RF algorithm changed slightly. Along with UQAA, the RMSEs
and MREs of the XGBoost algorithm and SVR algorithm have
declined significantly overall. This is especially true when the
number of points exceeds 6000. The accuracy of CNN was
boosted, obviously, given the input of UQAA results. The RMSE
and MRE of the CNN model decreased dramatically, where the
RSME decreased by 23 cm and the MRE decreased by 5%.
We may draw a preliminary conclusion that the UQAA results
could be employed as training data for depth inversion accuracy
to optimize the model.

To simulate what happens when the model encounters deep
water anomalies, we added 50 deep water points extracted from
the chart to the training set of 5000 measurement points (see
Section III-C). When compared with other models that exhibited
fluctuations in accuracy with a dataset of 5000 points, the CNN
model demonstrated superior accuracy. This suggests that the
model possesses robust outlier handling capabilities and effec-
tive predictive abilities.
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TABLE II
COMPARISON OF DIFFERENT WATER DEPTHS AND MACHINE LEARNING

METHODS

B. Water Depth Estimation Accuracy With UQAA

We utilized 500 test points with normal distribution for the
test in Table II and Fig. 9. In Table II, general differences were
observed between RMSE without and with UQAA for different
machine learning models. They are 0.12 m (CNN), 0.03 m (BP),
0.01 m (RF), 0.03 m (XGBoost), and 0.23 m (SVR). As in
the previous results, the CNN and the RF algorithm performed
better in the overall test points. The XGBoost model came next.
The simple BP-NN and the SVR algorithm turned out to have
poor performance in this set of comparisons. Except for the
section of 3–6 m, the CNN model had lower RMSE and MRE
than the RF algorithm. Since the training points are normally
distributed, the accuracy at both ends of the data appears to be
generally poor, lacking training. Remarkably, at the end of the
validation dataset, where water depth was deeper than 9 m, the
CNN model error was still controlled below 1 m. We note in
Fig. 9 that the red regression line is plotted on the scatter plot
of correlation, compared with the black reference line. Clearly,
Fig. 9(c) and (d) indicates the result of the BP-NN, and Fig. 9(i)
and (j) indicates the result of the SVR algorithm. There appeared
to be a large gap between the regression line and the reference
line. Relatively, there was also a small gap that cannot be ignored
between the regression line and the reference line in Fig. 9(g)
and (h), indicating the result of the XGBoost algorithm. The
gaps in Fig. 9(a) and (b), and (e) and (f) are small enough to
be ignored. Their R2 values were both over 0.9, showing good
fitting ability.

IV. DISCUSSION

The environmental conditions of Nanshan Port are character-
ized by turbid water. While direct application of UQAA may not
be feasible, the derived water quality factors have the potential to
enhance the accuracy of bathymetric inversion. This empirical
model serves as a means to verify the practical applicability of
the computed water quality factors for optimizing bathymetric
inversion. Many factors could influence the inversion results

Fig. 9. Correlation between the in situ depths and the water depth estimation
results based on different algorithms.

in the depth of variable algorithms. The obtained water quality
factors demonstrated their reliability for the study, as they exhib-
ited strong spatial distribution characteristics that were closely
correlated with the trend of water depth distribution.

In our two previous experiments, we have demonstrated
the robustness of the UQAA method after undergoing specific
optimizations, which ensures that it does not yield negative
impacts on the overall results. Additionally, our observations
have clearly indicated that CNN-based deep learning statistical



8558 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE III
CONTRACT EXPERIMENT OF DIFFERENT KERNEL SIZES

models possess enhanced prediction and inversion capabilities,
particularly when they incorporate more features compared with
the traditional machine learning methods.

Moreover, it is crucial to acknowledge that the selection
of model hyperparameters and the potential errors introduced
during the experiment have a discernible impact on the accuracy
of water depth retrieval. Furthermore, we have explored how
the proposed method can be effectively applied in practical
scenarios.

In this section, we will delve into the specific factors that
contribute to variations in inversion results, shedding light on
their implications and potential implications for future research
and applications. Additionally, we will visualize the bathymetry
results to demonstrate the practical feasibility of our proposed
approach.

Our research aims to provide a comprehensive understanding
of the factors influencing water depth retrieval accuracy, guiding
the development of more robust and reliable methodologies. By
addressing these challenges and refining the approach, we seek
to enhance the application of our proposed method in diverse
geographic regions and scenarios. Through collaboration with
fellow researchers and experts, we aspire to advance the field
of water depth estimation and contribute to the sustainable
management of coastal environments and marine resources.

A. Design of Model Superparameters

In our comparative experiment, the superparameters of the
machine model, including the BP-NN, RF, XGBoost, and SVR
algorithm, were represented by the optimal parameters retrieved
through the grid search approach [28]. The best results were
taken as the comparison group. It is essential to select the
convolution kernel size before model training. In Table III, we
show different sizes relevant to the relationship between kernel
size and model precision. Except for the size of 1× 1, R2 of other
models maintained a relatively high level for the training set or
validation set. The result shows that the CNN model can achieve
the lowest RMSE and MRE with a kernel size of 5 × 5 pixels.
Usually, there would be some error in convolution computation
when the kernel size is too small or too large [38].

B. Comparative Analysis of Water Depth Estimation
Algorithms With the Introduction of Water Quality Factors

Similarly, following the BOOSTING integration concept
[39], the XGBoost algorithm’s overall RMSE was comparable to

the RF algorithm. However, the MRE was higher in the XGBoost
algorithm.

In contrast, when considering the RMSE and MRE of the
CNN model, the accuracy of the RF and XGBoost algorithms
without UQAA appeared to be higher. Nevertheless, when incor-
porating UQAA results, the CNN model demonstrated marked
improvement in terms of numerical values, suggesting enhanced
accuracy.

Interestingly, both the RF and XGBoost algorithms exhib-
ited consistent RMSE and MRE values, with or without the
input of UQAA results. The RMSE initially decreased and then
stabilized within the range of 0.5–0.8 m. The MRE fluctuated
between 6% and 10%.

When dealing with a limited number of calibration points
in practical applications, the results obtained for water depth
retrieval were also noteworthy. The accuracy of the BP-NN and
CNN models started to increase in the dataset containing 1000–
2000 points, and the improvement became more evident after
introducing UQAA. The CNN model showed better accuracy,
particularly with less than 1500 input points, and this was further
enhanced with the inclusion of UQAA results. The influence of
different training sets on the overall results is expected, and it is
worth noting that the variable training algorithm with UQAA
demonstrated higher accuracy compared with the algorithm
without UQAA.

We demonstrated the superiority of the CNN model with
UQAA results across different training set sizes, highlighting
its potential and efficacy for water depth estimation.

C. Error Analysis of SDB and In Situ Measurement

The bathymetry error comes from the GF-6 WFV image and
the field data provided by the multibeam sonar. First, the impact
of water surface anomalies on the overall inversion results can-
not be completely removed, although preprocessing operations,
including the sunlight correction, have been performed for the
GF-6 WFV image. Second, the spatial resolution of the GF-6
satellite is 16 m, whereas the spatial resolution of the multibeam
sonar measurement is only 0.5 m. This yields errors in matching
water depth points with image pixel points without considering
positioning errors [40]. In addition, the quality factors of a water
body are derived by analyzing the Rrs of the water surface
combined with the empirical coefficient. This indicates that there
could be some errors in areas under complex water conditions.
Third, it is difficult to synchronize field measurements with other
remote-sensing data. It is conducive to model construction and
accuracy evaluation by taking the in situ measurement data as
prior data. However, since it is difficult to synchronize in the time
dimension, inevitably, there will be accuracy errors between the
inversion value and true value.

To address these challenges, Hong et al. [41] proposed a
novel spectral mixture model to address spectral variability for
hyperspectral unmixing, which is the problem of estimating the
abundance maps of different materials from hyperspectral im-
agery. Spectral variability refers to the variations of spectral sig-
natures of the same material due to various factors. The proposed
model overcomes the limitations of the classical linear mixing
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model, which assumes that the spectral signatures are fixed and
known. The model models the main spectral variability (i.e.,
scaling factors) separately by using an endmember dictionary,
which contains the spectral signatures of different materials. It
then models the other spectral variabilities by using a spectral
variability dictionary, which contains the deviations from the
endmember dictionary. The model applies a data-driven learning
strategy to learn both dictionaries from the hyperspectral data,
by using a low-coherence prior knowledge, which assumes that
the atoms of the two dictionaries are not similar to each other.
The model also estimates the abundance maps simultaneously by
using a reconstruction strategy, which minimizes the difference
between the observed data and the model output. The article
claims that the model can achieve higher accuracy and lower
errors than the state-of-the-art methods on synthetic and real
datasets by effectively reducing the spectral variability and
capturing the spatial–spectral features of the hyperspectral data.

We believe that the ALMM method is relevant and effective
for our research, and we plan to explore the possibility of
incorporating it into our framework to further optimize the data
quality and obtain better inversion results in the future. We
expect that by using the ALMM method, we can reduce the
errors caused by spectral variability and improve the accuracy
and robustness of our method.

D. Spatial Distribution of RBEs

The spatial distribution of RBEs reveals the direction of
improving inversion accuracy and the difference in retrieval
results under different algorithms. We show in Fig. 10(a), (c),
and (e) the red symbols for the absolute RBEs, which are greater
than 30%, yellow symbols for the absolute RBEs, which are in
20%–30%, light blue symbols for the absolute RBEs, which are
in 10%–20% interval, and dark blue symbols for the absolute
RBEs, which are less than 10%. In Fig. 10(a) and (c), we
calculated the distribution of absolute RBEs by the CNN model
with UQAA and without UQAA. Without UQAA, the number
of points in absolute RBEs over 10% (color light blue, red, and
yellow) area increased. We observed from Fig. 10(b) and (d) that
there was a correlation distribution map between absolute RBEs
and real water depth. In the trained models, the high point density
area is between 5 and 7 m, whereas absolute RBEs were mostly
lower than 10%. Moreover, the CNN model with UQAA results
has more concentrated areas of high point density between
5 and 7 m. The corresponding absolute RBE was less than 5%. In
Fig. 10(a) and (c), we observed that the distribution of both maps
was similar, especially in absolute RBEs above 10% region. The
accuracy of northeast part was lower than that of the other parts.
Regarding remote-sensing sounding, the overestimation often
occurred in the shallow area near the port. The underestimation
always occurred in the deep area away from the port [8]. This
phenomenon was in line with the result of Fig. 10(a) and (c).
However, it was relatively improved in favor of UQAA results.

To verify the universality of the model, another dataset of 5000
points was introduced into the CNN model for validation. The
result is shown in Fig. 10(e). Although the spatial distribution of
Fig. 10(e) from the new 5000 points showed more points of high

Fig. 10. Spatial distribution of RBEs and correlation distribution with different
algorithms and different dataset. (a) and (b) were with UQAA. (c) and (d) were
without UQAA input. (e) and (f) was with another data set of 5000 points.

absolute RBE, they had the same overall trends of distribution.
Given that a part of the points was input to train the model
in Fig. 10(a), it was expected that Fig. 10(a) had lower errors
than Fig. 10(e), and there were many points with high point
density over the line of 10% RBE, as shown in Fig. 10(f). In
Fig. 10(e), we observed little difference between the results
produced by the two datasets since the error points were mainly
concentrated in shallow-water areas. Different sample points
influenced the result, but they had a small impact on the result
of space distribution. Multidimensional data input with spatial
information, such as UQAA results, showed a greater impact
on the model inversion effect compared with similar data from
different sets.

E. Bathymetry Maps of Models

To figure out how well this method performs in practical
applications, we introduced large-scale images with no a priori
data into three previously trained models in Fig. 11. We observed
significant visual differences between the results of the CNN
and the other two models. The CNN model showed a relatively
shallow depth distribution, which is close to the actual situation.

1) Bathymetry With Priori Data: From priori data, despite
the actual presence of relatively deep water near the port, the
depth estimation obtained from the CNN model showed an un-
expectedly higher value. This discrepancy highlights a drawback
associated with the CNN model. However, it is important to
note that both the RF and XGBoost algorithms exhibited similar
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Fig. 11. Bathymetry maps at a large spatial scale. (a) Was the RF algorithm
with UQAA. (b) Was the XGBoost algorithm with UQAA. (c) Was the CNN
model with UQAA. (d) Was from nautical chart. (e) Was from NORBIT system.

spatial patterns, with a tendency toward deeper water depths near
the port as well. The average water depth of the CNN model in
a deep water area was about 7 m, which was close to the chart
data, as displayed in Fig. 11(d) and (e). We show in Fig. 11(d),
acquired from the nautical chart, the gentle variation of water
depth distribution, which is more like the map of the CNN model.

In Fig. 11(d), there is almost no water area near Nanshan
Port that exceeds 10 m, except for an artificial channel in the
middle. Machine learning models based on the mathematical and
statistical principles have poor learning of outlier water depth.
This phenomenon becomes apparent in the maps generated by
the RF and XGBoost algorithms, leading to an overestimation
of the overall water depths, surpassing the actual values. In
contrast, the performance of the CNN model reveals the presence
of the waterway, although its depth is underestimated compared
with the measured values. However, it is worth noting that the
overall depth of the waterway aligns more closely with the actual
value at the same time.

2) Bathymetry Without Priori Data: To further validate the
predictive power of the model for no-prior data, it was found
that there was an estuary outside the measured data area in the
north part of Fig. 11(d). It can be set as a standard to measure the
prediction ability of the model in an unknown area. In Fig. 11(a),
the water depth in this area was incorrect. The estuary can be
displayed in Fig. 11(b) and (c).

RMSE is an important quantitative index to measure the
accuracy of water depth inversion. However, RMSE is greatly
impacted by the distribution of validation points. In areas lacking
accurate validation data, it can only be verified by comparing
the nautical chart. Although the CNN model has some deviation
in the inversion of localized high values, it still shows a strong
prediction ability and can be used in the actual thematic products.

V. CONCLUSION

In this article, we proposed the idea of combining a UQAA
with a CNN-based deep learning framework to estimate the

water depth and extract underwater terrain data automatically.
By using the UQAA, a map of water quality factors was drawn
in Fig. 6. This was strongly related to the bottom brightness
implying the water depth information. We extracted the bathy-
metric points from the in situ measured data by the WBMS
system to train the CNN model with preprocessed GF-6 images
and derived water quality factors. We considered four classic
methods as baselines. We also discussed and evaluated the
accuracy of bathymetry for different training sets and different
algorithms.

To verify the performance of the proposed method, we com-
pared the inversion data results and image results with the vali-
dation data. They had been divided before and had no input into
model training. Our comparison indicated that the CNN model
with UQAA can outperform all the baselines with or without
UQAA input, with the RMSE being 0.55, the MRE being 6.63%,
and the R2 being 0.93 when the number of training set was 5000.
In general, when the number of training points was between 1000
and 10 000, the results of bathymetry with UQAA results were
better than those without UQAA results. The accuracy of water
depth retrieval, especially in our proposed CNN model, can be
improved by considering the spatial distribution and numerical
analysis of the water quality parameters.

Moreover, we analyzed the spatial distribution of errors be-
tween the estimated depth and the measured depth. We found
that introducing UQAA results as feature data can decrease the
errors in the shallow area near the port. The inversion feasibility
of the CNN model with UQAA was tested in areas lacking
accurate verification data as well. Generally speaking, in actual
surveying and mapping, we pay more attention to the accuracy
of the results. Considering the accuracy advantages and growth
potential brought by deep learning, applying deep learning mod-
els to bathymetry is of great research value. Moreover, due to
experimental conditions, we can only use the GPU of our laptop
for inversion calculations. If we use a server cluster, we can
further reduce the time cost of deep learning.

For future research, more optical parameters obtained through
QAA could be inputted into deep learning neural network model
and applied to remote-sensing images with higher spatial resolu-
tion. These retrieval results could be applied to port management
and underwater terrain acquisition. Moreover, the following
directions could be explored for further improvement.

1) Other types of remote-sensing data, such as thermal in-
frared, microwave, or LiDAR, could be investigated to
complement the optical data and provide more informa-
tion for water depth estimation and underwater terrain
extraction.

2) The effects of different environmental factors, such as
water turbidity, sun glint, cloud cover, or wave height,
could be examined on the accuracy and robustness of
the proposed method, and adaptive strategies could be
developed to cope with these challenges.

3) The CNN-based deep learning framework and the UQAA
could be optimized by using more advanced network
architectures, loss functions, regularization techniques, or
data augmentation methods to enhance the feature extrac-
tion and fusion capabilities of the method.
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4) The proposed method could be applied to other regions
or scenarios that require accurate bathymetric maps, such
as coastal erosion monitoring, coral reef conservation,
marine habitat mapping, or underwater archaeology.

REFERENCES

[1] S. J. Purkis et al., “High-resolution habitat and bathymetry maps for 65,000
sq. km of Earth’s remotest coral reefs,” Coral Reefs, vol. 38, pp. 467–488,
2019, doi: 10.1007/s00338-019-01802-y.

[2] J. Horta, A. Pacheco, D. Moura, and Ó. Ferreira, “Can recreational
echosounder-Chartplotter systems be used to perform accurate nearshore
bathymetric surveys?,” Ocean Dyn., vol. 64, no. 11, pp. 1555–1567, 2014,
doi: 10.1007/s10236-014-0773-y.

[3] J. Hedley, C. Roelfsema, and S. Phinn, “Efficient radiative transfer
model inversion for remote sensing applications,” Remote Sens. Environ.,
vol. 113, no. 11, pp. 2527–2532, 2009, doi: 10.1016/j.rse.2009.07.008.

[4] A. Dekker et al., “Intercomparison of shallow water bathymetry, hydro-
optics, and benthos mapping techniques in Australian and Caribbean
coastal environments,” Limnol. Oceanogr. Methods, vol. 9, no. 9,
pp. 396–425, 2011, doi: 10.4319/lom.2011.9.396.

[5] I. Caballero, R. Stumpf, and A. Meredith, “Preliminary assessment of
turbidity and chlorophyll impact on bathymetry derived from Sentinel-2A
and Sentinel-3A satellites in South Florida,” Remote Sens., vol. 11, no. 6,
2019, Art. no. 645, doi: 10.3390/rs11060645.

[6] T. Sagawa, Y. Yamashita, T. Okumura, and T. Yamanokuchi, “Satel-
lite derived bathymetry using machine learning and multi-temporal
satellite images,” Remote Sens., vol. 11, no. 10, 2019, Art. no. 1155,
doi: 10.3390/rs11101155.

[7] V. Mateo-Perez, M. Corral-Bobadilla, F. Ortega-Fernandez, and E. P.
Vergara-Gonzalez, “Port bathymetry mapping using support vector ma-
chine technique and sentinel-2 satellite imagery,” Remote Sens., vol. 12,
no. 13, Jul. 2020, Art. no. 2069, doi: 10.3390/rs12132069.

[8] J. Zhong, J. Sun, Z. L. Lai, and Y. Song, “Nearshore bathymetry from
ICESat-2 LiDAR and sentinel-2 imagery datasets using deep learning
approach,” Remote Sens., vol. 14, no. 17, Sep. 2022, Art. no. 4229,
doi: 10.3390/rs14174229.

[9] T. Hoeser, F. Bachofer, and C. Kuenzer, “Object detection and image seg-
mentation with deep learning on Earth observation data: A review—Part II:
Applications,” Remote Sens., vol. 12, no. 18, Sep. 2020, Art. no. 3053,
doi: 10.3390/rs12183053.

[10] T. Hoeser and C. Kuenzer, “Object detection and image segmentation with
deep learning on Earth observation data: A review—Part I: Evolution and
recent trends,” Remote Sens., vol. 12, no. 10, May 2020, Art. no. 1667,
doi: 10.3390/rs12101667.

[11] L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, and B. A. Johnson, “Deep
learning in remote sensing applications: A meta-analysis and review,”
ISPRS J. Photogramm. Remote Sens., vol. 152, pp. 166–177, 2019,
doi: 10.1016/j.isprsjprs.2019.04.015.

[12] Z. Chen, G. Wu, H. Gao, Y. Ding, D. Hong, and B. Zhang, “Local
aggregation and global attention network for hyperspectral image clas-
sification with spectral-induced aligned superpixel segmentation,” Expert
Syst. Appl., vol. 232, 2023, Art. no. 120828.

[13] Z. Chen, D. Hong, and H. Gao, “Grid network: Feature extraction
in anisotropic perspective for hyperspectral image classification,” IEEE
Geosci. Remote Sens. Lett., vol. 20, Jul. 2023, Art. no. 5507105,
doi: 10.1109/LGRS.2023.3297612.

[14] D. Hong, L. Gao, J. Yao, B. Zhang, A. Plaza, and J. Chanussot, “Graph con-
volutional networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 59, no. 7, pp. 5966–5978, Jul. 2021.

[15] X. Cao, X. Fu, C. Xu, and D. Meng, “Deep spatial-spectral
global reasoning network for hyperspectral image denoising,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Apr. 2021, Art. no. 5504714,
doi: 10.1109/TGRS.2021.3069241.

[16] X. Wu, D. Hong, and J. Chanussot, “Convolutional neural net-
works for multimodal remote sensing data classification,” IEEE
Trans. Geosci. Remote Sens., vol. 60, Nov. 2021, Art. no. 5517010,
doi: 10.1109/TGRS.2021.3124913.

[17] Z. Chen et al., “Global to local: A hierarchical detection algorithm for
hyperspectral image target detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, Dec. 2022, Art. no. 5544915, doi: 10.1109/TGRS.2022.3225902.

[18] M. El-Diasty, “Satellite-based bathymetric modeling using a wavelet
network mode,” ISPRS Int. J. Geo-Inf., vol. 8, no. 9, Sep. 2019, Art. no. 405,
doi: 10.3390/ijgi8090405.

[19] B. Wilson, N. C. Kurian, A. Singh, and A. Sethi, “Satellite-derived
bathymetry using deep convolutional neural network,” in Proc. IEEE Int.
Geosci. Remote Sens. Symp., 2020, pp. 2280–2283.

[20] M. Al Najar et al., “Coastal bathymetry estimation from sentinel-2 satel-
lite imagery: Comparing deep learning and physics-based approaches,”
Remote Sens., vol. 14, no. 5, 2022, Art. no. 1196, doi: 10.3390/rs14051196.

[21] B. Chen, Y. Yang, D. Xu, and E. Huang, “A dual band algorithm for
shallow water depth retrieval from high spatial resolution imagery with no
ground truth,” ISPRS J. Photogramm. Remote Sens., vol. 151, pp. 1–13,
2019.

[22] W. Yang, B. Matsushita, K. Yoshimura, J. Chen, and T. Fukushima, “A
modified semianalytical algorithm for remotely estimating euphotic zone
depth in turbid inland waters,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 8, no. 4, pp. 1545–1554, Apr. 2015, doi: 10.1109/JS-
TARS.2015.2415853.

[23] X. Zhang, Y. Ma, and J. Zhang, “Shallow water bathymetry based on
inherent optical properties using high spatial resolution multispectral
imagery,” Remote Sens., vol. 12, no. 18, 2020, Art. no. 3027.

[24] R. Huang, K.-F. Yu, Y. Wang, J. Wang, L. Mu, and W. Wang,
“Bathymetry of the coral reefs of Weizhou island based on multispec-
tral satellite images,” Remote Sens., vol. 9, no. 7, 2017, Art. no. 750,
doi: 10.3390/rs9070750.

[25] Z. Wu, Z. Mao, W. Shen, D. Yuan, X. Zhang, and H. Huang,
“Satellite-derived bathymetry based on machine learning models and
an updated quasi-analytical algorithm approach,” Opt. Express, vol. 30,
pp. 16773–16793, 2022, doi: 10.1364/OE.456094.

[26] X. Zhao et al., “Water deep mapping from HJ-1B satellite data by a deep
network model in the sea area of Pearl River Estuary, China,” Open Geosci.,
vol. 13, pp. 782–795, 2021, doi: 10.1515/geo-2020-0267.

[27] V. Mateo-Perez, M. Bobadilla, F. Ortega-Fernández, and V. Montequín,
“Determination of water depth in ports using satellite data based on
machine learning algorithms,” Energies, vol. 14, no. 9, 2021, Art. no. 2486,
doi: 10.3390/en14092486.

[28] W. Shen, Y. Rao, Q. Ji, R. Meng, and K. F. Luan, “Shallow sea remote sens-
ing water depth inversion based on ‘grid search+XGBoost’ algorithm,”
Remote Sens. Inf., vol. 37, no. 1, pp. 14–18, 2022.

[29] J. D. Hedley, A. R. Harborne, and P. J. Mumby, “Technical note:
Simple and robust removal of sun glint for mapping shallow-water
benthos,” Int. J. Remote Sens., vol. 26, no. 10, pp. 2107–2112, 2005,
doi: 10.1080/01431160500034086.

[30] G. Doxani, M. Papadopoulou, P. Lafazani, M. Tsakiri, and E. Mavridou,
“Sun glint correction of very high spatial resolution images,” Thales, in
Honor of Prof. Emeritus Michael E. Contadakis, pp. 329–340, Jan. 2013.

[31] P. Smith, “Bilinear interpolation of digital images,” Ultramicroscopy,
vol. 6, no. 2, pp. 201–204, 1981.

[32] J. P. Chavez, G. Berlin, and L. Sowers, “Statistical method for selecting
landsat MSS ratios,” J. Appl. Photograph. Eng., vol. 8, pp. 23–30, 1984.

[33] Z. Lee, “Visible-infrared remote sensing model and applications for ocean
waters,” Ph.D. dissertation, Dept. Marine Sci., Univ. of South Florida,
Tampa, FL, USA, 1994.

[34] L. Hui, P. Furnace, T. Bangyi, S. Liang, K. Linchong, and Z. Hansong, J.
Oceanogr. (Chin. Version), vol. 31, no. 2, pp. 57–62, 2009.

[35] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[36] E. Bøhn, S. Moe, and T. Johansen, “On the effects of properties of the mini-
batch in reinforcement learning,” in Proc. Int. Conf. Intell. Technol. Appl.,
Berlin, Germany, 2022, pp. 71–80, doi: 10.1007/978-3-031-10525-8_6.

[37] B. Raharjo, N. Farida, P. Subekti, R. Siburian, P. Heka Ardana,
and R. Rahim, “Optimization forecasting using back-propagation al-
gorithm,” J. Appl. Eng. Sci., vol. 19, no. 4, pp. 1083–1089, 2021,
doi: 10.5937/jaes0-30175.

[38] J.-B. Kong and J. Minseok, “Association analysis of convolution layer,
kernel and accuracy in CNN,” J. Korea Inst. Electron. Commun. Sci.,
vol. 14, no. 6, pp. 1153–1160, 2019, doi: 10.13067/jkiecs.2019.14.6.1153.

[39] R. E. Schapire, “A brief introduction to boosting,” in Proc. 16th Int. Joint
Conf. Artif. Intell., 1999, pp. 1401–1406.

[40] H. Ni, W. Wang, Q. Ren, L. Lu, J. Wu, and L. Ma, “Model-
based sediment characterization using multibeam angular backscat-
ter data,” in Proc. IEEE/MTS Oceans Seattle Conf., 2019, pp. 1–4,
doi: 10.23919/OCEANS40490.2019.8962831.

[41] D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented
linear mixing model to address spectral variability for hyperspectral
unmixing,” IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923–1938,
Apr. 2019.

https://dx.doi.org/10.1007/s00338-019-01802-y
https://dx.doi.org/10.1007/s10236-014-0773-y
https://dx.doi.org/10.1016/j.rse.2009.07.008
https://dx.doi.org/10.4319/lom.2011.9.396
https://dx.doi.org/10.3390/rs11060645
https://dx.doi.org/10.3390/rs11101155
https://dx.doi.org/10.3390/rs12132069
https://dx.doi.org/10.3390/rs14174229
https://dx.doi.org/10.3390/rs12183053
https://dx.doi.org/10.3390/rs12101667
https://dx.doi.org/10.1016/j.isprsjprs.2019.04.015
https://dx.doi.org/10.1109/LGRS.2023.3297612
https://dx.doi.org/10.1109/TGRS.2021.3069241
https://dx.doi.org/10.1109/TGRS.2021.3124913
https://dx.doi.org/10.1109/TGRS.2022.3225902
https://dx.doi.org/10.3390/ijgi8090405
https://dx.doi.org/10.3390/rs14051196
https://dx.doi.org/10.1109/JSTARS.2015.2415853
https://dx.doi.org/10.1109/JSTARS.2015.2415853
https://dx.doi.org/10.3390/rs9070750
https://dx.doi.org/10.1364/OE.456094
https://dx.doi.org/10.1515/geo-2020-0267
https://dx.doi.org/10.3390/en14092486
https://dx.doi.org/10.1080/01431160500034086
https://dx.doi.org/10.1007/978-3-031-10525-8_6
https://dx.doi.org/10.5937/jaes0-30175
https://dx.doi.org/10.13067/jkiecs.2019.14.6.1153
https://dx.doi.org/10.23919/OCEANS40490.2019.8962831


8562 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Wei Shen received the Ph.D. degree in cartography
and geographic information system from Beijing Nor-
mal University, Beijing, China, in 2007.

He is currently a Professor and master’s supervisor
with the College of Marine Science, Shanghai Ocean
University, Shanghai, China, the Head of the Ma-
rine Surveying and Mapping major, and a member
of the Marine Surveying and Mapping Professional
Committee of the Chinese Society of Surveying and
Mapping. His research interests include marine sur-
veying and mapping, GIS, RS, LIDAR, underwater

information detection and processing, and virtual reality and simulation. Over
the past five years, he has authored or coauthored 25 papers in domestic and
foreign core journals (including 7 international indexed papers).

Muyin Chen is currently working toward the M.Sc.
degree in marine sciences with Shanghai Ocean Uni-
versity, Shanghai, China.

His research interests include the application of
deep learning to marine remote sensing optical data.

Zhongqiang Wu (Member, IEEE) received the M.Sc.
degree in marine sciences from Shanghai Ocean Uni-
versity, Shanghai, China, in 2016, and the Ph.D. de-
gree in geography from Nanjing University, Nanjing,
China, in 2022.

He is currently a Lecturer with the School of
Information Science and Technology, Hainan Nor-
mal University, Haikou, China. His research interests
include ocean remote sensing and remote-sensing-
based bathymetry.

Jiaqi Wang is currently working toward the M.Sc.
degree in marine sciences with Shanghai Ocean Uni-
versity, Shanghai, China.

His research interests include the application of
machine learning to marine remote sensing optical
data.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


