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A Heterogeneous Spatiotemporal Attention Fusion
Prediction Network for Precipitation Nowcasting

Dan Niu , Hongshu Che , Chunlei Shi , Zengliang Zang , Hongbin Wang , Xunlai Chen ,
and Qunbo Huang

Abstract—Precipitation nowcasting underlying various public
services from rainstorm warning to flight safety is quite impor-
tant and remains challenging due to the fast change in convective
weather. Although some deep learning models have been proposed
to make prediction automatically, most of them just deal with a
single radar echo data source, making them hard to adapt to hetero-
geneous and diverse data in practice. In this article, a heterogeneous
spatiotemporal attention fusion prediction (HST-AFP) network
is proposed for radar echo extrapolation (deterministic output)
and further precipitation nowcasting, which deals with mining
and fusing knowledge from multiple heterogeneous spatiotemporal
(ST) data sources, including history radar echo observations and
numerical weather prediction data. With the help of the proposed
attention-based ST diffusion module, the multiencoder is designed
to extract information from both dense ST tensor and sparse ST
tensor. On the other hand, the fusion decoder achieves very deep
trainable residual fusion prediction by integrating scalewise atten-
tion fusion module and deep residual spatial and temporal attention
mechanism. It can adaptively blend multisource ST features and
rescale the multiscale temporalwise and spatialwise features for
better prediction. Experiments in a real-world dataset of South
China show that compared with the ingenious recurrent-neural-
network-based methods and newly proposed UNet-based methods,
our HST-AFP network can handle complex input with heterogene-
ity in both space and time domains, and performs better on the
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precipitation nowcasting metrics as well as requires remarkable
shorter forecast time.

Index Terms—Deep residual spatiotemporal attention (DRSTA),
heterogeneous spatiotemporal (ST) data, precipitation nowcasting,
ST diffusion.

I. INTRODUCTION

PRECIPITATION nowcasting has long been an important
problem in the field of weather, which supplies very short

range forecast of rainfall intensity in a local region based on
radar echo maps, observation data, as well as the numerical
weather prediction (NWP) models [1], [2]. Such predictions
facilitate effective planning, crisis management, and the reduc-
tion of losses to life and property [3], [4], [5]. Due to relevant
dynamical processes and the inherent atmosphere complexities,
precipitation nowcasting is quite challenging and has emerged
as a hot research topic [6], [7], [8], [9].

The existing precipitation nowcasting methods can be roughly
divided into two classes [10], [11], including NWP-based meth-
ods and radar-echo-extrapolation-based methods. The NWP ap-
proaches conduct a complex and meticulous simulation for the
physical equations in the atmosphere model. However, solving
such equations is time consuming and usually requires several
hours, even on modern supercomputers [12]. Moreover, NWP
methods are also very sensitive to small perturbations in initial
conditions, boundary conditions, and round-off errors [11], [13].
NWPs tend to provide poor forecasts for precipitation at 0–2 h
lead time. Thus, the faster and more accurate extrapolation-based
methods are widely adopted [14], [15], [16].

While conventional optical-flow-based radar extrapolation
methods (e.g., real-time optical flow by variational methods for
echoes of radar (ROVER), currently used in the Hong Kong
Observatory [17]) have seen considerable success, they have
certain limitations due to assumptions of Lagrangian persistence
and smooth motion fields. There have been efforts to relax
these assumptions by incorporating specific mechanisms (such
as cell life cycles or convergence lines). However, there has
been no fully general solution short of a costly data assimilation
cycle [18], [19]. Moreover, the optical-flow-based extrapolation
methods do not make full use of the vast amount of existing radar
echo datasets. Recently, machine learning techniques, especially
deep learning methods, have been explored as a way to fill this
gap, which can capture complex nonlinear spatiotemporal (ST)
patterns and combine heterogeneous data sources for predic-
tion [20], [21], [22], [23], [24], [25]. In principle, it can weaken
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the Lagrangian persistence assumption and design more flexible
models, which take advantage of more varied predictability
sources.

In essence, precipitation nowcasting can be formulated as an
ST sequence forecasting problem, where previous radar map
sequence is the input and the sequence of a fixed number of
future radar maps is output [10]. Some progress has been made
by utilizing deep learning techniques for precipitation nowcast-
ing [18], [26]. First, the pioneering recurrent neural network
(RNN) and the long short-term memory (LSTM) encoder–
decoder framework proposed in [27], [28], and [29] provide a
general framework for tackling this problem. Klein et al. [30]
proposed a new neural network layer called “dynamic convolu-
tional layer” to short-term forecast the location and intensity of
rain and snow. Shi et al. [10] extended the LSTM by adopting
convolutional structures in both the input-to-state and state-to-
state transitions and designed the convolutional long short-term
memory (ConvLSTM) model, which gave more accurate pre-
dictions than the fully connected LSTM and ROVER algorithm.
However, the convolutional recurrence structure in ConvLSTM-
based models is location invariant; they further proposed the
trajectory gated recurrent unit (TrajGRU) [1] model, which used
a subnetwork to output the state-to-state connection structures
before state transitions and actively learned the location-variant
structure for recurrent connections. Moreover, Wang et al. [31]
presented a predictive recurrent neural network (PredRNN) in
the light of the idea that ST predictive learning should memorize
both spatial appearances and temporal variations in a unified
memory pool. To alleviate the gradient propagation difficulties
in the PredRNN and provide alternative quick routes for the gra-
dient flows, the improved one (PredRNN++) was proposed [32],
where the gradient highway units working seamlessly with the
causal LSTMs enabled the model to adaptively capture the short-
term and long-term dependencies and outperform the previous
models (ConvLSTM and TrajGRU) in some real datasets. How-
ever, a gradient vanishing problem in these RNN-based methods
always exists, and network training requires a large amount of
computational resources (especially GPU memory) [16], [18].
They require memory-bandwidth-bound computation, which
often limits their applications [33].

In this case, some pure convolutional architectures with faster
training speed and less computation memory instead of mixed
convolutional recurrent architectures are explored for weather
ST prediction [6], [33], [34], [35], [36], [37]. The time dimension
can be handled as part of a convolutional architecture. Han
et al. [21] proposed a convolutional neural network (CNN)
method to nowcast convective storms. They divide the study do-
main into many position-fixed small boxes and turn the nowcast-
ing problem into a classification problem. Moreover, the UNet-
based models are proposed for precipitation nowcasting based
on the radar echo sequences [34], [35], [36], [37]. The UNet
architecture was first proposed for medical image segmentation,
but it has been employed in various domains due to its flexibility
and easy to extend [38], [39]. In [37], an efficient SmaAt-UNet
was proposed, which equipped with depthwise-separable con-
volutions and attention modules. It can obtain better prediction
performance while using less trainable parameters than original
UNet. In [36], an SE-ResUNet network was proposed to predict

rainfall dynamics for the city of Beijing, China. It combined the
strengths of UNet, ResNet, and Sqeeze-and-Excitation attention
and enabled significant performance improvement.

Besides, the abovementioned deep learning methods just only
deal with single radar echo data source. Unlike most computer
vision tasks, weather prediction can also obtain multiple meteo-
rological information sources, such as NWP data and ground or
satellite measurements [40], [41]. It is clear that the NWP data
can supply important prior prediction knowledge for meteoro-
logical parameters [42], [43], [44]. Could we combine the ad-
vantages of NWP simulation forecasts and historical radar echo
observations to further enhance radar echo extrapolation ability
and improve precipitation nowcasting accuracy? The expert
systems that synthesize multisource data based on the predefined
rules [45], [46], [47] and some RNN-based deep learning fusion
networks (typical ConvLSTM-based LightNet [48] and Light-
Net+ [49] for lighting forecasting) have been proposed. In this ar-
ticle, we propose a CNN-based fusion prediction network frame-
work, which can mine knowledge from multiple heterogeneous
ST data sources. It merges radar echo history observation data
with meteorological forecasts from NWP (even with restricted
useful information due to low ST resolution in this article) to
further improve the precipitation nowcasting. This architecture
is flexible enough to add relevant multisource inputs, which is an
interesting property for data fusion. In detail, a heterogeneous
spatiotemporal attention fusion prediction network (HST-AFP)
is proposed for precipitation nowcasting. It achieves a very
deep trainable residual attention fusion prediction network and
adaptively extracts and rescales more useful spatialwise and
temporalwise fusion features from multiple heterogeneous ST
data sources (NWP forecasts and radar echo observations, and
more if supplied). Experimental results show that the proposed
HST-AFP network can effectively mine complementary infor-
mation distributed across two heterogeneous data sources and
further enhance the precipitation nowcasting performance.

The contributions of this article are summarized as follows.
1) To achieve precipitation nowcasting by accurate radar

echo extrapolation, we propose an HST-AFP network to
mine knowledge from multiple heterogeneous ST data
sources, where multiscale residual learnings are integrated
to construct a very deep ST fusion prediction network.

2) An attention-based spatiotemporal diffusion (ASTD)
module is proposed to convert sparse ST tensor into a spa-
tialwise and temporalwise dense form and employed for
merging heterogeneous data with ST resolution distinction
and from different periods (the past and the future).

3) For achieving a high-to-low-level residual fusion predic-
tion, scalewise attention fusion (SWAF) module and deep
residual spatiotemporal attention (DRSTA) mechanism
are proposed to adaptively rescale and blend the multi-
source and multiscale ST discriminative features to update
the lower level features.

II. PRELIMINARY

Weather radar is one of the best instruments to monitor the
precipitation system. The intensity of radar echo is related to the
size, shape, state of precipitation particles, and the number of
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Fig. 1. Heterogeneous ST structure of data in our task. On the one hand, the radar echo history observation data and the NWP forecast data describe weather
situations for different periods (the past and the future). On the other hand, they have different spatial and temporal resolutions. We seek to extract information
from these heterogeneous data and produce a precipitation nowcasting.

particles per unit volume [21]. The intensity and distribution of
precipitation in a weather system can be judged by the radar echo
map. Actually, the rainfall rate values (mm/h) can be calculated
by the radar reflectivity values using the widely used Z–R
relationship. R is the radar reflectivity values and Z is the rain
rate values. It means that if we can predict the future radar echo
images, the goal of precipitation nowcasting can be achieved.
In this article, the heterogeneous input data are first introduced,
and then, the problem to be solved is defined.

A. Heterogeneous ST Data

As shown in Fig. 1, the model inputs comprise two types of
heterogeneous ST data: NWP forecast data (P ) and radar echo
observation data (R).

1) NWP Forecast Data (P ): The NWP forecast product
data with 3-km spatial resolution and 1-h temporal resolution
are from Global/Regional Assimilation and Prediction System
(GRAPES), which is a new-generation NWP system developed
by the China Meteorological Administration. In order to reduce
the memory cost, the region covering 300 km × 300 km of the
Pearl River Delta is selected, covering longitude ranges from
112◦ to 115◦ E and latitude from 22◦ to 25◦N. This area is located
in Southeastern China. NWP forecast data are composed of a
grid with 100 rows and 100 columns, while each grid cell corre-
sponds to a scope of 3 km× 3 km in the real world. Each data grid
carries simulation results of different meteorological parame-
ters. The GRAPES performs hourly numerical simulation at 0:00
and 12:00 (UTC) per day, and each simulation covers the next
24 h. Considering compute resources and GPU memory costs of
model training, some parameters that are closely related to pre-
cipitation are selected: cr, rain, and rh with five height channels
from 600 to 1000 hPa. We concatenate the seven parameter chan-
nels at time t and form a comprehensive NWP forecast data Pt.

2) Radar Echo Observation Data (R): The radar echo
dataset used in this article is a subset of the three-year weather
radar intensities provided by the Guangdong Meteorological
Bureau from 2017 to 2019. The radar CAPPI reflectivity images,
which have resolution of 300 × 300 pixels and also cover a
300 km × 300 km area. It is obtained from some S-band radars,
which are located at Guangzhou, Shenzhen, Shaoguan, etc. The
spatial range is the same as that of NWP forecast data. However,
the radar echo observation interval is 12 min, and the spatial
resolution is 1 km. It is clear that the two types of data have
different ST resolution (12 min versus 1 h, 1 km versus 3 km),
and they are heterogeneous in spatial and temporal (history
observations from the past versus simulation of the future).

B. Problem Formulation

Precipitation nowcasting is to blend the past observed radar
echo sequence and the future NWP simulation data to forecast a
fixed length of the future radar echo maps in a local region. In real
applications, the GRAPES supplies hourly numerical simulation
and the radar echo maps are taken from weather radars every 12
min, and nowcasting is usually done for the following 2 h, i.e.,
to predict the 10 frames ahead.

Suppose that the current moment is t = 0. Given the NWP
forecast P = [Pt]

m
t=−q (real 4-D sparse tensor) from previ-

ous q hours to future hours, the radar echo observation R =
[Rt]

0
t=−l+1 (3-D dense tensor) for the previous l observations

including the current one. Our target is to predict the most likely
length-k radar echo sequence in the future R̃ = [R̃t]

k
t=1 (3-D

dense tensor), where P , R, and R̃ share the same xy scope.
Specifically, our goal is to find a mapping such that

min
f

loss
(
R̃t]

k
t=1, Rt]

k
t=1

)

s.t. [R̃t]
k
t=1 = f

(
[Pt]

m
t=−q, [Rt]

0
t=−l+1

)
. (1)
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Fig. 2. Architecture of multisource deep residual attention fusion prediction network. ⊕ denotes the elementwise addition.

Here, we should emphasize the heterogeneous ST structure of
our data, as illustrated in Fig. 1. On the one hand, the NWP
forecast data (P ) and the radar echo observation data (R)
describe weather situations for different periods (the future
and the past). On the other hand, the sparse structure of (P ,
3 km and 1 h) distinguishes it from the dense radar input and
predicted radar output tensors (R and R̃, 1 km and 12 min). We
seek to mining knowledge from these heterogeneous data.

III. HST-AFP NETWORK

Considering ST heterogeneity and the high dimensionality
of the multisource ST sequences especially for multistep pre-
dictions, such prediction problem is nontrivial, unless the ST
features of the multisource heterogeneous data are captured and
fused well. This section presents the architecture of the proposed
HST-AFP network, as illustrated in Fig. 2. The main network
architecture is the multiencoder and fusion decoder structure.
The past radar echo maps and the NWP forecast data are con-
catenated as the inputs of model. Since the two data sources
have different temporal and spatial resolution, and they come
from different time domains (history observations versus future
simulations), two encoders (NWP forecast Encoder and Radar
echo Encoder) are designed, respectively, to process the two
input sequences and extract multiple scale ST representations
by stacked downscaling block, which usually halves the image
size and doubles the number of feature maps. In the NWP
forecast Encoder, the ASTD module is first proposed to deal
with ST resolution distinction. In the decoder part, SWAF and

DRSTA modules are proposed to allow our decoder network to
fuse discriminatively multilevel trend information from NWP
forecast data, and concentrate on more useful frames (time steps)
and spatial regions from radar echo sequence. DRSTA working
with SWAF adaptively rescale and blend the multisource and
multiscale ST features, which guide the update of the lower level
features and sequence prediction process with the multiscale
deep residual learning.

A. Multiencoder

A multisource deep residual attention fusion prediction net-
work introduces the NWP forecast encoder and the radar echo
encoder to convert the two source raw data into feature maps in
a unified space for further combination.

1) NWP Forecast Encoder: It is responsible for encoding
the NWP forecast data. We stack cr, rain, and rh with five
height channels along the z-direction for each time slot. These
meteorological parameters constitute the input [Pt]

m
t=−q =

P−1, P0, P1, P2 of the NWP encoder. It is noted that not only the
data from future 2-h prediction but also the data at the previous
1 h and the current time stamp are selected to supply more
weather and variation trend information. Pt is a sparse tensor
due to low spatial resolution (3 km) and low temporal resolution
(1 h). However, the prediction output is the radar echo map
sequence with high spatial resolution (1 km) and high temporal
resolution (12 min). In this article, not simple convolution-based
upsample but ASTD module is proposed first to deal with ST
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resolution distinction

P̂t = ASTD(Pt). (2)

More details about the ASTD module are explained in Section
III-D. Then, the feature extraction module is designed to extract
multiscale ST representations by stacked downscaling blocks,
which will be shown in detail.

2) Radar Echo Encoder: The radar echo observation encoder
is in charge of extracting the information based on the pre-
vious l observations including the current one: [Rt]

0
t=−l+1 =

R−9, R−8, . . ., R0. Since the ST resolution of the input radar
echo map is the same as the predicted output radar echo se-
quence, no ST diffusion module and but only feature extraction
module is required to obtain multiscale feature tensors. Here, the
feature extraction module shares the similar architecture with
that of the NWP encoder.

3) Feature Extraction Module: It is employed to extract mul-
tiscale ST features for the encoder. First, a 3-D convolution
(Conv3D) operation is used to extract the low-level (small-scale)
features. Then, two downscaling layers are designed to extract
middle- and large-scale ST feature maps for further blending in
the decoder part

[STER,L, STEP,L] = Conv3D
(
Rt, P̂t

)
(3)

where STER,L is the extracted low-level (small-scale) ST fea-
tures from the input past radar echo sequence Rt. STEP,L is
the low-level ST features extracted from the NWP ST diffusion
data P̂t. As shown in Fig. 2, STER,L and STEP,L features are
utilized for further encoding and also directly connected to the
decoder part by the outermost skip connection.

Subsequently, the encoder is composed of two consecutive
downscaling blocks DSL

[STER,M , STEP,M ] = DSL (STER,L, STEP,L) (4)

[STER,H , STEP,H ] = DSL (STER,M , STEP,M ) . (5)

In (4) and (5), DSL consists of a Conv3D with stride 2 fol-
lowed by a rectifier linear unit (ReLU) and a batch normalization
(BN) unit. The Conv3D layer achieves bilinear downsampling,
which halves the spatial size of input feature maps and doubles
the number of feature maps. The ReLU activation function is
used to model nonlinear relations. BN is a widely adopted
technique that enables faster and more stable training of a
network. STER,M and STEP,M features are the middle-level
(middle-scale) ST features extracted from the low-level features
STER,L and STEP,L, respectively. They are also the input
for further extracting the high-level (large-scale) ST features
STER,H and STEP,H . The middle-scale feature maps or re-
ceptive fieldsSTER,M andSTEP,M and the large-scale feature
maps STER,H and STEP,H will also connected to the corre-
sponding decoder layer via other two global skip connections
(second and innermost skip connections), respectively. To ease
the flow of multisource and multiscale ST feature information
and make the decoder to fuse residual information, both the
global/local skip connection and deep residual attention learning
is integrated in this article to achieve better prediction. The local

skip connection and deep residual attention learning will be
shown in the following subsections.

B. Fusion Decoder

In the fusion decoder part, multiscale ST feature information
extracted from the NWP forecast data and radar echo map
sequence in the encoder part will be adaptively rescaled and
fused to achieve a high-to-low level residual prediction. First,
4-stacked DRSTA block is proposed to construct the large-scale
residual prediction module RPL, which can extract and concen-
trate the discriminative high-level ST prediction features from
the deep feature maps of encoder STER,H

STDR,H = RPL(STER,H). (6)

The DRSTA block can achieve quite large depth and provide
very large receptive field size, which will be presented detailed
in Section III-C. For high-level ST encoder features STEP,H

from the NWP forecast data, the SWAF module is assigned to
obtain the high-level refined prediction feature STDP,H

STDP,H = SWAF(STEP,H) (7)

where the SWAF module provides an adaptive fusion method
to improve the prediction accuracy without increasing much
weight parameters. It consists of Conv3D layers, in which a
specific set of weights is trained to distinguish and fuse different
scale variation trend information from the NWP forecast data.

Then, the high-level radar prediction features STDR,H and
the NWP prediction features STDP,H are incorporated with the
original high-level radar encoder representations STER,H by
the innermost skip connection, and high-level residual attention
prediction RAPH is obtained

RAPH = STDR,H + STDP,H + STER,H . (8)

Similar to the multiencoding part, two consecutive upsample
fusion prediction modules are designed, including middle-scale
(middle-level) residual prediction moduleRPM and small-scale
(low-level) residual prediction module RPS

RAPM = RPM (RAPH) + STER,M + SWAF(STEP.M )
(9)

RAPL = RPS(RAPM ) + STER,L + SWAF(STEP.L)
(10)

where RAPM and RAPL are middle- and low-level resid-
ual attention prediction, respectively. RPM (RAPH) and
RPS(RAPM ) are extracted middle- and low-level fu-
sion prediction features, respectively. SWAF(STEP.M ) and
SWAF(STEP.L) are the middle- and low-level NWP refined
prediction features, respectively. As shown in (9) and (10),
the fusion prediction features will be blended with the NWP
refined prediction features and original radar encoder represen-
tations to produce lower level residual attention prediction by
the second and outermost skip connections. RPM and RPS

are the residual prediction module consisting of a upsample
module USL and stacked-DRSTA. USL is composed of three
operations: a DeConv3D, BN, and ReLU. The stacked DRSTA is
employed to adaptively concentrate and rescale more useful ST
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Fig. 3. DRSTA block.

fusion features. The global skip connections in the decoder part
blend the multisource and multiscale ST features to restore the
lost information and generate the forecast radar echo sequence.
Finally, we employ a 1×1×1 3-D convolution to generate the
residual prediction for the last radar echo frame and output the
predicted radar echo sequence R̃t

R̃t = R̃1. . .R̃10 = Conv1×1×1(RAPL +R0). (11)

It is verified that this operation can further enhance the whole
model’s forecasting ability for precipitation.

C. DRSTA Block

As shown in the decoder part, the stacked DRSTA block is pro-
posed to form a very deep trainable prediction network, which
adaptively rescales and discriminatively blends multisource and
multiscale ST sequence features. Inspired by the Residual in
Residual structure [50], local long and short skip connections are
integrating to construct very deep trainable networks. As shown
in Fig. 3, the DRSTA block consists of spatiotemporal attention
block (STAB), a Conv3D, and local long skip (LLS) connection.
The depth of representation is of crucial importance for feature
extraction, but simply stacking residual blocks hardly obtains
better improvements. LLS connection can stabilize the training
of very deep network and ease the flow of ST information across
STABs. The STAB further contains two Conv3D, 3-D tempo-
ral attention block (TAB), 3-D spatial attention block (SAB),
and local short skip (LSS) connection. LSS further allows the
main parts of the network to learn more informative residual
information. Such a deep residual attention structure with LLS
and LSS allows us to train a very deep network and blends
deep multisource and multiscale ST features to generate finer
features, which favors the high reconstruction and prediction
performance.

Instead of treating all the features equally, the TAB and the
SAB are proposed for temporalwise and spatialwise weightings
by modeling the interdependencies, which strengthen the dis-
criminative learning ability and the representational power of
deep networks. As shown in Fig. 3, the 3-D TAB contains two
3-D pooling descriptor branches for channelwise statistic, sig-
moid, and a short cut. The two 3-D pooling descriptor branches
further contain 3-D average pooling, two Conv3D and 3D max

pooling, and two Conv3D. Pooling descriptor gathers important
clue about distinctive object features to infer finer channelwise
attention. Both the average-pooled and max-pooled features are
simultaneously used to greatly improve representation power
of networks rather than using each independently [51]. The
shortcut eases the flow of information and allow abundant
low-frequency information to be bypassed. The simple gating
mechanism with sigmoid is utilized to learn the nonlinear in-
teraction between channels and capture dependencies from the
aggregated information. Meanwhile, the 3-D SAB consists of
two pooling branches (average and max) followed by concat
operation, Conv3D, BN unit, sigmoid, and shortcut. With tem-
poral and spatial attention, the residual component in the STAB
is adaptively rescaled.

Such TAB and SAB mechanisms allow our proposed network
to concentrate on more useful ST features, which adaptively
rescale and blend discriminative features across temporal se-
quences and spatial regions. As a result, the radar echo and NWP
forecast feature maps at different time steps and different spatial
fields have different impacts for precipitation forecasting.

D. ASTD Module

In this article, the NWP forecast dataPt is a sparse tensor with
low spatial resolution (3 km) and low temporal resolution (1 h).
However, the prediction output for precipitation nowcasting is
the radar echo map sequence with high spatial resolution (1 km)
and high temporal resolution (12 min). In this article, not simple
convolution-based upsample but ASTD module is proposed to
deal with ST resolution distinction. As shown in Fig. 4, the
ASTD contains a spatial diffusion module (SAM) and a temporal
diffusion module (TAM). Considering that different weather
parameters of the NWP forecast data at different time points
and different spatial regions have different variation trend, the
STAB is employed to design the SAM and the TAM. The SAM
consists of a STAB, DeConv, and DSL, by which the spatial
resolution is upscaled to 1 km. Subsequently, the TAM, which
contains a DSL and two STAB, is designed to increase the time
resolution and the time steps increase from 4 to 10.

By employing the attention-based nonlinear diffusion module
ASTD, not by the linear or manually nonlinear interpolation,
multilevel NWP ST features can be better extracted and fused
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Fig. 4. ASTD module.

to improve prediction performance, which can be verified from
experiment results.

IV. EXPERIMENTS

A. Experimental Setup

The radar echo dataset and the NWP forecast dataset used in
this article are the subset of the three-year weather radar inten-
sities and GRAPES _3km meteorological products provided by
Guangdong Meteorological Bureau from 2017 to 2019. Since
not every day is rainy and our nowcasting target is precipitation,
we select 356 rainy events to form our dataset. In order to reduce
the memory cost, the region covering 300 km × 300 km of the
Pearl River Delta is selected, covering longitude ranges from
112◦ E to 115◦E and latitude from 22◦N to 25◦N.

As shown in Fig. 2, our output is to predict the most likely
length-10 radar echo sequence in the future. The model inputs
comprise two types of heterogeneous ST data. The radar echo
input [RT ]

0
t=−9 employs the previous 2-h radar echo obser-

vations including the current one, and the input dimension is
10× 1× 300× 300, due to 1-km spatial resolution and 12-min
temporal resolution. The initial channel number of feature maps
is 1. The width and height of the initial input tensor are 300.
Another heterogeneous input is the NWP forecast data [PT ]

k
t=−Q

with seven parameter channels at each time slot from past 1 h to
future 2 h, and the input dimension is 4× 7× 100× 100 (sparse
ST tensor) due to 3-km spatial resolution and 1-h temporal
resolution. For preprocessing, the radar intensities are linearly
transformed to pixel values and are clipped to be between 0
and 255. Moreover, to alleviate the noise impact in training and
evaluation, the pixel values of some noisy regions are further
removed by applying K-means clustering to the monthly pixel
average [10]. Then, the radar echo sequence instances are sliced
using a 20-frame-wide sliding window, and each sequence is 20
frames long [10 for the input, and 10 for forecasting (2 h)]. The
total 356 precipitation events are split into a training set of 254
samples and a test set of 102 samples.

In this article, the proposed HST-AFP network is com-
pared with a typical optical-flow-based method (ROVER [17]),
two ingenious RNN-based methods (TrajGRU [1] and Pre-
dRNN++[32]), and two well-known CNN-based methods
(SmaAt-UNet [37] and SE-ResUNet [36]). Since the input of

TABLE I
SKILL SCORES (≥ 20 DBZ, LIGHT RAINFALL)

TABLE II
SKILL SCORES (≥ 35 DBZ, MODERATE RAINFALL)

other models contains only the radar echo maps, the proposed
HST-AFP with only radar echo input (HST-AFP _ Radar) is
also tested for fair comparison. The models are optimized by the
Adam optimizer [52] by setting β1 = 0.5 and β2 = 0.999. The
minibatch size is 8. The learning rate is initialized as 1× 10−4

and decreased by 0.7 at every five epochs. The frequencies
of different rainfall levels are highly imbalanced. Thus, the
weighted loss function B-MSE + B-MAE is designed [1], [33].
We train these models with early stopping on the sum of B-MSE
and B-MAE.

Four commonly used precipitation nowcasting metrics, in-
cluding critical success index (CSI), Heidke skill score (HSS),
probability of detection (POD), and false alarm rate (FAR), are
employed to evaluate the prediction accuracy [1]. Moreover, to
give an all-round performance evaluation, we calculate the skill
scores for three radar reflectivity thresholds (20, 35, 45 dBZ)
that correspond to different rainfall levels. For the skill scores at
a specific threshold τ , the pixel values in forecasting and ground
truth are first converted to 0/1 by thresholding with τ . Then, the
TP (prediction = 1, truth = 1), FN (prediction = 0, truth = 1),
FP (prediction = 1, truth = 0), and TN (prediction = 0, truth
= 0) are calculated. The four nowcasting metrics are defined as
follows:

CSI =
TP

TP + FP + FN

HSS =
2× (TP × TN − FP × FN)

(TP + FN)(FN + TN) + (TP + FP)(FP + FN)

POD =
TP

TP + FN

FAR =
FP

TP + FP
. (12)
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TABLE III
SKILL SCORES (≥ 45 DBZ, HEAVY RAINFALL)

TABLE IV
GPU MEMORY USAGE IN TRAINING STEP (BATCH SIZE = 1) AND THE

FORECAST TIME SPENT

B. Quantification Results

Tables I–III show the precipitation nowcasting metric results
for the 2-h prediction. R ≥ τ denotes the skill score at the τ
dBZ echo reflectivity threshold. In these tables, “↑” means the
higher value is better, and “↓” means the lower value is better.
The best result is also marked with bold face. It is clear that
among the typical models, the deep learning models outperform
the optical-flow-based ROVER model [17], and there is a gap
in evaluation indices. The nonlinear and convolutional structure
of the deep learning network is able to learn some complex
ST patterns in the dataset. However, it is difficult to update the
future flow fields reasonably in the optical-flow-based methods.
Among the deep learning models, the proposed HST-AFP net-
work mines knowledge from multiple heterogeneous ST data
sources and performs the best at the nearly four metrics over the
two newly proposed UNet-based methods and also two RNN-
based methods and especially has an obvious improvement at
the 35- and 45-dBZ thresholds. Note that even the HST-AFP _
Radar method can also achieve better prediction performance
compared with other models. At the 45-dBZ threshold, the CSI
of the proposed HST-AFP is over 0.019 higher than that of the
SE-ResUNet method (increase by about 12.9%) and also 0.012
higher than that of the PredRNN++ model (increase by about
7.8%). Also, the HSS is much improved, about by 10.8% than
that of the SE-ResUNet method, over by 5.5% than that of the
PredRNN++ method. It is shown that the proposed method has
better prediction performance for heavy rainfall, which is usually
a difficult task. On the other hand, comparing HST-AFP with
HST-AFP _ Radar, it is clear that the prediction accuracy can be
further enhanced by designing reasonable modules to effectively
extract and fuse the NWP forecast data (even with limited useful
information due to low ST resolution). At the 45-dBZ thresholds,
the important CSI can be further increased by about 2.5%, and
the HSS is also increased by about 2%.

In addition, the time spent during the forecast and GPU
memory usage for the model training with batch size 1 are also
compared in Table IV. It is clear that the proposed CNN-based

TABLE V
SKILL SCORES (≥20 DBZ, LIGHT RAINFALL)

TABLE VI
SKILL SCORES (≥35 DBZ, MODERATE RAINFALL)

TABLE VII
SKILL SCORES (≥45 DBZ, HEAVY RAINFALL)

method occupies less GPU memory and spends remarkably
shorter forecast time than two RNN-based methods. The forecast
time of the proposed HST-AFP _ Radar can be reduced by more
than 90% compared with that of the PredRNN++ method. The
time is also about two times less even the NWP forecast data are
added as the model input (HST-AFP).

C. Effect of ASTD, SAF, and DRSTA

We study the effects of the ASTD module, the SWAF module,
and the DRSTA block in this part.

1) ASTD Module: To demonstrate the effect of the proposed
ASTD, we replace it with a commonly used convolution-based
upsample module, and the test results are shown in Tables V–VII.
It can be seen that the prediction accuracy of the HST-AFP _
NASTD (non-ASTD version) decreases obviously, especially at
45-dBZ threshold. This indicates that converting sparse ST NWP
tensor into a spatialwise and temporalwise dense form is quite
effective, and simply upsample is not applicable to effectively
mine the ST information from the heterogeneous sparse NWP
tensor.

2) SWAF Module: We also show the effect of the SWAF.
When comparing the test results of HST-AFP and HST-AFP _
NSWAF (non-SWAF version), we find that prediction networks
with SWAF would perform better than that without SWAF,
which provides an adaptive fuse method to improve the pre-
diction accuracy without increasing much weight parameter.

3) DRSTA Block: We further demonstrate the effect of
DRSTA by comparing the skill scores of HST-AFP and HST-
AFP _ NDRSTA (non-DRSTA version). It is clear that the
skill score performance will be significantly decreased when
the DRSTA block is removed. It is vital to form a very deep
trainable prediction network and adaptively rescale and blend
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Fig. 5. DRSTA block.

multisource and multiscale ST features to achieve a high-to-
low-level residual fusion prediction.

In addition, visualization of the comparisons among the eval-
uated methods is shown in Fig. 5. Nearly, all the methods
predict accurately at the first moment. However, significant
differences can be observed as the lead time increased. In the
optical-flow-based ROVER method, forecasting scale is grad-
ually reduced, and echo intensity change is nearly ignored. In
deep learning methods, the small-scale details are gradually lost,
and the boundaries become smooth. The blurring effect may
be caused by the inherent uncertainties of the task. Although
the optical-flow-based method can give sharper predictions than
deep learning methods, more false alarms will be triggered and
less prediction precise is obtained in general. As time goes by,
TrajGRU tends to exaggerate the forecasting scale, and the major
echo region’s intensity tends to be overestimated. In SmaAt-
Unet and SE-ResUNet, the echo scale cannot be effectively
predicted, and some echo regions are lost. Compared with other
deep learning methods, the proposed HST-AFP method shows
the best performance. As time goes by, the intensity and the
position are closer to the truth images.

V. CONCLUSION

In this article, we investigated to make the precipitation now-
casting via a CNN-based fusion prediction network framework
extracting ST information from multiple heterogeneous ST data

sources. An ASTD module was proposed in the multiencoder
part to convert sparse NWP ST tensor into a spatialwise and
temporalwise dense form, which can be effectively extracted
by the ST encoder. In the fusion decoder part, the SWAF mod-
ule was designed to adaptively blend multisource ST features.
Moreover, the DRSTA mechanism was proposed to achieve
a very deep trainable residual fusion prediction network and
discriminatively rescale the multiscale temporalwise and spa-
tialwise fusion features for guiding a high-to-low-level residual
fusion prediction. We showed that the proposed HST-AFP has
noteworthy shorter forecast time but has better prediction per-
formance than two ingenious RNN-based and the newly pro-
posed two UNet-based precipitation nowcasting methods. The
challenges are that sharp and accurate predictions of the whole
radar maps in longer term predictions are quite difficulty. For
future work, we will employ this CNN-based fusion prediction
network framework to blend more heterogeneous data sources
(e.g., station OBS) to further improve prediction performance as
well as enhance the predicted details of the radar echo images.
We will also try to build an operational nowcasting system with
the Guangdong Meteorological Bureau.

REFERENCES

[1] X. Shi et al., “Deep learning for precipitation nowcasting: A benchmark
and a new model,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017,
pp. 5622–5632.



NIU et al.: HETEROGENEOUS SPATIOTEMPORAL ATTENTION FUSION PREDICTION NETWORK FOR PRECIPITATION NOWCASTING 8295

[2] J. Ritvanen, B. Harnist, M. Aldana, T. Mákinen, and S. Pulkkinen,
“Advection-free convolutional neural network for convective rainfall now-
casting,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 1654–1667, 2023.

[3] X. Dong, Z. Zhao, Y. Wang, J. Wang, and C. Hu, “Motion-guided global-
local aggregation transformer network for precipitation nowcasting,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5119816.

[4] B. N. Jones, “How machine learning could help to improve climate
forecasts,” Nature, vol. 548, no. 7668, pp. 379–380, 2017.

[5] D. Niu, J. Huang, Z. Zang, L. Xu, H. Che, and Y. Tang, “Two-stage
spatiotemporal context refinement network for precipitation nowcasting,”
Remote Sens., vol. 13, no. 21, 2021, Art. no. 4285.

[6] H. Che, D. Niu, Z. Zang, Y. Cao, and X. Chen, “ED-DRAP: Encoder-
decoder deep residual attention prediction network for radar echoes,” IEEE
Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 1004705.

[7] M. R. Ehsani, A. Zarei, H. V. Gupta, K. Barnard, E. Lyons, and A.
Behrangi, “NowCasting-Nets: Representation learning to mitigate latency
gap of satellite precipitation products using convolutional and recurrent
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 4706021.

[8] S. Ravuri et al., “Skilful precipitation NowCasting using deep gen-
erative models of radar,” Nature, vol. 597, no. 7878, pp. 672–677,
2021.

[9] R. Reinoso-Rondinel, M. Rempel, M. Schultze, and S. Trömel, “Na-
tionwide radar-based precipitation NowCasting—A localization filtering
approach and its application for Germany,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 15, pp. 1670–1691, 2022.

[10] X. Shi, Z. Chen, H. Wang, D. Y. Yeung, W. K. Wong, and W. C. Woo,
“Convolutional LSTM network: A machine learning approach for precip-
itation nowcasting,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2015,
pp. 802–810.

[11] J. Sun et al., “Use of NWP for NowCasting convective precipitation:
Recent progress and challenges,” Bull. Amer. Meteorol. Soc., vol. 95, no. 3,
pp. 409–426, 2014.

[12] G. Marchuk, Numerical Methods in Weather Prediction. Amsterdam, The
Netherlands: Elsevier, 2012.

[13] M. Tolstykh and A. Frolov, “Some current problems in numerical weather
prediction,” Izvestiya Atmos. Ocean. Phys., vol. 41, no. 3, pp. 285–295,
2005.

[14] S. Agrawal, L. Barrington, C. Bromberg, J. Burge, C. Gazen, and J. Hickey,
“Machine learning for precipitation nowcasting from radar images,” 2019,
arXiv:1912.12132.

[15] C. Z. Basha, N. Bhavana, P. Bhavya, and V. Sowmya, “Rainfall prediction
using machine learning & deep learning techniques,” in Proc. Int. Conf.
Electron. Sustain. Commun. Syst., 2020, pp. 92–97.

[16] M. G. Schultz et al., “Can deep learning beat numerical weather
prediction?,” Philos. Trans. Roy. Soc. A, vol. 379, no. 2194, 2021,
Art. no. 20200097.

[17] W. Woo and W. Wong, “Application of optical flow techniques
to rainfall nowcasting,” in Proc. 27th Conf. Severe Local Storms,
2014, poster 35, [Online]. Available: https://ams.confex.com/ams/27SLS/
webprogram/Paper254084.html

[18] R. Prudden et al., “A review of radar-based nowcasting of precipitation
and applicable machine learning techniques,” 2020, arXiv:2005.04988.

[19] W. C. Woo and W. K. Wong, “Operational application of optical flow
techniques to radar-based rainfall nowcasting,” Atmosphere, vol. 8, no. 3,
2017, Art. no. 48.

[20] M. Chantry, H. Christensen, P. Dueben, and T. Palmer, “Opportunities and
challenges for machine learning in weather and climate modelling: Hard,
medium and soft AI,” Philos. Trans. Roy. Soc. A, vol. 379, no. 2194, 2021,
Art. no. 20200083.

[21] L. Han, J. Sun, and W. Zhang, “Convolutional neural network for
convective storm nowcasting using 3-D doppler weather radar data,”
IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 1487–1495,
Feb. 2020.

[22] J. Xia et al., “Machine learning-based weather support for the 2022 Winter
Olympics,” Adv. Atmos. Sci., vol. 37, pp. 927–932, 2020.

[23] X. Yu and Y. Zheng, “Advances in severe convection research and operation
in China,” J. Meteorol. Res., vol. 34, no. 2, pp. 189–217, 2020.

[24] H. Chen et al., “A landslide extraction method of channel attention mech-
anism U-Net network based on sentinel-2A remote sensing images,” Int.
J. Digit. Earth, vol. 16, no. 1, pp. 552–577, 2023.

[25] B. Yu, Y. Li, Q. Sun, and J. Shi, “Calculation and analysis of multi-
scale earth gravity field parameters based on self-developed EIGEN-
5C model software,” J. Geovis. Spatial Anal., vol. 6, no. 2, 2022,
Art. no. 32.

[26] P. Dou, H. Shen, Z. Li, and X. Guan, “Time series remote sensing image
classification framework using combination of deep learning and multiple
classifiers system,” Int. J. Appl. Earth Observ. Geoinf., vol. 103, no. 8,
2021, Art. no. 102477.

[27] D. Niu, L. Diao, L. Xu, Z. Zang, X. Chen, and S. Liang, “Precipitation
forecast based on multi-channel ConvLSTM and 3D-CNN,” in Proc. Int.
Conf. Unmanned Aircr. Syst., 2020, pp. 367–371.

[28] A. G. Salman, Y. Heryadi, E. Abdurahman, and W. Suparta, “Single
layer multi-layer long short-term memory (LSTM) model with interme-
diate variables for weather forecasting,” Procedia Comput. Sci., vol. 135,
pp. 89–98, 2018.

[29] S. Yao et al., “A ConvLSTM neural network model for spatiotemporal
prediction of mining area surface deformation based on SBAS-InSAR
monitoring data,” IEEE Trans. Geosci. Remote Sens., vol. 61, 2023,
Art. no. 5201722.

[30] B. Klein, L. Wolf, and Y. Afek, “A dynamic convolutional layer for
short range weather prediction,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 4840–4848.

[31] Y. Wang, M. Long, J. Wang, Z. Gao, and P. S. Yu, “PredRNN: Recurrent
neural networks for predictive learning using spatiotemporal LSTMs,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 879–888.

[32] Y. Wang, Z. Gao, M. Long, J. Wang, and S. Y. Philip, “PredRNN: Towards
a resolution of the deep-in-time dilemma in spatiotemporal predictive
learning,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 5123–5132.

[33] L. Han, H. Liang, H. Chen, W. Zhang, and Y. Ge, “Convective precipitation
nowcasting using U-Net model,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2021, Art. no. 4103508.

[34] V. Bouget, D. Béréziat, J. Brajard, A. Charantonis, and A. Filoche, “Fusion
of rain radar images and wind forecasts in a deep learning model applied
to rain nowcasting,” Remote Sens., vol. 13, no. 2, 2021, Art. no. 246.

[35] J. G. Fernández and S. Mehrkanoon, “Broad-UNet: Multi-scale feature
learning for nowcasting tasks,” Neural Netw., vol. 144, pp. 419–427, 2021.

[36] K. Song et al., “Deep learning prediction of incoming rainfalls: An op-
erational service for the city of Beijing China,” in Proc. Int. Conf. Data
Mining Workshops, 2019, pp. 180–185.

[37] K. Trebing, T. Staczyk, and S. Mehrkanoon, “SmaAt-UNet: Precipitation
nowcasting using a small attention-UNet architecture,” Pattern Recognit.
Lett., vol. 145, pp. 178–186, 2021.

[38] P. Esser, E. Sutter, and B. Ommer, “A variational U-Net for conditional
appearance and shape generation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 8857–8866.

[39] S. Guo, Z. Yan, K. Zhang, W. Zuo, and L. Zhang, “Toward convolutional
blind denoising of real photographs,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 1712–1722.

[40] K. G. Ghosh, “Analysis of rainfall trends and its spatial patterns during
the last century over the gangetic West Bengal, Eastern India,” J. Geovis.
Spatial Anal., vol. 2, no. 2, 2018, Art. no. 15.

[41] C. Bai, D. Zhao, M. Zhang, and J. Zhang, “Multimodal information fusion
for weather systems and clouds identification from satellite images,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 15, pp. 7333–7345,
2022.

[42] K. S. Chung and I. A. Yao, “Improving radar echo Lagrangian extrapola-
tion nowcasting by blending numerical model wind information: Statistical
performance of 16 typhoon cases,” Monthly Weather Rev., vol. 148, no. 3,
pp. 1099–1120, 2020.

[43] B. Wang et al., “Deep uncertainty quantification: A machine learning
approach for weather forecasting,” in Proc. 25th ACM SIGKDD Int. Conf.
Knowl. Discov. Data Mining, 2019, pp. 2087–2095.

[44] S. S. Yoon, “Adaptive blending method of radar-based and numerical
weather prediction QPFs for urban flood forecasting,” Remote Sens.,
vol. 11, no. 6, 2019, Art. no. 642.

[45] C. Cheng, M. Chen, J. Wang, F. Gao, and H. Yang, “Short-term quantita-
tive precipitation forecast experiments based on blending of nowcasting
with numerical weather prediction,” Acta Meteor. Sinica, vol. 71, no. 3,
pp. 397–415, 2013.

[46] H. H. Lin et al., “Multi-weather evaluation of nowcasting methods includ-
ing a new empirical blending scheme,” Atmosphere, vol. 11, no. 11, 2020,
Art. no. 1166.

https://ams.confex.com/ams/27SLS/webprogram/Paper254084.html
https://ams.confex.com/ams/27SLS/webprogram/Paper254084.html


8296 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[47] G. Wang, W.-K. Wong, Y. Hong, L. Liu, J. Dong, and M. Xue, “Improve-
ment of forecast skill for severe weather by merging radar-based extrap-
olation and storm-scale NWP corrected forecast,” Atmos. Res., vol. 154,
pp. 14–24, 2015.

[48] Y. A. Geng et al., “LightNet: A dual spatiotemporal encoder network model
for lightning prediction,” in Proc. 25th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Mining, 2019, pp. 2439–2447.

[49] Y. A. Geng et al., “A deep learning framework for lightning forecasting
with multi-source spatiotemporal data,” Quart. J. Roy. Meteorol. Soc.,
vol. 147, no. 741, pp. 4048–4062, 2021.

[50] Y. Zhang, K. Li, K. Li, L. Wang, B. Zhong, and Y. Fu, “Image super-
resolution using very deep residual channel attention networks,” in Proc.
Eur. Conf. Comput. Vis., 2018, pp. 286–301.

[51] S. Woo, J. Park, J. Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

Dan Niu was born in Jiangsu, China, on April 16,
1986. He received the Ph.D. degree in verification
technologies for nonlinear circuits and systems from
the Graduate School of Information, Production and
Systems, Waseda University, Shinjuku, Japan, in
2013.

He is currently an Associate Professor with the
School of Automation, Southeast University, Nan-
jing, China. He is also a member of Key Labora-
tory of Measurement and Control of CSE, Ministry
of Education, Nanjing, China. His research interests

include artificial intelligence (AI)-based weather forecasting method and AI for
electronic design automation.

Hongshu Che was born in Harbin, China. He re-
ceived the B.E. degree in measurement and control
technology and instruments from Hangzhou Dianzi
University, Hangzhou, China, in 2019, and the M.E.
degree in pattern recognition and intelligent systems
from Southeast University, Nanjing, China, in 2022.

He is currently an Algorithm Engineer with Al-
ibaba Group, Hangzhou. His research interests in-
clude time-series analysis, spatiotemporal sequence
forecasting, and data mining.

Chunlei Shi was born in Tongling, China. She re-
ceived the B.E. degree in automation from Shandong
University, Jinan, China, in 2018, and the M.E. de-
gree in artificial intelligence from the Joint Grad-
uate School of Southeast University and Monash
University, Suzhou, China, in 2023. She is currently
working toward the Ph.D. degree in control science
and engineering from with the School of Automation,
Southeast University, Nanjing, China.

Her current research interests include artificial in-
telligence for weather spatiotemporal sequence pre-

diction and time-series analysis.

Zengliang Zang was born in Jiangsu, China, on February 20, 1977. He received
the Ph.D. degree in Meteorology from College of Meteorology and Oceanogra-
phy, PLA University of Science and Technology, Nanjing, China, in 2005.

He is currently a Professor with the College of Meteorology and Oceanogra-
phy, National University of Defense Technology, Changsha, China. His research
interests include numerical simulation and data assimilation for the atmospheric
chemistry model.

Hongbin Wang was born in Shanxi, China, on Au-
gust 23, 1985. He received the Ph.D. degree in atmo-
spheric physics and atmospheric environment from
the College of Atmospheric Sciences, Lanzhou Uni-
versity, Lanzhou, China, in 2013.

He is currently the Deputy Chief of the Scientific
Research Team with the Nanjing Joint Institute for
Atmospheric Sciences, Nanjing, China. His research
interests include artificial-intelligence-based weather
forecasting methods and satellite remote sensing.

Xunlai Chen was born in Henan, China, on April 20,
1979. He received the Ph.D. degree in meterology
from the Department of Atmospheric Science, Sun
Yat-sen University, Guangzhou, China, in 2007.

He is currently a Senior Engineer of Meteorol-
ogy with Shenzhen Meteorological Bureau, Shen-
zhen, China. His research interests include artificial
intelligence for nowcasting and numerical weather
prediction.

Qunbo Huang was born in Anhui, China, on May 10, 1988. He received the
Ph.D. degree in computer science and Technology from National University of
Defense Technology, Changsha, China, in 2018.

He is currently an Engineer with the Unit of 93110, People’s Liberation Army,
Beijing, China. His research interests include numerical simulation and satellite
data assimilation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


