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Hyperspectral Target Detection via Global
Spatial-Spectral Attention Network and
Background Suppression

Xiaoyi Wang *“, Liguo Wang

Abstract—The accuracy of hyperspectral target detection is of-
ten affected by the problems of spectral variation and complex
background distribution. Inspired by the powerful representa-
tional ability of deep learning, we proposed a three-dimensional
(3-D) convolution-based global spatial-spectral attention network
(GS?A-Net) to deal with spectral variation in hyperspectral images
(HSIs). GS*A-Net uses 3-D convolution kernels of different sizes
to capture local spatial and spectral features to achieve multiscale
information interaction. Different from the previous 2-D attention
mechanisms, GS?A-Net simultaneously considers the information
in the spatial and spectral dimensions, and creates a weight map
consistent with the size of the original HSI. Furthermore, we pro-
posed a new background suppression strategy based on the spectral
angle mapping to achieve more accurate target detection, which
can preserve the targets as much as possible when suppressing
the background. The method was validated through experiments
on five real-world HSI datasets. Compared with several classical
and deep-learning-based methods, the proposed method exhibits
greater detection accuracy.

Index Terms—Background suppression, global spatial-spectral
attention network (GS?A-Net), hyperspectral target detection
(HTD), spectral variation.

1. INTRODUCTION

YPERSPECTRAL sensors record hyperspectral images
H (HSIs) with hundreds of continuous and narrow bands,
reaching a spectral resolution of around 10 nm. Due to its
powerful representational ability, HSIs have been widely used
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in land cover classification [1], [2], target detection [3], [4],
anomaly detection [5], [6], image unmixing [7], [8], and change
detection [9]. Hyperspectral target detection (HTD) is one of
the most challenging issues in these applications due to the
limited amount of known information about target spectra and
the background. Indeed, HTD can be regarded as a problem of
weakly supervised binary classification.

Over the past few decades, HTD has received extensive at-
tention. The simplest methods are distance-based ones, such as
spectral angle mapping (SAM). Other classical HTD methods in-
clude statistic-based, subspace-based, and representation-based
methods.

In statistic-based methods, the most typical methods are the
spectral matched filter (SMF) [10], the adaptive coherence es-
timator (ACE) [11], and the constrained energy minimization
(CEM) [12]. Both SMF and ACE first estimate the covariance
matrix and mean value of HSI, and then use the generalized
likelihood ratio test to achieve target detection. The core of the
CEM method is to constrain the energy in the target direction by
a designed linear filter while minimizing the energy in the other
directions. To effectively distinguish between the background
and targets, several enhanced versions of CEM were developed.
For example, Zou and Shi [13] proposed a hierarchical CEM that
uses a layer-by-layer filtering strategy to suppress background.
Chen et al. [14] used an extended morphological attribute profile
to initially separate the background and the targets, and proposed
a diverse-direction CEM to further reduce the interference from
the background.

With respect to subspace-based methods, Chang [15] pro-
posed an orthogonal subspace projection (OSP) method. It
assumes that the target subspace is orthogonal to the back-
ground subspace and maximizes the signal-to-noise ratio (SNR)
of the target subspace to achieve target detection. Based on
OSP, Capobianco et al. [16] proposed a semisupervised graph-
based kernel OSP method, which uses the contextual selec-
tion of unlabeled samples to approximate the marginal dis-
tribution. Without inverting matrices, Song and Chang [17]
used a recursive technique to perform OSP. To solve the
interference problem of complex background, Chang and
Chen [18] integrated data segmentation and low-rank and
sparse matrix decomposition (LRSMD) to extend OSP for
performance enhancement. Subsequently, Chen and Chang
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[19] proposed a background-annihilated target-constrained
interference-minimized filter. Specifically, data sphering,
LRSMD, and component decomposition analysis are first used
to annihilate the background. Then, OSP is used to enhance
target detectability, while CEM is exploited to suppress the
background.

In recent years, the representation-based theory has shown
reliable performances in HTD. Chen et al. [20] used the global
target and local background dictionaries to sparsely represent
each pixel, and the reconstruction residual was used to de-
tect the targets. Zhang et al. [21] considered two situations
when the target is absent or present and proposed a sparse
representation-based binary hypothesis model. Li et al. [22]
proposed a combined sparse and collaborative representation
(CSCR) method for HTD, which considers that the targets
have global sparsity and the background can be cooperatively
represented by adjacent pixels. Bitar et al. [23] applied LRSMD
theory for HTD and proposed a sparse and low-rank matrix
decomposition (SLRMD) method. Cheng and Wang [24] used
a locality-constrained linear coding method to create a compact
background dictionary and proposed a union dictionary-based
target detector. Zhao et al. [25] proposed a weighted Cauchy
distance graph and local adaptive collaborative representation
detection method, which fully considered the spatial information
of HSI.

Due to the powerful feature extraction ability, deep-learning-
based methods have received extensive attention. Based on
autoencoder and SAM, Xie et al. [26] proposed a band selection
method to remove the redundant information in HSI. Specifi-
cally, the authors matched the compressed latent feature with the
original HSI band-by-band and selected the bands with smaller
spectral angles to form the optimal subset. Zhang et al. [27]
proposed an HTD network (HTD-Net). It uses an autoencoder to
generate pseudotarget pixels and linear prediction to select back-
ground pixels. Then, the background-target and target—target
pixel pairs are input into a similarity discrimination convolu-
tional network, and the similarity score is used as the detection
result. Zhu et al. [28] proposed a sparse representation-based
strategy for background sample selection and linearly mixed the
prior target and background samples to generate sufficient target
samples. Furthermore, they proposed a two-stream convolution-
based network (denoted as TSCNTD) to learn the differences
between the background and targets. Similarly, Rao et al. [29]
proposed a two-stream transformer-based network. In the sam-
ple construction method, the authors considered the subpixel
targets and mixed background pixels. To reduce the negative
impact of spatial and spectral redundant information, Shi et al.
[30] introduced region-of-interest feature transformation and
multiscale-spectral-attention module for HTD. Meanwhile, the
shortcut and long-term connections are applied to improve the
training ability of the network.

Due to mixed pixel effect, atmospheric attenuation, adjacent
pixel effect, and other factors, the spectral variation is a common
issue in HSI processing. Spectral variation may weaken the spec-
tral information of ground objects, making it difficult to recog-
nize them based on their spectral characteristics. Currently, only
a few studies have focused on this issue. For instance, Ren et al.
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[31] used the orthogonal subspace unmixing method to address
spectral variation. To solve the spectral registration problem be-
tween multisource datasets, Ye et al. [32] proposed a Bayesian-
based super-resolution model. Li et al. [33] introduced the
first-order neighborhood information into a graph convolutional
network to alleviate the initial feature deviation caused by spec-
tral variation. The above methods reduce the impact of spectral
variation to a certain extent, but they fail to fully utilize the abun-
dant spatial and spectral information of the original dataset. Ad-
ditionally, although the distance-based HTD methods are simple
to operate, they are not able to separate the background and target
satisfactorily.

To solve the above problems, this article proposes a novel
global spatial-spectral attention network (GS?>A-Net), coupled
with a SAM-based background suppression strategy. Specifi-
cally, to fully utilize the correlation of the adjacent space and
band in HSIs, the three-dimensional (3-D) convolution ker-
nels with different sizes are used to capture multiscale local
spatial-spectral information. The 3-D convolutional neural net-
works (CNNs) have been shown to be effective in the field
of HSI processing. For example, Mei et al. [34] proposed a
3-D convolutional autoencoder that maximizes the extraction
of spatial and spectral information from HSIs, eliminating the
need for labeled training samples. Roy et al. [35] devised a
hybrid spectral CNN by combining 2-D and 3-D CNNs. They
considered that the 3-D CNN enables the joint representation of
spatial and spectral information, while the 2-D CNN can enhance
the representation of spatial characteristics. Based on 3-D CNN,
Ahmad et al. [36] integrated transfer learning and active learning
into a unified framework for HSI classification. Simultaneously,
attention networks have gained substantial recognition and have
been widely applied to remote sensing image processing. Hang
etal. [37] employed spatial and spectral attention subnetworks to
individually represent the spatial and spectral features of HSIs.
Wu et al. [38] proposed a residual attention mechanism that
integrated channel and feature map attentions for impedance
inversion in seismic data. Guo et al. [39] sequentially injected
spectral and spatial attention modules into a CNN to enhance
the discrimination ability. Different from the previous attention
mechanisms by 2-D convolution and pooling layers, the pro-
posed GS?A-Net consists of 3-D convolution layer, 3-D dropout
layer, 3-D batch normalization (BN) layer, and the activation
function. The 3-D convolution layer enables the interaction of
local spatial-spectral information. The pooling layer is dis-
carded to avoid losing useful features. The GS?>A-Net creates
a 3-D attention map consistent with the size of the original
HSI, which is generated by a Sigmoid function [40], and a
skip-connection method is introduced to enhance the stability
of the network. The proposed GS?A-Net can be regarded as a
feature extraction process from local to global. In the proposed
SAM-based background suppression strategy, a simple SAM
strategy is used to generate two versions of the initial detec-
tion maps. Subsequently, guided filtering is used to combine
the advantages of different initial detection maps, which can
suppress the background while preserving the targets. Finally,
a nonlinear exponential function is used to further suppress the
background.
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Fig. 1. Framework of the proposed GS>A-Net.
In summary, this article aims at adding to the state-of-the-art TABLET R
of HTD. The two main contributions are as follows. ARCHITECTURE FEATURES OF THE PROPOSED GS“A-NET
2 . . . .
1) A QS A-Net: Using 3-D 'convolutlon.layer.s to 1ntegrate Pathway | Component
spatial and spectral attention mechanisms into a unified 3D Conv
network, the network extracts spatial-spectral informa- Block 1 3-D BN
tion to a larger extent. Moreover, convolution kernels 3-D ;)rohp"”t
. . . an
of different sizes are used to adapt to multiscale local 3D Conv
spatial information. This network can effectively solve the Block 2 3-DBN
spectral variation problem in HSIs. Tanh
2) A background suppression strategy based on SAM: This Block 3 S;?DC];’;V
strategy inherits the brevity of SAM, but with the intro- Tanh
duction of guided filtering and a nonlinear exponential 3-D Conv
function, it preserves the targets while jointly suppressing Block 4 ng BI_\;
igmoi

the background.

The rest of this article is organized as follows. Section II
introduced the proposed GS?A-Net and SAM-based background
suppression strategy in detail. Section III provides the experi-
mental results based on five real HSI datasets. In Section IV,
the proposed method and results are further discussed. Finally,
Section V concludes this article.

II. PROPOSED METHOD

In this section, we provide a solution to deal with the spectral
variation issue by GS?A-Net, which is able to enhance the ability
to identify targets. Furthermore, a SAM-based background sup-
pression strategy is proposed to suppress the background while
preserving the targets.

Let us define a 3-D HSI Y € REZ*WXD \where H, W, and D
represent the height, width, and the number of bands, respec-
tively. There are L = H x W pixels in the HSI, and the 2-D
form of Y can be expressed as Y = [y1,y2,...,¥i,---,¥i] €
RP*L The prior targetis t € RP*!. In this article, all methods
are preceded by the max—min normalization for datasets. The
specific calculation method is given as follows:

Y —min(Y)
~ max(Y) — min(Y)

(D

where min(Y) and max(Y) are the minimum and maximum
values of Y, respectively.

A. Global Spatial-Spectral Attention Network

The framework and architecture of the proposed GS?A-Net
are shown in Fig. 1 and Table I, respectively. The GS>A-Net is an

unsupervised end-to-end network, which includes four blocks.
The 3-D convolution is used to extract local spatial-spectral
information. As the name suggests, a 3-D convolution is a small
cube that can slide in three directions (i.e., height, width, and
band) on the 3-D HSI. There are several important parameters of
the 3-D convolution that need to be set, including the length £, the
width w, the depth d, the stride s, and the padding p for different
directions. Therefore, the output feature by 3-D convolution can
be expressed as follows:

hou = (hin —h+ 2ph)/8h +1
Wout = (win —w+ pr)/sw +1
dout = (din —d+ 2pd)/8d +1

in which subscripts “in” and “out” indicate the input and output
size of features in different directions. The parameters p; and
sp, are the padding and stride along the length direction, and
the other two directions are similar. In this article, the 3-D
convolution kernels of different sizes are used to capture local
spatial-spectral features at different scales and achieve multi-
scale information interaction. Specifically, the kernel sizes of
7x7,5x%x5,3x3,and 1 x 1 are used to gradually extract
local spatial features and adapt to spatial correlations at different
scales. The corresponding kernel sizes in the spectral direction
are 5, 5, 5, and 3 in the four 3-D convolutions, respectively (the
parameters for 3-D convolutions in the four blocks are shown
in Table II). To take full advantage of the abundant spatial and
spectral information of HSI, we set the stride to 1 in all directions,
adjusting the padding so that the output features of each layer
are consistent with the size of the original HSI.

@)
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TABLE IT
PARAMETER SETTINGS OF THE FOUR 3-D CONVOLUTIONS IN THE PROPOSED

GS?A-NET

Pathway | Kernel size Stride | Padding

Block 1 [7,7,5] [1,1,1] ] [3,3,2]

Block 2 [5,5,5] [1,1,1] ] [2,2,2]

Block 3 [3,3,5] [, 1,17 | [1,1,2]

Block 4 [1,1,3] [1,1,1] | [0,0,1]

To avoid the problems of solution gradient explosion and dis-
appearance caused by the internal covariance shift and accelerate
the convergence speed of network, a 3-D BN is performed after
each layer of 3-D convolution. The output of 3-D BN layer can
be expressed as follows:

z=7(z)+p 3)

where z and z represent the input and output features of 3-D
BN layer, and « and 3 are the leachable parameters. The 3-D
BN layer is also conducted in the three dimensions of the data.
There are fewer parameters in the convolutional network; hence,
the dropout layer is not as effective as that in a fully connected
network. However, introducing the dropout layer in a lower layer
of network may cause noisy input to subsequent networks while
avoiding overfitting [7]. Hence, we only apply the 3-D dropout
layer after the BN layer in the first block, with a dropout rate of
0.4.

As shown in Fig. 1, the Tanh function and the Sigmoid
function are used as activation functions to increase the nonlinear
expressive ability of the network

e —e?
Tanh(z) = — 4
anh(z) = S @
Sigmoid(z) = ! 3)
¢ Clte®

It is worth noting that the Tanh function is used in the hidden
layers (i.e., blocks 1-3), while the Sigmoid function is used in
the output layer (i.e., block 4). Using the Tanh function in the
hidden layer helps to accelerate the convergence of the network
and to partially avoid the gradient disappearance problem. The
Sigmoid function ensures that the range of the generated 3-D
attention map is within [0, 1]. After the four blocks, a 3-D
attention map A € R"W>H*D jg obtained. Subsequently, the
attention map is multiplied by the original HSI pixel-by-pixel,
and a skip connection is introduced to obtain the final output. The
skip connection not only makes the network easier to train but
also improves the network stability. The output of the GS>A-Net
can then be regarded as follows:

Y=Y -A+Y- (6)

To train the network, one needs to minimize the reconstruction
error. In this article, the classical mean square error is used to
measure the loss between Y and Y

_ 2
l0SSmse = HY — YH2. @)

Taking dataset I (specific features are described in Section IV-
A) as an example, Fig. 2 shows the normalized target spectral
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Fig. 2.
an HSI.

(a) Original and (b) reconstructed normalized target spectral curves of

curves of the original and reconstructed HSIs. It can be obvi-
ously seen that the reconstructed target spectral curves are more
compact compared with that of the original HSI.

B. Background Suppression Strategy Based on SAM

Through the above GS2A-Net, anew HSI Yis obtained, which
has been corrected for the spectral variation problem, and the
new target spectrum t is extracted from Y. In this article, we
use the simple and effective SAM procedure as the detection
approach. However, SAM is not able to suppress the background
well. To solve this problem, an improved strategy is considered,
with the following three steps.

1) Initial Detection Maps: Recalling that the formula of SAM

yit
GO,

Targets are expected to have smaller spectral angular distances
from the prior target, while background pixels result in larger
values. Therefore, we use the reciprocal method and the expo-
nential method to obtain two initial detection maps

SAM(y;) = cos ! (8)

1
N SAMG) ®
I, = e(~SAM(7:)) (10)

Looking at Fig. 3, one may see that I} has a lower false alarm
rate, while the targets in I, are brighter.

2) Target Enhancement: In this step, the guided filtering ap-
proach [41] is used to combine the advantages of these two initial
detection maps. Specifically, to enhance the targets without
increasing the false alarm rate as much as possible, we use I; as
the input map and I, as the guided map. The two initial detection
maps are first normalized. Moreover, two important paraments
need to be preset: the local window radius (set to r= 1) and
regularization parameter (¢ = 4 x 10™4) (see Section IV-E).
The output of the guided filtering procedure is

q(l) = akIQ(i) + bg, 1 € wy, (11)

where wy, is the number of pixels in the local window, (equal
to (2r+1)?). aj, and by, are two linear coefficients, which are
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Fig. 3.

computed as follows:
covy(I1,1s)
ap = 2 . -
o“+¢
br = p1 — appz

(12)
13)

where j11 and po are the mean values of the local window in I
and I, respectively, while o is the variance of the local window
in I, and covy (.) represents the covariance operation.

Because each pixel may be contained in multiple windows,
the average is used to obtain the final output

q(i)=a;12(i)+b;

where @; and b; are the average coefficients of all the local
windows, including the ith pixel.

3) Background suppression: Although the second step en-

hances the targets, it also introduces an undesired false alarm

rate. Therefore, an exponential nonlinear function is used to
further suppress the background. The final detection map is

D=(1-¢9q (15)

(14)

where 1 — e~ 9 canberegarded as a weight map. The background
pixels are assigned smaller weights and the targets are assigned
larger ones.

III. EXPERIMENTS
A. Data Description

Five real-world HSIs were used in the experiments to prove the
performances of the proposed techniques. False-color images as
well as the corresponding ground-reference maps for these five
HSI datasets are shown in Fig. 4.

1) Datasets I and II: Datasets 1 and II were collected by
airborne visible/infrared imaged spectrometer (AVIRIS)
from San Diego Airport, California, USA. Both datasets
I and II have a spatial size of 100 x 100 pixels, and the
spatial resolution is 3.5 m. After discarding lower SNR and
water absorption bands, the number of considered bands is
189. There are three aircraft as the targets, which cover 134
and 58 pixels in datasets I and II, respectively. In datasets
Iand II, the 11th and 21st target pixels are selected as the
priori spectrums, respectively.

9015

Guided filtering

l Final map

Further background suppression

Framework of the proposed SAM-based background suppression strategy.

(b2)

(as)

(b5)

Fig. 4. Five real-world HSI datasets used in the experiments. (al)—(a5) are
false-color images (bands 37, 18, and 8 as RGB) for datasets -V, respectively.
(b1)—(b5) are the corresponding ground-reference maps of the five datasets.
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2) Dataset I1I: Dataset III was collected by AVIRIS from
Gulfport Airport, Mississippi, USA. It covers 100 x 100
pixels with a spatial resolution of 3.4 m. There are 191
high SNR bands. The targets are three aircraft containing
88 pixels. The 57th target pixel is selected as the priori
spectrum.

3) Dataset 1V: Dataset IV was collected by AVIRIS from
Texas Coast, USA. Itcovers 100 x 100 pixels with a spatial
resolution of 17.2 m and contains 204 high SNR bands.
The targets are several buildings containing 67 pixels. The
25th target pixel is selected as the priori spectrum.

4) Dataset V: The last dataset was collected by ProSpecTIR-
VS sensor from Avon, New York, USA. It covers
100 x 100 pixels with a spatial resolution of 1 m. There
are 360 high SNR bands. The targets are several blue tarps
containing 43 pixels. The 30th target pixel is selected as
the priori spectrum.

B. Experimental Setup

1) Implementation Details: Statistic-based methods ACE
[11] and CEM [12], subspace-based method OSP [15],
representation-based methods CSCR [22] and SLRMD [23],
and deep-learning-based method HTD-Net [27] and TSCNTD
[28] were taken as the benchmark methods. All these methods
were implemented on an Intel Core (TM) 19-8950HK central
processing unit with 32 GB RAM. The HTD-Net, TSCNTD,
and the proposed method were implemented by Python 3.7.11
and Pytorch 1.10.0, while the other benchmark methods were
implemented by MATLAB 2012. Both ACE and CEM are
nonparametric methods. In the OSP, the density peak-based
clustering method was applied. The cluster number was set
to 8. By excluding the class closest to the prior target, we
considered the remaining seven classes as the background. From
each background class center, we selected the 20 nearest pixels
to form the background endmembers. In the CSCR, the tradeoff
parameters were set to A = 0.1 and 5 = 0.01 for all datasets.
The dual-window sizes of the CSCR were set to (5, 17), (9,
13), (3, 5), (13, 15), and (15, 19) for datasets I-V, respectively.
The tradeoff parameters of SLRMD were set to A = 0.01 and
B = 1 for all datasets. There is a target generation network and
a similarity discrimination convolutional network in HTD-Net.
For all datasets, the number of pseudotarget samples was set to
100 with 5 epochs in the target generation network. The learning
rare and iterations were set to 0.0001 and 200 in the similarity
discrimination convolutional network. According to Zhu et al.
[28], the TSCNTD used a batch size of 256 and a learning rate of
0.0001, and the number of the selected background samples was
1000. In the proposed GS*A-Net, the learning rate and iterations
were set to 0.0001 and 150 for all datasets.

2) Evaluation Indices: The first index is receiver operating
characteristic (ROC) curve presenting the probability of false
alarm Py and the probability of detection Py for a given threshold
7. Accordingly, the 2-D ROC curves of (Pf, P;) and (7, Py)
[42], and 3-D ROC curve of (Py, 7, Py) [43] are used. The
second index is the area under the ROC curve (AUC) value
[44]. A well-performing detector should produce larger AUC
(Pr, Py) value and smaller AUC (7, Py) value. In addition, to
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conduct a comprehensive analysis of the performances of differ-
ent methods, we introduced AUCgsg, AUCTp, and AUCsNpR
to measure the background suppressibility, target detectability,
and signal-to-noise probability ratio, respectively [45].

Finally, the box-whisker plot [46] is used to visually show
the degree of separation between the background and targets.
The box-whisker plot is represented by the normalized detection
statistical range of the background and targets. Ideally, there
is a larger distance between the background and target boxes.
Meanwhile, smaller background box can demonstrate that the
background is well suppressed.

C. Detection Performance of Different Methods

Fig. 5 shows the detection map of the different methods
applied to the five selected datasets. For dataset I, OSP, CSCR,
and SLRMD detect the three target aircraft, while they fail to
adequately separate the background and targets. Although ACE
can suppress the background well, the important target is also
hidden. Due to heavy reliance on the reliability of constructed
background-target samples, HTD-Net cannot preserve the com-
plete shape of aircraft, and a large number of background pixels
are incorrectly detected as targets. While TSCNTD shows a
greater detection accuracy than HTD-Net, it still struggles to
separate background from anomalies because of uncertainties in
manually extracting background samples. Fig. 5(h1) illustrates
that the topmost airplane is merged with the background and
lacks clear visibility. The CEM method has weaker performance
in terms of both target detection and background suppression.

For the remaining datasets, the representation-based methods,
i.e., CSCR and SLRMD, cannot suppress the background. The
main reason is that CSCR and SLRMD use local and global
background dictionaries to represent the background, respec-
tively. When the background dictionary is incomplete or mixed
with target noise, the background cannot be well represented,
and the false alarm rate becomes larger. ACE can barely separate
the background and targets. The main reason for this is that ACE
assumes that the background and targets have the same mean and
covariance, and when there is spectral variation, the difference
between the background and the prior target is small. For datasets
IL, IV, and V, OSP and the proposed method can detect most of
the target pixels, while the proposed method can better suppress
the background. Furthermore, some methods are sensitive to
noise. For example, for dataset II, there is obvious horizontal
noise in the detection maps by CEM, OSP, CSCR, HTD-Net,
and TSCNTD. Overall, by visual inspection, it can be clearly
seen the proposed method cannot only effectively extract the
targets but also suppress the background.

Tables III and IV and Figs. 6 and 7 quantitatively show
the detection performance of different methods. As shown in
Fig. 6, the proposed method is represented by dark red line,
which is closer to the upper left corner of the coordinate axis
in the ROC (P, Py) curve. Except for dataset I, the ROC
(1, Py) curve of the proposed method is next only to ACE
(indicated in light blue) and closer to the lower left corner of
the coordinate axis compared with the remaining methods. The
3-D ROC curves show similar results to the 2-D ROC curves.
Table III presents the AUC values of the eight methods for the
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1

Detection maps based on eight methods for the datasets I-V. (a) Corresponding ground-reference map. (b)—(i) Detection maps for CEM, ACE, OSP, CSCR,

SLRMD, HTD-Net, TSCNTD, and proposed method, respectively. Lines 1-5 represent dataset I, dataset II, dataset I1I, dataset IV, and dataset V, respectively.

five datasets, where the first and second most accurate results
in terms of the AUC values for each dataset are highlighted
in boldface and underlined, respectively. In terms of the AUC
(Py, Py) value, the proposed method outperforms the benchmark
methods. Taking the dataset I as an example, the AUC (Py, Py)
value of the proposed method is 0.9967, and compared with that
of CEM, ACE, OSP, CSCR, SLRMD, HTD-Net, and TSCNTD,
the accuracy gains are 0.2777, 0.2561, 0.0407, 0.0130, 0.1110,
0.1783, and 0.0115, respectively. In addition, the AUC (7, Py)
value of the proposed method is relatively small. Taking datasets
III and V as examples, the AUC (7, Py) values of the proposed
method are 0.0133 and 0.0176, which are just 0.0067 and 0.0122
higher than that of ACE. Furthermore, the values of AUCgg,
AUCtp, and AUCgnpr also demonstrate the effectiveness of
the proposed method, especially in suppressing background and
noise. Specifically, for all datasets, the AUCtp and AUCgNpRr
values of the proposed method are the highest.

Fig. 7 shows the ability of different methods to separate the
background and targets, where the background and target boxes
are represented by blue and orange, respectively. It can be clearly
seen that the proposed method still exhibits good performance.
Specifically, although for most datasets, the proposed method
has a closer distance between the background box and the target
box compared with those of OSP and TSCNTD; the proposed
method has a larger background box compared with that of ACE.
Table IV lists the running time of eight methods for the five

datasets in s, where the first and second shortest running times
are highlighted in boldface and underlined, respectively. It is
not difficult to find that the classical methods generally have the
advantage of low time-consuming, while deep-learning-based
methods (i.e., HTD-Net, TSCNTD, and the proposed method)
take longer time to train network. Especially for HTD-Net,
constructing pseudotarget samples is time-consuming. In this ar-
ticle, we constructed 100 pseudotarget samples for each dataset,
and the training time exceeded 1000 s.

D. Performance Analysis of the Proposed GS?A-Net

In this section, to validate the effectiveness of the proposed
GS2A-Net for spectral correction, we used the same detection
method (i.e., SAM) with (w) and without (w/0) GS>A-Net as
preprocessing. The comparative AUC (Py, FPy) values for the
five datasets are listed in Table V. It can be clearly seen that for
all datasets, there are significant improvements in the detection
accuracy after spectral correction. Specifically, compared with
the case without GS?A-Net, the accuracy gains with GS>A-Net
are 0.0284, 0.0378, 0.0295, 0.0195, and 0.0231 for datasets I-V,
respectively. Moreover, taking dataset I as an example, Fig. 8
shows the AUC (P, Py) values using different target pixels
as the prior information. There are 134 target pixels in dataset
I. After spectral correction, the detection accuracy of different
prior targets has significantly improved. Especially, when using
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Fig. 6. ROC curves of the eight methods for the five real datasets. From left to right are (a) two-dimensional ROC curves of (Py, P4), (b) two-dimensional ROC
curves of (7, Py), and (c) three-dimensional ROC curves. Lines 1-5 are the results for datasets -V, respectively.
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TABLE IIT
MULTIVERSION AUC VALUES OF THE EIGHT METHODS FOR THE FIVE DATASETS (LINES 1-5 ARE AUC (Py, Py), AUC (7, Py), AUCTD, AND AUCsNpPR
VALUES, RESPECTIVELY)

CEM ACE OSP CSCR SLRMD HTD-Net TSCNTD Proposed
0.7190  0.7406 0.9560 0.9837 0.8857 0.8184 0.9852 0.9967
02024 0.0067 0.3324 0.5607 0.0357 0.0918 0.1169 0.0416
Dataset] | 5166 0.7339 0.6236 0.4230 0.8500 0.7266 0.8683 0.9551
0.9902  0.7688 15182 1.8023 1.1580 1.1414 1.8877 1.4088
13399  4.2090 1.6913 1.4600 7.6275 3.5185 7.7203 9.9063
09671  0.9175 0.9914 0.9852 0.9478 0.9874 0.9934 0.9991
02027 0.0072 0.1419 0.4055 0.1808 0.2386 0.1554 0.0906
Dataset Il | 7644 0.9103 0.8495 0.5797 0.7670 0.7488 0.8380 0.9085
13348 0.9529 1.4730 1.7369 1.3378 1.6564 1.9827 1.3436
1.8140 49167 3.3939 1.8538 2.1571 2.8039 6.3662 3.8024
09771  0.9386 0.9533 0.9815 0.9495 0.7820 0.9605 0.9968
0.2354  0.0066 0.4531 0.1129 0.1849 0.2653 0.0447 0.0133
DatasetIIL | 7417 0.9320 0.5002 0.8686 0.7646 0.5167 0.9158 0.9835
1.4485  1.0221 1.1795 1.3413 1.4737 12753 1.5874 1.1882
2.0025  12.6515 0.5622 3.1869 2.8350 1.8594 14.0246 14.3910
0.8015  0.8311 0.9918 0.9912 0.9891 0.9782 0.9874 0.9978
0.1292  0.0061 0.1968 0.1659 0.1556 0.1108 0.0685 0.0184
Dataset IV | 6723 0.8250 0.7950 0.8253 0.8335 0.8674 0.9189 0.9794
1.0701  0.8764 1.5938 13577 1.6182 1.3902 1.9021 1.3305
20789  7.4262 3.0589 2.2092 4.0431 3.7184 133533 18.0815
0.9755  0.9499 0.9998 0.9917 0.9955 0.9887 0.9998 0.9982
0.1541  0.0054 0.1020 0.5334 0.4498 0.1987 0.2582 0.0176
Dataset V- | 8214 0.9445 0.8978 0.4583 0.5457 0.7900 0.7416 0.9806
13453 1.0044 1.6582 1.7441 1.7226 1.6606 1.9875 1.2739
23997  10.0926 6.4549 1.4106 1.6165 3.3815 3.8253 15.6648
The first and second most accurate results in terms of the AUC values for each dataset are highlighted in boldface and underlined,
respectively.
TABLE IV
RUNNING TIME (IN S) OF THE EIGHT METHODS FOR THE FIVE DATASETS
CEM ACE OSP CSCR SLRMD  HTD-Net TSCNTD  Proposed
Dataset [ 0.5268 1.4658 4.6568 17.3535 7.2582 17259486 374.9164 371.3756
Dataset I 0.5227 0.6260 1.3673 5.3697 8.4387 2138.9275 328.9865  342.9862
Dataset III  0.5772 0.8623  1.4234 1.8643 8.7933 1875.2947  417.0943  396.5578
Dataset IV 0.5599  0.8551 1.4207 4.9481 92190  1978.2948 273.4085 362.9795
Dataset V. 1.4417 1.6626 1.5181 13.0766 9.2190 2648.1305 298.9851  641.5469

The first and second shortest running times are highlighted in boldface and underlined, respectively.

the 35th—45th and 90th—100th target pixels as the prior target, the
increase in detection accuracy range of 0.0036-0.4946 occurs.

E. Performance and Parameter Analysis of the Proposed
Background Suppression Strategy

To analyze the effectiveness of the proposed SAM-based
background suppression strategy, we compared the detection

performance of the initial and final maps. As illustrated in
Fig. 9, for most datasets, I; has a lower false alarm rate and
I has bright targets. However, as shown in Fig. 9(a3)—(e3), the
results of the final map preserve the shape of targets as much
as possible while suppressing the background. Table VI lists the
AUC (Py, P;)/(7, Py) values of different detection results,
where the first and second most accurate results are highlighted
in boldface and underlined, respectively. There are three points
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Fig. 7. Box-whisker plots for the eight target detection methods for the five datasets. (a) Dataset I. (b) Dataset II. (c) Dataset III. (d) Dataset I'V. (e) Dataset V.
1 < TABLE V
V m AUC (Py, Pg) VALUES WITH (W) AND WITHOUT (W/0) SPECTRAL
CORRECTION FOR THE FIVE DATASETS
0.8
g Dataset I  Dataset II  Dataset III  Dataset IV~ Dataset V
g 0.6 w/o  0.9683 0.9613 0.9673 0.9783 0.9751
g w 0.9967 0.9991 0.9968 0.9978 0.9982
: I
04 The more accurate results for each dataset are highlighted in boldface.
—W/O
—W
0.2 ‘ : . ‘ : : .
0 20 40 60 80 100 120 134 There are two important parameters that need to be tuned
The serial number of target pixel in guided filtering: local window radius r and regularization
parameter ¢. Fig. 10 shows the AUC (P, FPy) values under
Fig. 8. AUC values generated by different prior targets for dataset I (the

green and blue lines represent with (w) and without (w/o0) spectral correction,
respectively.

that need to be noted. First, the AUC (P, Py) values of the two
initial detection results obtained by (19) are consistent. Second,
the detection accuracy is improved after guided filtering, and
the accuracy gains for datasets I-V are 0.0007, 0.0027, 0.0024,
0.0027,and 0.0019, respectively. Third, after the nonlinear expo-
nential function, the detection accuracy remains unchanged but
the false alarm rate decreases. Taking dataset I as an example, the
false alarm rates of the two initial detection maps and the final
detection map are 0.0878, 0.6464, and 0.0416, respectively. This
indicates that the proposed strategy is effective in suppressing
background.

different values of r and ¢ for the five datasets. It can be clearly
seen that when ¢ is small, the AUC value decreases significantly
when the window size increases. With ¢ increases, the change
of AUC (Py, P;) value is less affected by the window size.
However, a larger ¢ value will cause the image to become
smooth, especially at the edge of the targets. To avoid excessive
smoothing to the edge of targets, we set a smaller € value. When
¢ 1s small, a smaller window is better, and thus, the window
radius was set to 1.

F. Influence of Convolution Kernel Size on Detection Accuracy

In this section, to validate the effectiveness of the hyperpa-
rameter setting in GS?>A-Net, we tested the detection results
using a unified kernel size (i.e., 3 X 3 x 3,5 x 5 x 5, or
7 x 7 x 7T) in the four modules. The corresponding AUC (P,
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0
Fig. 9. Initial and final detection maps of the five datasets. Lines 1 and 2 express the initial detection maps I3 and I3, respectively, and line 3 is the final map.
(a) Dataset I. (b) Dataset II. (¢) Dataset III. (d) Dataset IV. (e) Dataset V.

TABLE VI
AUC (Py, P;)/(7, Py) VALUES OF THE DIFFERENT DETECTION MAPS FOR THE FIVE DATASETS
Dataset I Dataset II Dataset II1 Dataset IV Dataset V
I 0.9960/0.0878  0.9964/0.0502  0.9944/0.0324  0.9951/0.0872  0.9963/0.0633

I, 0.9960/0.6464  0.9964/0.6011

0.9944/0.2509  0.9951/0.4724  0.9963/0.4891
Final map  0.9967/0.0416  0.9991/0.0906

0.9968/0.0133  0.9978/0.0184  0.9982/0.0176

The first and second most accurate results in terms of the AUC values for each dataset are highlighted
in boldface and underlined, respectively.

AUC

Fig. 10. AUC values of the background suppression strategy with different values of r and . (a) Dataset I. (b) Dataset II. (c) Dataset III. (d) Dataset IV.
(e) Dataset V.
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TABLE VII
AUC (Py, Pg) VALUES FOR DIFFERENT SIZES OF THE CONVOLUTION
KERNEL FOR THE FIVE DATASETS

3x3x3  5x5x5  7x7x7  Proposed
Dataset] ~ 0.9824 0.9902  0.9896 0.9967
Dataset II ~ 0.9921  0.9785  0.9933 0.9991
Dataset III ~ 0.9654  0.9867  0.9769 0.9968
Dataset IV 0.9952  0.9905  0.9720 0.9978
Dataset V.. 0.9927 0.9837  0.9859 0.9982

The more accurate results for each dataset are highlighted
in boldface.

Py) values are shown in Table VII. It is clear that for all datasets,
the AUC (P, P;) values of unified kernel sizes are smaller than
the proposed parameter setting. Taking dataset I as an example,
compared with the case with unified kernel sizes, the AUC (P,
P,) value of the proposed parameter setting is 0.0143, 0.0065,
and 0.0071 larger thanfor3 x 3 x 3,5 x5 x 5,and7 x 7 x 7,
respectively.

IV. DISCUSSION

In this article, we use reconstructed HSI and prior target to
achieve target detection. Nevertheless, in practice, prior targets
usually originate from the spectral library rather than being
directly extracted from HSIs. When facing such a situation, we
can first use distance-based methods, such as SAM and ED to
find the closest pixel in the HSI to the prior target, and use it to
replace the prior spectrum. However, when there is a significant
difference between the prior spectrum and the tested targets,
utilizing the spatial and spectral information of HSI may not be
sufficient to solve the problem of complex spectral variation.
Hence, this requires more research, which may help further
improve the recognition ability of ground objects under complex
conditions.

The method proposed in this article is a two-step method.
Although this strategy can achieve better performance for the
tested datasets, it might lead to local optimal solution in theory.
For convenience, in future research, we can attempt to design
an end-to-end network to achieve joint optimization of feature
extraction and target detection. Specifically, we can utilize ad-
vanced deep-learning networks, such as transformer and con-
trastive learning networks, to extract features at different levels.
Subsequently, the classic methods could be used as detection
networks. How to integrate classic methods into deep-learning
networks will be an interesting question.

We use the same hyperparameters of GS?A-Net for different
datasets, which indicates that the GS?A-Net has strong general-
ization ability. However, it still took a long time during the de-
bugging process. Meanwhile, compared with classical methods,
deep-learning-based methods are always more time-consuming,
which is not conducive to real-time target detection. We will
continue to explore the features of HSIs to aid parameter setting
to reduce the complexity of parameter tuning. Furthermore,
the network parameters (such as the weight matrix and bias
of the convolution kernel) vary for different datasets. Thus,
the network should be retrained when a new dataset is tested.
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Accordingly, it is worthwhile to design a unified network for
the same target or sensor. In addition, more attention is still
needed to study the spatial and spectral correlation in HSIs,
as motivated by the encouraging performance in various tasks,
such as super-resolution mapping [47], super-resolution [48],
and image classification [49].

Last but not least, in this article, we proposed a background
suppression strategy in which the core is to combine the advan-
tages of the two versions (i.e., the reciprocal method and the
exponential method) of detection results by SAM. This method
may equally be applied to other detection methods, such as
CSCR that has great detection accuracy but high false alarm
rate. Specifically, we can use the detection map of CSCR as the
guide map, thereby improving the visual recognition ability of
the background and targets.

V. CONCLUSION

To overcome the effect of spectral variation and complex
background distribution in HTD, in this article, we proposed
a two-step HTD method. Specifically, a 3-D convolution-based
GS?A-Net was first used to fuse multiscale local spatial and
spectral features, thereby emphasizing the target features and
facilitating further increase of the detection accuracy. Addi-
tionally, we designed a background suppression strategy based
on SAM by introducing guided filtering to fully utilize the
advantages of different versions of the detection maps in which
the nonlinear exponential function is used to further suppress
the background. Through visual and quantitative analysis of the
experimental results on five HSI datasets, the proposed method
outperforms six benchmark methods (including some popular
and deep-learning-based methods).
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