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Coupling SMAP Brightness Temperature Into SWAT
Hydrological Model for 30-m Resolution Soil
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Abstract—Integrating satellite observations into hydrologic
models has the potential to enhance soil moisture (SM) retrievals at
high spatial and temporal resolutions. The hydrological model Soil
and Water Assessment Tool (SWAT) can produce spatiotemporally
continuous SM product with high resolution. This article proposed
to physically couple the SWAT and Tau-omega radiative transfer
model to retrieve SM with a spatial resolution of 30 m. First,
the SWAT model integrated a physically based SM module used
to simulate hourly SM, from which the brightness temperature
(TB) at 30 m was obtained by forwardly simulating the Tau-omega
model. Then, the simulated TB at fine resolution and Soil Moisture
Active and Passive (SMAP) TB at coarse resolution were merged
by Kalman filter into a disaggregated TB. Finally, SM at 30 m
resolution was retrieved from the disaggregated TB. The proposed
methods were evaluated over the Lanjiang River Basin. The results
show that the retrieved SM is highly correlated with two official
SMAP SM products and that it has a better accuracy than five
SMAP SM products. Particularly, due to the high resolution, the
retrieved product captured the heterogeneity of SM within and
among fields, compared to the individual use of the hydrological
model or satellite observation. Our proposed approach can aid the
decision-making in agricultural management at the field scale.

Index Terms—Brightness temperature (TB), high spatial
resolution, soil moisture (SM), Soil Moisture Active and Passive
(SMAP), Soil and Water Assessment Tool (SWAT), Tau-omega
model.

I. INTRODUCTION

SOIL moisture (SM) is critical for land–atmosphere inter-
action, terrestrial ecosystem, and carbon uptake [1], [2],
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[3], [4]. High spatial resolution SM contributes to precision
agriculture, water resource management, and the simulation of
land surface, crop, and hydrological models [5], [6], [7].

Due to the influence of precipitation, soil texture, vegeta-
tion growth, and topography, surface SM has complex spatial
heterogeneity and temporal variability. Traditional in-situ mea-
surements only represent changes in SM at the point scale. Con-
versely, remote sensing provides an effective tool to monitor SM
at different spatiotemporal scales. Compared with visible and
thermal infrared bands, microwaves with longer wavelengths
(1 mm–1 m) can work under all-day and all-weather condi-
tions, and have the ability to penetrate vegetation and topsoil
[8]. Microwave remote sensing comprises active and passive
types. Synthetic aperture radar (SAR) in active type has high
spatial resolution, but its signal is strongly impacted by surface
roughness, vegetation biomass, and canopy structure, leading to
high retrieval uncertainty. In addition, speckle effects and other
complex data processing problems hindered the application of
SAR [9].

In contrast, passive brightness temperature (TB) is less in-
fluenced by surface roughness and vegetation characteristics.
Among passive microwaves, the low-frequency L-band (1–3
GHz) radiometer such as Soil Moisture and Ocean Salinity
(SMOS) [10] and Soil Moisture Active and Passive (SMAP)
[11] is currently the best band for detecting surface SM [12],
[13]. Compared to SMOS, the SMAP TB has the advantage of
excellent radio frequency interference corrections [9]. There-
fore, our study used the TB and SM data from SMAP mission.
Nevertheless, due to coarse spatial resolution of about tens of
kilometers, the passive microwave SM products failed to capture
spatial heterogeneity of SM at field scale. Consequently, it is im-
portant to develop disaggregation algorithms for SM retrievals
with high spatial resolution and broad coverages, which can
better serve the agricultural irrigation, crops disaster monitoring,
and drought/inundation management.

The basic theory of disaggregation algorithms is to establish
relationships between remote sensing products and ancillary
geophysical observations (vegetation and soil properties). For
SM, there are following three types of disaggregation algorithms
[14].

1) Multisource data fusion algorithm, but it is limited by the
low revisit rates of radar [15] and the contamination of
optical data by cloud [16].
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2) Geographic information-based algorithm, which assumes
that SM depends on topography, soil attributes, and veg-
etation characteristics [17], but it requires a large number
of site observations.

3) Model-based algorithm, which mainly includes statistical
[18] and hydrological models [19].

Different from other disaggregation methods, the hydrolog-
ical models driven by meteorological data account for the
interaction between land and atmosphere, and meteorological
factors such as precipitation and temperature have a significant
impact on SM. Based on solid physical processes and dy-
namic mechanisms, the hydrological models can clearly depict
the interactions between each component in the water cycle,
and simulate the SM continuously in the temporal and spatial
dimensions.

In recent years, the Soil and Water Assessment Tool (SWAT)
model has been extensively used because of its robust physical
mechanisms, simple inputs, and good performance. SWAT takes
hydrologic response unit (HRU) as the basic analysis unit, by
fully taking into account the land use, soil, topography, and
meteorological attributes to quantify the hydrological process
[20], [21], [22], [23], [24]. Narasimhan et al. [25] obtained
long-term SM dataset by SWAT, which was well correlated
with vegetation growth. Mengistu et al. [26] and Havrylenko
et al. [27] applied the SWAT model to the South African and
Pampas region, respectively, indicating that the simulated SM
can reasonably assess agricultural drought. Li et al. [28] showed
that the SWAT simulated SM captured SM trends at various soil
depths and time scales, and the temporal variability of surface
SM best matched the in-situ values. In summary, the ability of
SWAT model was validated in simulating SM variations and
trends. However, it employs a simple bucket module for depict-
ing the movement of SM leads to some limitations in precisely
characterizing SM [28], [29]. Furthermore, it should be noted
that satellite data provide SM information at a specific moment,
whereas the original SWAT model is designed to generate SM
values at a daily scale and lacks the capability to simulate hourly
SM. Therefore, this study introduced a SWAT model based on
the Richards equation (RSWAT) to simulate hourly SM [30],
subsequently the simulated SM data are utilized to disaggregate
the SMAP data.

In addition, the satellite retrieved SM is not consistent with the
model simulated SM because they used different algorithms and
auxiliary data [31], [32]. The direct combination of satellite SM
data with the SWAT model may lead to a significant uncertainty.
Consequently, this study combined the RSWAT model with
SMAP TB data rather than SM data to reduce uncertainty. Within
this context, we proposed to disaggregate SMAP TB data from
36 km to 30 m at basin scale by coupling the RSWAT model
with radiative transfer model (RTM) [33]. Subsequently, SM
at 30 m spatial resolution was retrieved from disaggregated TB
by using the RTM. This approach is physically explanatory and
transferable to other regions. Especially, most disaggregation
studies of SMAP only obtained 1 km SM due to the limitation of
coarse-resolution auxiliary data [34], [35], [36]. Disaggregation
based on the RSWAT model can produce SM product with 30 m

spatial resolution, which benefits the practical applications such
as selective irrigation at the field scale.

II. STUDY AREA AND DATASETS

A. Study Area

The study area is the Lanjiang River basin, which is in the
southwestern part of Zhejiang Province, China. It is the main
tributary of the Qiantang River Basin, and has a humid subtrop-
ical monsoon climate, with an average annual precipitation of
approximately 1200–1700 mm and an annual average tempera-
ture of about 17 °C–18 °C [37]. The largest proportion of land
cover type in the study area is forest, followed by cropland. As
shown in Fig. 1, the overall terrain of the basin is characterized
by a high surrounding and low center. The boxes with dashed
black lines represent the SMAP 36 km grids, and the black dots
mark the locations of the ground measurement stations.

B. Datasets

This study utilized three types of data, as listed in Table I for
their details. Specifically, the data contained: 1) data for SWAT,
including digital elevation model (DEM), land use, soil, and
meteorological data; 2) data for RTM, including SMAP TB, land
cover, normalized difference vegetation index (NDVI) products;
3) data for analysis, including in-situ SM observations, five
SMAP products with different resolutions or algorithms (SAMP
36 km, enhanced 9 km, multichannel collaborative algorithm
(MCCA), multitemporal dual channel algorithm (MT-DCA),
and SMAP-IB), and ESA CCI active SM product.

1) Data for SWAT Model: DEM was from the NASA SRTM
DEM with a resolution of 1 arc second [38], which was filled in
this study. The filled DEM is more suitable for SWAT delineation
of the watershed.

Land use products at 30 m resolution for 2015 were produced
by the Department of Environmental Protection of Zhejiang
Province. The study area initially contained 26 land use types,
which were reclassified into 13 categories based on the SWAT
classification code.

Soil data with a 30 arc seconds resolution was acquired from
the Harmonized World Soil Database (HWSD) [39]. The soil
properties database for SWAT was calculated by the Soil Water
Characteristics Tool.

Meteorological data were obtained from the China Meteo-
rological Administration (CMA), including precipitation, maxi-
mum and minimum temperatures, wind speed, relative humidity,
and short-wave radiation. To attain SM at an hourly scale, this
study used hourly precipitation, and the other elements are on a
daily scale.

2) Data for RTM: The SMAP mission with an L-band ra-
diometer and radar began operating in April 2015 [11], whereas
radar was no longer produced active product after the high-power
amplifier experienced an anomaly on July 7, 2015. Therefore,
only the L-band radiometer data were available, which were
collected at local overpass time of 6:00 A.M. for descending orbit
and 6:00 P.M. for ascending orbit, respectively. Considering that



ZHU et al.: COUPLING SMAP BRIGHTNESS TEMPERATURE INTO SWAT HYDROLOGICAL MODEL 8321

Fig. 1. Study area over Lanjiang River Basin, with locations of SMAP 36 km grids (dashed black boxes) and in-situ stations (black dots).

TABLE I
CHARACTERISTICS OF DATASETS USED FOR DRIVING SWAT, RTM, AND ANALYZING SPATIOTEMPORAL FEATURES



8322 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 2. Schematic diagram of the coupling method to obtain high spatial resolution (30 m) SM by combining RSWAT hydrological model, Tau-omega RTM, and
Kalman filter.

the vertical distribution of surface and vegetation temperatures
is more homogeneous in the morning than in the evening [40],
the quality of descending SMAP data is usually better than the
ascending [41]. Additionally, compared to horizontal polariza-
tion, TB at vertical polarization (v-pol) has better sensitivity to
SM at top soil layer (5 cm) [42], [43]. Consequently, the SMAP
36 km v-pol TB product (SPL3SMP, Version 7) at 6:00 A.M. was
selected.

Land cover data was obtained from Moderate Resolution
Imaging Spectroradiometer (MODIS) land cover type products
(MCD12Q1) in 2018, and we selected the IGBP classification
scheme to identify the land cover type of pixels. According to
the look-up table of the SMAP algorithm [44], the land cover
data was used to determine vegetation structure and surface
roughness parameters to drive the RTM.

The NDVI products used in this study consist of NDVI prod-
ucts from MODIS Terra and Aqua (MOD13Q1 and MYD13Q1),
which are 16-day composites obtained by selecting high-quality
surface reflectance pixels. The combination of these two prod-
ucts can further produce NDVI data at eight-day intervals,
which were applied to calculate vegetation water content (VWC)
parameter in RTM.

3) Data for Analysis: The in-situ SM observations were
derived from the automatic soil moisture observation stations
established by the CMA. These stations primarily employ three
types of observation instruments: DNZ1, DNZ2, and DNZ3. The
operating principles of these instruments are based on frequency
reflection methods. Specifically, DNZ1 utilizes the standing
wave method, whereas DNZ2 and DNZ3 utilize the capacitance
method. The data were vertically stratified into eight different

depths (0–10 cm, 10–20 cm, 20–30 cm, 30–40 cm, 40–50 cm,
50–60 cm, 70–80 cm, and 90–100 cm) and recorded hourly.
Within the study area, there are five available stations, and data
in the 0–10 cm depth were selected to match the probing depth
of the satellite (see Fig. 1). In addition, three state-of-the-art
SM products were added for accuracy comparison, namely
SMAP-MCCA [45], MT-DCA [46], and SMAP-IB [47].

SMAP 36 km and 9 km SM products [48] were used for spatial
analysis. Compared to the 36 km SM product, 9 km product
enhanced spatial detail and achieved satisfactory accuracy [49].

ESA CCI active SM product [50] was used to estimate the
relative error of RSWAT SM and SMAP SM by triple collocation
method.

III. METHODOLOGY

Fig. 2 illustrates the SM retrieval method proposed in this
study. First, a Richards-equation-based SM module was inte-
grated within the SWAT model to generate 5 cm SM and soil
temperature at 6 A.M., and forward simulated RSWAT TB data at
30 m by Tau-omega RTM with MODIS and soil property data.
Then, based on the RSWAT TB, the Kalman filter was employed
to disaggregate SMAP TB data from 36 km to 30 m. Finally, the
30 m SM was retrieved by the RTM.

A. Simulate SM by RSWAT Model

The water balance equation is the foundation of the SWAT
hydrological model
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SWt = SW0

+
t∑

i=1

(Pday,i−Qsurf,i−ETa,i−Wweep,i−Qgw,i)

(1)

where t stands for time, SW0 and SWt represent soil water
content at the beginning and end of the ith day, respectively,
and Pday,i, Qsurf,i, ETa,i, Wweep,i, and Qgw,i represent the
precipitation, surface runoff, evaporation, soil profile recharge
to groundwater, and return flow on the ith day, respectively. Their
units are all in mm H2O.

In the simulation of the SWAT model [51], the flow path
characteristics of the DEM were first analyzed, based on which
the watershed was divided into several subbasins. Then, these
subbasins were further classified into HRUs according to the un-
derlying surface conditions such as land use and soil type. Next,
the meteorological data were used to drive model. Ultimately,
the SWAT model formed a catchment area of 18 740 km2 (see
Fig. 1), and the whole basin was divided into 26 subbasins and
12 068 HRUs.

In addition, as this study combined SWAT simulated SM with
SMAP data that penetrated to a depth of about 5 cm in units of
volumetric moisture content (m3/m3), the SM simulated by the
SWAT model had to be matched to SMAP in depth and units.
For depth, this study weighted the SM and temperature of SWAT
in the vertical direction to obtain data at 5 cm. For units, SWAT
simulated SM as the value after removing the wilting point
[51], and units are expressed in terms of water layer thickness
(mmH2O). Therefore, we first added the simulated SM to the
wilting point value and divided by the soil thickness (mm) to
obtain the volumetric moisture content.

Since the SMAP data at 6 A.M. was chosen for this study, in
order to align with the acquisition time of SMAP and improve
the accuracy of the simulation, the RSWAT model developed
by Qi et al. [30] was adopted in this study. In comparison to
the original SWAT model, RSWAT incorporated a physically
based SM module based on the Richards equation, instead of
the traditional bucket-based SM module. The Richards equation
is employed in capturing and simulating water distribution and
movement in three-dimensional space, considering factors such
as soil porosity, infiltration, and soil characteristics. This equa-
tion enables a more precise depiction of SM dynamics across
different soil layers. More importantly, RSWAT exhibits the
capability to simulate moisture and temperature variations at an
hourly resolution. For more detailed information on the RSWAT
model, please refer to Qi et al. [30]. In this study, we used 30
m soil temperature and SM data at 6 A.M. each day in 2018
simulated by the RSWAT model.

B. Simulate RSWAT TB Using Tau-Omega Model

The Tau-omega model was used to obtain RSWAT TB from
RSWAT SM. At L-band, this model ignores the effects of
multiple scattering in the atmosphere and vegetation layers.
TB consists of the following components: soil radiation after
canopy attenuation, direct vegetation radiation, and radiation

from vegetation reflected by soil and attenuated by the canopy.
Consequently, TB is modeled as

RSWATTB = Tsoilεsoilγ + Tveg (1− ω) (1− γ)

+ Tveg (1− εsoil) (1− ω) (1− γ) γ with

γ = e−τ/cos(θ) (2)

where Tsoil and Tveg are soil temperature and vegetation effective
temperature, respectively. At 6:00 A.M., we suppose that soil and
vegetation temperatures are homogeneous under thermal equi-
librium conditions, and Tsoil is obtained from the SWAT model.
ω is the single scattering albedo, γ represents transmissivity,
which is simulated with the incidence angle (θ) of SMAP and
vegetation optical depth (τ ).

There is a linear relationship between τ and VWC [52]

τ = (b · VWC) /cos (θ) with

VWC =
(
1.9134 ·NDV I2 − 0.3215 ·NDV I

)

+ stem_factor · NDV Imax −NDV Imin

1−NDV Imin
(3)

where NDVI is acquired from the MODIS NDVI product,
NDV Imax andNDV Imin represent the maximum and minimum
values of the NDVI during the study period, stem_factor is the
peak value of stem water content, and the constant b represents
the vegetation parameter. stem_factor, b, and ω are related to
the MODIS IGBP land cover type, and their value can be
obtained from the land cover look-up table in SMAP algorithm
documentation [44].

Now, the only unknown parameter left in (2) is soil emissivity
(εsoil), which is calculated as follows: first, RSWAT SM is
converted to soil dielectric constant (εr) by Mironov dielectric
model, which considers the difference between bound and free
water in the soil layer. It is more suitable for the SM retrieval of
L-band, the detailed formula for the model is described in [53].
Then, εr was transformed into smooth surface reflectivity (rv)
by the Fresnel coefficient equation [54]

rv =

∣∣∣∣∣
εrcos (θ)−√

εr − sin2 (θ)

εrcos (θ) +
√
εr − sin2 (θ)

∣∣∣∣∣

2

. (4)

Next, the HQN roughness model [55] was adopted to convert
rv into the reflectivity of the rough surface (r)

r = rv · exp
(−h · cos2 (θ)

)
(5)

where h is an effective roughness parameter related to land cover
types.

Finally, the soil emissivity was obtained from r

εsoil = 1− r. (6)

Therefore, the 30 m RSWAT TB data can be derived from
RSWAT SM by the Tau-omega model. The next step is to
disaggregate the SMAP TB by RSWAT TB.
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C. Disaggregate SMAP TB With RSWAT TB

1) Bias Correction: Due to factors such as spatial resolution,
there exists a certain systematic bias between satellite observa-
tions and model simulated TBs, and the bias needs to be corrected
in order to optimally merge the two types of data. For the comput-
ing efficiency, we employed mean-variance approach [56], [57],
[58]. The correction is performed on a pixel-by-pixel basis by
comparing the corresponding values of aggregated RSWAT TB
simulations and SMAP observations. Furthermore, according to
the SMAP algorithm documentation [44], we masked the regions
with VWC greater than 5kg/m2 before correction.

2) Disaggregate SMAP TB Data to 30 m: The Kalman filter
method was utilized to disaggregate the SMAP TB, which can
combine different types of observations at a single time step
to find the optimal estimate of the corresponding state variable
(i.e., SM). According to the Bayesian theory, the state variable
can be expressed as [59]

X̂t = Xt +K · (yt −H ·Xt) (7)

where t represents time, Xt and yt are data from the model
and observations, respectively, and X̂t represents the optimal
estimate. K is the gain, which depends on the uncertainties of
the model (P) and observations (R)

K =
PHT

HPHT +R
(8)

where H is an observation operator, which maps system state
space to observation space. T stands for transpose. Since this
study was based on the pixel level, the scale and units of model
and observed values are the same, so the value of H is 1.

The error in the model TB cannot be estimated directly and
needs to be derived from the model SM error, where every
0.01 m3/m3 of SM error corresponds to 1 K of TB error [19].
In this study, the triple collocation method [60] was used to
obtain the relative error between SMAP and RSWAT SM. As
the accuracy requirement of SMAP SM is 0.04 m3/m3, the error
in RSWAT SM can be deduced from the relative error, which
further yields the error of RSWAT TB. The TB error of SMAP
is 1.3 K [61], consequently, the P and R are the squares of the
respective TB errors of RSWAT and SMAP. From (7) and (8), the
Kalman filter method is a weighted averaging method, and its
weight is determined by the relative magnitude of the uncertainty
between the model and the observation.

Ultimately, with reference to (7), the formula for disaggregat-
ing the SMAP TB to 30 m is

DisaggregatedTB = RSWATTB

+K · (SMAPTB −RSWATTB) .
(9)

D. Retrieve SM at 30 m

Based on the 30 m disaggregated TB, we retrieved 30 m SM
data by the Tau-omega model. The retrieval process adopted an
iterative algorithm, which set the SM values at 0.01 intervals
and then forward simulated the TB values. When the value of
the least squares cost function between the simulated TB and

the disaggregated TB was the minimum, the corresponding SM
value was the retrieval result.

IV. RESULTS AND DISCUSSIONS

A. RSWAT Simulated SM

Fig. 3 demonstrates the comparison between RSWAT SM
and SWAT SM on the five measured sites. Compared to the
original SWAT model, RSWAT effectively captures the dynamic
changes of station SM, with less bias overall. Furthermore,
Table II summarizes the calculated statistical metrics comprised
of unbiased root mean square error (ubRMSE, m3/m3), RMSE
(m3/m3), correlation coefficients (R), and bias (m3/m3) [62].
Overall, RSWAT outperforms SWAT in terms of RMSE, R,
and Bias, except for ubRMSE, which is slightly worse, thus
illustrating the effective improvement of RSWAT. Critically,
RSWAT possesses the capability of simulating hourly SM.

Moreover, acknowledging the limitations of station valida-
tion, this study formed a triplet of RSWAT, SMAP, and ESA CCI
active SM products, employing the triple collocation method to
obtain the grid-scale error results, as displayed in Fig. 4. RSWAT
denotes the lowest mean relative error (0.025 m3/m3), followed
by SMAP (0.031 m3/m3), and active product exhibiting the
largest (0.037 m3/m3), indicating the good capacity of RSWAT
in simulating SM. Concurrently, by comparing IGBP types, it is
observed that the accuracy of SMAP is low in forested areas,
owing to vegetation cover disrupting microwave penetration
[63]. However, RSWAT performed well in forest areas.

B. RSWAT Simulated TB

The 30 m RSWAT TB was simulated by the forward RTM
based on the RSWAT SM data. We randomly selected a grid and
analyzed the correlation between SMAP and RSWAT separately
for TB and SM. As shown in Fig. 5, for TB, the R-squared
between SMAP and RSWAT reached 0.81, which is significantly
higher compared to the correlation for SM (0.20), the remain-
ing grids followed similar pattern as the selected grid. This is
because we used the same SCA-V algorithm as SMAP in the
simulation of RSWAT TB. If the SM data from RSWAT and
SMAP were directly combined, it would cause a large uncer-
tainty. Therefore, this study chose to fuse TB rather than SM.
In addition, the high correlation between SMAP and RSWAT
TB satisfied the assumption of linearity between variables in
Kalman filtering.

C. Gap Filling for High VWC Area

The SMAP (36 km) and RSWAT (30 m) TB were fused
into a disaggregated TB at 30 m resolution, from which the
SM was retrieved using the RTM. Consistent with the SMAP
algorithm, we masked pixels with VWC > 5kg/m2 [Fig. 6(a)],
which mainly correspond to forest types in the SWAT land use
data [FRSD, FRSE, and FRST in Fig. 6(b)]. Moreover, the water
body (WATR) was excluded in the retrieval process. These two
factors caused invalid pixels in the retrieval results [Fig. 6(c)].
For spatial integrity, we employed the mean-variance approach
to remove the bias between RSWAT SM and SMAP SM. Invalid



ZHU et al.: COUPLING SMAP BRIGHTNESS TEMPERATURE INTO SWAT HYDROLOGICAL MODEL 8325

Fig. 3. Simulated SM by SWAT and RSWAT at soil depth of 10 cm against stations.

pixels caused by the high VWC were filled by the matched
RSWAT SM, resulting in a spatially continuous SM at 30 m
[Merged SM, Fig. 6(d)] for spatial analysis. This reflects the
strength of spatial integrity of the model data.

D. Spatiotemporal Variability of Merged SM

Fig. 7 reveals the spatiotemporal distribution of SM across dif-
ferent seasons in Lanjiang River Basin. For spatial distribution,

under the combined influence of topography, land use, and soil
factors, the values of SM simulated by RSWAT show a pattern
of lower in the middle and higher at the periphery. SMAP SM
values have an extensive dynamic range. Moreover, SMAP has
only 29 values within a watershed of nearly 20 000 km2, which
does not reflect the spatial heterogeneity of SM in the watershed
and provides limited information. The merged SM captures the
spatial pattern of RSWAT data and the magnitude pattern of
SMAP data. Consequently, our proposed method well combines
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TABLE II
MODEL PERFORMANCE COMPARISON BETWEEN SWAT AND RSWAT FOR SM AT FIVE IN-SITU STATIONS

Fig. 4. Relative errors for RSWAT, SMAP, and CCI active SM product by triple collocation method.

the strengths of fine resolution of RSWAT and high precision of
SMAP. The SM values are higher in forested areas and lower in
other areas, which is consistent with the spatial distribution of
land use [see Fig. 6(b)].

In terms of temporal variation, all three products exhibit
similar trends and we selected four dates to represent seasonal
variations. The highest value was found on April 26 due to
increased precipitation in spring, followed by January 12 in
winter and October 17 in autumn, and the lowest SM value was
observed on July 15 in summer due to high temperature and
evaporation.

To investigate the SM distribution in detail, Fig. 8 enlarges
a 36 km SMAP grid (red box) in Fig. 7. Compared to the
single value of the SMAP grid, the RSWAT model captures the
spatial variation of SM. In addition, because of the integration of
spatial information from RSWAT and SMAP data, the merged
SM is more refined, thus making the spatial heterogeneity of
the SM more apparent. Therefore, our method provides spatial

variability of SM within and among fields, which benefits the
planning of irrigation and fertilization.

E. Comparative Analysis

1) Relevance to the SMAP Official SM Products: Fig. 9(a)
and (b) shows the correlations between disaggregated SM and
SMAP 9 and 36 km SM products, respectively. Since the reso-
lutions of the three products are different, we took the SMAP
at intermediate 9 km grid as the benchmark for correlation
analysis. There are good correlations between disaggregated SM
and SMAP SM products at different scales. Correlation values
follow the spatial distribution characteristics of IGBP land cover
[see Fig. 9(c)]. In nonforested areas, correlations are high. The
average correlation between the disaggregated SM product and
the 9 km product is 0.73, and the average correlation with the
36 km product is 0.75. In certain grids, the correlation reaches
values of 0.8 or even higher, up to 0.9. On the contrary, weak
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Fig. 5. Scatterplot of (a) RSWAT simulated SM with SMAP SM products, and (b) RSWAT simulated TB using Tau-omega model with SMAP TB.

Fig. 6. Spatial distribution of (a) VWC, (b) land use in SWAT simulation, (c) disaggregated SM, and (d) merged SM in Lanjiang River Basin (July 15, 2018).

correlations are found in forested areas due to high retrieval
uncertainty caused by strong attenuation and scattering effects
from the dense canopy. The overall strong correlation with the
SMAP official products indicates a robust performance of our
product in capturing the variability of SM.

2) Comparison of Statistical Metrics With Multiple SMAP
Products: Fig. 10 exhibits the statistical metrics for disaggre-
gated SM and five SMAP SM products (SMAP 9 km, SMAP
36 km, SMAP MCCA, SMAP MT-DCA, and SMAP-IB) against
the in-situ measurements (see Fig. 1).
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Fig. 7. Overall spatiotemporal distribution of RSWAT, SMAP, and the merged SM.

Fig. 8. Comparison of spatiotemporal distribution among RSWAT, SMAP, and the merged SM at grid scale.

For ubRMSE, the disaggregated product has the highest pre-
cision (average value is 0.042 m3/m3), which indicates that our
products have satisfactory accuracy. For RMSE, apart from the
SMAP-IB product, there was little difference between the other
products. Among them, the disaggregated product outperforms
the rest (average value is 0.064 m3/m3). The RMSE of SMAP-IB

product was much larger than the other products, which may
be due to the effect of soil temperature. It used ERA-Interim
soil temperature data from the European Centre for Medium-
Range Weather Forecasts, whereas soil temperatures for all
other SMAP products were obtained from the Goddard Earth
Observing System 5.
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Fig. 9. (a) Correlations of disaggregated SM with SMAP 9 km products. (b) Correlations of disaggregated SM with SMAP 36 km products. (c) MODIS IGBP
land cover type in Lanjiang River Basin.

Regarding correlation, MT-DCA ranks first (average value is
0.492), closely followed by the disaggregated product (average
value is 0.435). However, the average correlations of all products
are not particularly high. This may be due to the fact that the
range of moisture variation at certain individual sites (K7121
and K6603) throughout the year does not exceed 0.1 m3/m3

(see Fig. 3), which is relatively small, so it is difficult for the
products to fully capture the dynamic changes in SM. The poor
R performance of the products with a small range of dynamic
variation was also found by Ma et al. [63] and Burgin et al. [64].
In terms of bias, SMAP-IB has the largest bias, probably due to
the larger bias in the soil temperature product.

Overall, the disaggregated products had the highest precision
and a satisfactory level of correlation and bias.

F. Uncertainty Analysis

Although this study provided high spatial resolution SM
products with promising application prospects, there are still
limitations. We analyzed the uncertainties of this study from the
following three aspects:

1) Uncertainty in SWAT Model Simulation: DEM, land use,
and soil data are the input data to the SWAT model. The DEM
and land use data used in this study have a spatial resolution
of 30 m, whereas the soil data have a spatial resolution of 1
km. Although HWSD is widely used in the SWAT model, future
work is needed to compare the applicability of finer soil data
(e.g., SoilGrids data at 250 m) in the SWAT model.

Furthermore, the SWAT model is a semiempirical and semi-
physical model where many elements of the calculation process
are parameterized. The default parameters in the SWAT model
were obtained based on geographical conditions in the USA,
which may deviate from the soil and vegetation conditions at
our study sites.

Another major source of uncertainty is human activities, such
as irrigation and groundwater extraction, which significantly
affect the SM at the field scale [19]. There is a water management
module in SWAT that can be used in future studies to investigate
the impact of human activities on SM.

2) Uncertainty in RTM Model: The uncertainty in RTM is
mainly caused by the auxiliary data. For instance, the clay con-
tent of the soil was involved in the Mironov dielectric model, so
the soil data impacted the uncertainty in the forward simulation
of TB. In addition, the vegetation optical thickness, roughness,
and single scattering albedo in the RTM are parameterized
according to MODIS IGBP land cover types. For example, in this
study, we set the roughness, albedo, and stem-factor of grassland
as constants 0.156, 0.05, and 1.5, respectively. Therefore, the
accuracy of IGBP data and the rationality of the parameterization
also affect the uncertainty of the model [65]. In particular, the
reasonable values of optical parameter for different regions
should be explored. Similarly, the auxiliary data also has the
problem of scale mismatch, and it is necessary to investigate
other high spatial resolution auxiliary data.

3) Uncertainty in Disaggregation and Validation Methods:
Regarding the Kalman filter algorithm, the determination of
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Fig. 10. Boxplots of the performance metrics (ubRMSE, RMSE, Correlation, and Bias) of disaggregated (DIS), SMAP 9 km, 36 km, MCCA, MT-DCA, and
SMAP-IB SM products.

P and R is based on previous research [61], [66]. Although
this study used triple colocation approach to spatially quan-
tify the values of P and R for different grids, there is also
temporal variability in the errors of the products, thus the
time-varying values of P and R should be considered in future
studies.

For product validation, the quality evaluation of high-
resolution SM is challenging. We will compare traditional val-
idation metrics with other evaluation criteria, such as those
proposed by Crow et al. [67] and Merlin et al. [68] in future
studies to investigate the performance of our products under
different criteria.

V. CONCLUSION

This article proposed a coupling process with a physical mech-
anism to retrieve SM at 30 m spatial resolution, by integrating
the SWAT hydrological model with Tau-Omega RTM. First,
a modified SWAT model integrating a physically based SM
module was applied, which is more accurate and less biased

compared to the SM simulated by the original SWAT model.
Subsequently, the added values of the modified SWAT model
were combined with SMAP TB data. The quality of SMAP TB
data is relatively high, but it has coarse resolution. In contrast,
the high spatial resolution SWAT TB data can capture spatial
heterogeneity in detail within a SMAP grid. Thus, combining
these two observations allows the SMAP TB to be disaggregated
from coarse to fine spatial resolution. Ultimately, this study
yielded SM retrievals with high spatial resolution as SWAT and
high precision as SMAP.

Additionally, in forested areas, the penetration of microwave
signals is very limited, which leads to inaccurate results. We
filled these areas with the SM from SWAT model, reflecting
the advantage of the hydrological model with spatiotemporal
continuity.

The method presented in this study has important implications
for precision agriculture, field-scale water management, and
further improvement of hydrological and land surface models.
In the upcoming studies, we will explore more effective methods
for SM retrieval in forested areas.
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