
8334 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023
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Abstract—Up-to-date canopy height model (CHM) estimates
are of key importance for forest resource monitoring and distur-
bance analysis. In this article, we present a study on the potential
of deep learning (DL) for the regression of forest height from
TanDEM-X bistatic interferometric synthetic aperture radar (In-
SAR) data. We propose a novel fully convolutional neural network
framework, trained in a supervised manner using reference CHM
measurements derived from the LiDAR LVIS airborne sensor
from NASA. The reference measurements were acquired during
the joint NASA–ESA 2016 AfriSAR campaign over five sites in
Gabon, Africa, characterized by the presence of different kinds of
vegetation, spanning from tropical primary forests to mangroves.
Together with the DL architecture and training strategy, we present
a series of experiments to assess the impact of different input
features on the network estimation accuracy (in particular of
bistatic InSAR-related ones). When tested on all the considered
sites, the proposed DL model achieves an overall performance
of 1.46-m mean error, 4.2-m mean absolute error, and 15.06%
mean absolute percentage error. Furthermore, we perform a spatial
transfer analysis aimed at deriving preliminary insights on the
generalization capability of the network when trained and tested
on datasets acquired over different locations, combining different
kinds of tropical vegetation. The obtained results are promising
and already in line with state-of-the-art methods based on both
physical-based modeling and data-driven approaches, with the
remarkable advantage of requiring only one single TanDEM-X
acquisition at inference time.

Index Terms—Bistatic coherence, convolutional neural network
(CNN), deep learning, forest height, synthetic aperture radar
(SAR), synthetic aperture radar interferometry, TanDEM-X.

I. INTRODUCTION

FORESTS are one of the most relevant ecosystems on the
planet. They cover about 31% of the total Earth surface [1],

impacting a variety of biophysical processes, such as the carbon
and water cycles, as well as weather and local climate [2], [3],
[4]. During their natural growth process, plants extract carbon
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atoms from the atmosphere, in the form of carbon dioxide, to
combine them with water molecules and create carbohydrates.
Some of these synthesized compounds are stored by plants
themselves, resulting in a net buildup of new biomass [5]. About
30% of total vegetated areas are primarily used to gather forest
products, with an additional 18% assigned for multiple use,
including, e.g., the production of food. Furthermore, roughly 880
million people depend on forests for fuel production from wood,
with an estimated 90% of people living in extreme poverty hav-
ing their livelihoods crucially depending on forests [1]. Human
logging activities and forest degradation affect an estimated 10
million ha on a yearly basis [1]. Moreover, natural hazards, such
as wildfires and severe weather events, can also impact forest
resources as they relate to propagation patterns and damage
evaluations [6], [7].

All these aspects highlight the need for forest disturbance
analysis, that is, to monitor changes in forests over time, to char-
acterize their causes, and to quantify their impact. To properly
assess the state of a forest, different parameters, such as forest
cover, canopy height (CH) and above ground biomass (AGB),
are typically used. The most accurate way to retrieve these
properties is to manually perform in situ measurements [8], [9].
Especially for remote areas, the process is highly expensive, time
consuming, and ultimately unfeasible for large-scale mapping
or recurrent assessments [10].

As a way to overcome these constraints, remote sensing
(RS)-based approaches for forest parameters estimation have
gained wide attention, as an ever-growing variety of earth ob-
servation (EO) sensors and techniques has been developed and
made available throughout the years [11], [12], [13], [14]. In
this context, Light Detection and Ranging (LiDAR) systems
represent the most straightforward alternative to replace direct
approaches, as the height of the canopies can be directly inferred
from the time-of-flight of the laser signal returns. Airborne and
spaceborne laser scanning systems, such as NASA’s Land, Veg-
etation, and Ice Sensor (LVIS) [15] and the Global Ecosystem
Dynamics Investigation (GEDI) mission [16], are particularly
attractive, as the current technology is capable of achieving high
sampling rates for medium-to-high-resolution products.

Differently, modern spaceborne optical and synthetic aperture
radar (SAR) imaging systems offer global continuous cover-
age and revisit times in the order of a few days [17], [18],
overcoming the coverage limitations of LiDAR systems. An
effective exploitation of these products poses its own challenges,
since forest parameters cannot be directly estimated from the
observed quantities. Instead, they require physical model-based
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or data-driven approaches to model the relationship between the
imagery and the on-ground forest properties [11], [19].

Particularly, allometric equations are an extensively used
approach for the indirect estimation of forest parameters from
RS data [20]. The result is the generation of theoretical models,
which are normally tuned to the specific conditions and geo-
graphic locations that have been chosen for their calibration [13].

More sophisticated approaches to parameters regression con-
sist in physically modeling the interaction of the received signal
with the illuminated vegetation. For example, regarding radar
sensors, the propagation of the electromagnetic signal through
the canopy structure can be theoretically modeled, and the
resulting interaction can be expressed in terms of different prop-
erties of the forest, such as its density, height, and composition.
The extraction of these specific parameters is, thus, performed
through the inversion of such models, to be estimated using a
sufficient number of observations.

A well-known example of a physical-based model based on
SAR data is the random volume over ground (RVoG), first
proposed to estimate forest height from single baseline fully
polarimetric (full-pol) interferometric SAR (PolInSAR) obser-
vations [21], [22]. Despite the relative simplicity of the model, it
can achieve a good prediction accuracy using few observations
or a priori information, establishing the RVoG as one of the
main references in the literature. It has been demonstrated that
the limited availability of full-pol PolInSAR acquisitions for the
inversion of the RVoG model could be overcome by utilizing
a larger stack of dual-pol or single-pol interferometric SAR
(InSAR) acquisitions instead. For example, when estimating
tree heights using X-band SAR (and in particular TanDEM-X,
which is the focus of the present study), Kugler et al. [19] found
good agreement between their predictions and the reference CH
measurements over boreal (they reported r2 = 0.86, where r
represents the Pearson correlation coefficient) and temperate
(r2 = 0.77) forests. On the other hand, over a tropical site, the
denser vegetation was found to significantly reduce the overall
performance (r2 � 0.50), mostly due to the limited penetration
of radar waves atX-band into dense vegetation. Askne et al. [11]
applied an interferometric water cloud model to a TanDEM-X
bistatic time series of 18 InSAR acquisitions for the estimation
of AGB. Their findings showed that a considerable estimation
accuracy could be achieved (root-mean-square error (RMSE)
of 16% with coefficient of determination R2 = 0.93 for forest
stands larger than 1 ha), but required an ancillary LiDAR-based
digital terrain model (DTM) to improve the absolute calibra-
tion of the procedure. Furthermore, the authors acknowledged
that the use of a priori information about the study site poses
a limit to the application of the technique over unmanaged
or remote forests. Guliaev et al. [23] proposed to reduce the
TanDEM-X PolInSAR requirements for RVoG model inversion
to one single polarization, by leveraging the availability of
sparse full-waveform LiDAR measurements to approximate the
vertical radar reflectivity function. A CH estimation accuracy
was evaluated over the tropical forest area of the Lopé Na-
tional Park (Gabon), resulting in a peak performance of 8.62-m
RMSE (r2 = 0.40). Choi et al. [24] presented a similar scheme
for mapping forest height from TanDEM-X single-polarization

data by combining interferometric coherence maps and GEDI
waveform measurements over Tasmania. They validated the
technique against airborne LiDAR reference data, achieving an
RMSE of 7.3 m (r = 0.66).

Recently, machine learning (ML) approaches have constantly
been gaining attention, as a further valid alternative to allomet-
ric and physical-based models. The increasing availability of
frequently updated global and high-resolution EO dataset col-
lections has made data-driven techniques particularly attractive.
In the context of RS applications, ML techniques have already
become a staple in the solution of binary or multiclass classifica-
tion problems [25]. However, for regression tasks, such as forest
parameter estimation, their usage is still limited. In particular,
deep neural networks have gathered much of the attention when
solving EO-related problems. Here, the information is iteratively
processed and extracted to generate feature maps of higher
levels of abstraction and descriptive power than those of both
input data or hand-crafted features. In this context, convolutional
neural networks (CNNs) have found widespread adoption and
success when dealing with imagery type products, given their
capability to extract information from 2-D spatial patterns [26].
Deep learning (DL) techniques have already been applied with
great success to the solution of regression problems in the field of
computer vision [27]. However, they have been less commonly
used in the regression of biophysical parameters from RS data,
as the demand for large quantities of reliable labeled reference
data has slowed down their adoption. Lang et al. [28] used a deep
CNN model to estimate canopy height model (CHM) at a ground
sampling distance (GSD) of 10 m from Sentinel-2 multispectral
data over Gabon and Switzerland, demonstrating that spatial
contextual information is crucial to obtain accurate estimates.
When considering only the prediction from the acquisitions
with the lowest cloud coverage probability, the authors achieved
a mean absolute error (MAE) of about 2 m in Switzerland
and of 4.9 m in Gabon, with an RMSE of 3.9 and 6.5 m,
respectively. Aggregating the estimates using the median over
all available acquisition dates within a year reduced the MAE
to 1.7 and 4.3 m and the RMSE to 3.4 and 5.6 m, respectively.
Becker et al. [29] proposed a Bayesian DL approach to estimate
forest parameters at a GSD of 10 m, using SAR Sentinel-1 and
multispectral Sentinel-2 data across Norway. Their approach
allows for the estimation of forest structure variables together
with their uncertainty estimates, providing intrinsic assessments
on the trustworthiness of their predictions. The estimation of
the CH, here quantified as the height corresponding to the 95th
percentile of the returned reference LiDAR energy, resulted in an
MAE of 1.65 m and an RMSE of 2.30 m. Their analyses showed
that among the two considered sensors, Sentinel-2 was the more
informative source, achieving an MAE of 1.81 m, compared to
3.05 m of Sentinel-1.

In this context, the application of DL models to SAR, and
in particular to InSAR data, still remains at its early stages
and needs to be further investigated and understood. Moreover,
to the best of our knowledge, no specific work on the use of
bistatic InSAR in combination with DL for the retrieval of
biophysical parameters has appeared in the literature yet, and a
deeper understanding of its potential represents a crucial aspect
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not only for a better exploitation of on-going missions, such as
TanDEM-X, but also in view of future bistatic or multistatic SAR
missions, such as the ESA Harmony Earth Explorer 10 mission
proposal [30].

In this study, we propose a novel DL framework for the predic-
tion of forest heights from TanDEM-X bistatic InSAR data. We
present an original architecture based on CNNs, together with its
training strategy and performance evaluation approach. Initially,
we consider a best case scenario, where all possible informative
features are used as input to the network, to explore the potential
of DL to model highly nonlinear relationships for achieving the
best possible performance with respect to state-of-the-art meth-
ods. Our goal is to understand if DL is able to properly model the
relationship linking SAR-/InSAR-/geometry-related features to
biophysical parameters (CH), mitigating the well-known satu-
ration effects caused by the limited penetration capabilities of
X-band into the canopy. We train and validate our DL framework
over the challenging scenario provided by tropical forests in
Gabon, West Africa, characterized by the presence of dense
vegetation. Afterward, we concentrate on a feature importance
analysis, aiming at understanding the role that different features
play in achieving the final performance. We mainly focus on
bistatic InSAR features, which represent the added value of
TanDEM-X with respect to all other on-going spaceborne SAR
missions. In this context, we also aim at verifying the capability
of the proposed DL framework to automatically manage the use
of different bistatic acquisition geometries, which directly im-
pact the bistatic InSAR features (as explained later in Section II).
This would be an important property, making it possible to obtain
updated predictions at each TanDEM-X revisit, thus enabling
the effective monitoring of forest disturbances. In addition, we
present a high-level comparison with the RVoG physical model
under the same dataset constraints. Finally, we take advantage of
the data-driven nature of our approach to perform a preliminary
analysis on the generalization capability of the proposed DL
framework in the spatial domain, aiming at deriving first insights
for a future extension to large-scale processing.

The rest of this article is structured as follows. In Section
II, we introduce the TanDEM-X mission as well as the theo-
retical background for bistatic InSAR products. In Section III,
we describe the utilized datasets and the preprocessing steps
that we applied for our experiments. Section IV introduces the
concept of CNN and explains the proposed architecture and
training strategies as well as the performance evaluation metrics.
In Section V, we present a series of experiments designed to
assess the impact of each input feature on the overall prediction
performance. Section VI introduces a cross-validation scenario,
exploring the geographical generalization capabilities of our
framework. In Section VII, we discuss our results. Finally, Sec-
tion VIII concludes this article and provides outlook related to
our work.

II. TANDEM-X AND THE BISTATIC COHERENCE

The German TanDEM-X mission is currently the only space-
borne SAR mission comprising two separate twin spacecraft,

namely TerraSAR-X and TanDEM-X, which fly in a synchro-
nized close-orbit formation. It operationally provides single-
pass InSAR acquisitions at X-band with variable acquisition
geometries and polarizations [31]. The main objective of the
mission has been the generation of a global digital elevation
model (DEM), which was successfully completed in 2016 [32].
Aimed at generating an updated version of the TanDEM-X
Global DEM product, an additional global dataset of bistatic
InSAR data has recently been acquired, and a new DEM product
is scheduled to be released in the near future [33]. Moreover,
several specific mission phases have provided the scientific
community with an unprecedented variety of test cases for the
development of novel algorithms and applications [34].

Throughout the entire mission duration, the bistatic inter-
ferometric coherence has represented the key parameter for
monitoring the global interferometric performance, as shown
in [32], [35], and [36]. The coherence γtot is defined as the
normalized cross-correlation coefficient between the interfer-
ometric image pair, composed by a master (u1) and slave (u2)
images

γTot =
|E[u1 · u∗

2]|√
E[|u1|2] · E[|u2|2]

(1)

where E[·] represents the statistical expectation, ∗ the complex
conjugate operator, and | · | the absolute value. High values of
γtot are associated with low levels of noise in the interferogram
and vice versa. γtot is commonly estimated from InSAR data
by applying the maximum likelihood estimator originally in-
troduced in [37], which requires the application of a moving
boxcar window. More recently, advanced algorithms have been
proposed, based on the nonlocal paradigm, which allows for a
significant denoising of the InSAR signal while preserving a
high spatial resolution [38], [39].

Following the factorization presented in [31] and [40], one
can express γtot as

γtot = γrg · γamb · γaz · γquant · γSNR · γtemp · γvol (2)

where the terms on the right-hand side are hereby called decorre-
lation factors and account for different error contributions. The
first five terms are related to the system properties and quantify
the decorrelation caused by coregistration errors in range and
baseline estimation (γrg), SAR ambiguities (γamb), misregistra-
tion in azimuth and relative shift of the Doppler spectra (γaz),
quantization (γquant), and thermal noise (γSNR). γtemp quanti-
fies the decorrelation caused by changes on ground occurring
between the acquisition of the master and slave images. The
uniqueness of TanDEM-X data resides in the bistatic nature of
the system, which allows for the simultaneous acquisition of
single-pass InSAR data unaffected by temporal decorrelation,
which leads to γtemp = 1.

The last term γvol is called volume decorrelation factor, and it
can be derived from the interferometric coherence by inverting
(2) and compensating for all other decorrelation sources, as
presented in [41] for nominal TanDEM-X bistatic acquisitions. It
quantifies the amount of decorrelation caused by scattering from
a volumetric target. This effect occurs, e.g., when radar waves
penetrate into forest canopies or ice- and snow-covered regions.
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It depends on several factors, such as the radar frequency, the ac-
quisition geometry and the intrinsic properties of the illuminated
target. In particular, the lower the operational sensor frequency,
the deeper radar waves can penetrate into volumetric targets.
The volume decorrelation factor can, thus, be modeled as [21],
[42]

γvol =

∫ hv

0 F (z) · exp
(
j
2π

hamb
z

)
· dz

∫ hv

0 F (z) · dz
(3)

where hv denotes the vegetation height and F (z) represents
the vertical backscattering profile, typically modeled as an ex-
ponential decay factor that depends on the so-called one-way
extinction coefficient (i.e., the coefficient of attenuation), the
vegetation height, and the incidence angle.

Regarding the dependence on the bistatic InSAR acquisition
geometry, γvol is closely related to the height of ambiguity hamb

[42], which is defined as the topographic height corresponding to
a complete 2π cycle in the interferogram and, for the single-pass
case, can be expressed as

hamb =
λ · r · sin θ

B⊥
(4)

where B⊥ is the orthogonal baseline, λ is the wavelength, r
is the slant range, and θ is the incidence angle. Finally, γvol is
also linked to the intrinsic properties of the illuminated target.
For example, when considering vegetated areas, the amount of
volume decorrelation is impacted by vegetation characteristics,
such as tree height and density, presence of gaps, and tree
species.

Many scientific works in the field of biosphere-related appli-
cations have been developed exploiting the availability of the
TanDEM-X bistatic coherence information. For example, it is
widely used for model-based tree height [19], [23], [43], [44],
[45], [46], [47], [48] and above-ground biomass estimation [11],
[49], [50], [51], [52]. It represents a useful input feature for the
retrieval of vegetation height in agricultural areas [53], [54] as
well as for crop-type mapping [55]. Moreover, the added value of
the bistatic coherence has also been demonstrated for land cover
classification and forest mapping purposes [56], [57], [58], [59].

III. DATASET DESCRIPTION AND PREPROCESSING

A. AfriSAR Campaign and the Reference LiDAR Data

To train our model in a supervised fashion, we use ground-
truth labels from the AfriSAR campaign [60]. The AfriSAR
campaign was a joint NASA–ESA campaign, which took place
in 2016 and aimed at collecting a combination of field and
airborne LiDAR and radar measurements of tropical forests
located in the West African country of Gabon [15]. Related
to our work, the mission included a series of full-waveform
LiDAR measurements acquired by NASA’s airborne-mounted
LVIS instrument [61]. This particular acquisition campaign was
performed between February and March 2016 and covered the
five study sites of Mabouniè, Mondah, Lope, Pongara, and Rabi,
which can be seen in Fig. 1.

Fig. 1. Study areas in Gabon (Africa) and their subdivision into three sub-
sets for training, validation, and testing of the proposed DL architecture. The
TanDEM-X footprints are identified in white.

During the acquisition phase, each area was sampled by a
sequence of regularly spaced laser beams, each one resulting
in a nominal footprint diameter of 18 m, given the acquisition
flight path. It is, thus, possible to use the signal statistics of
each individual full-waveform LiDAR return to derive forest
parameters, such as the canopy cover, the plant area index, the
foliage height diversity, the AGB density, and, of particular
interest for our case, the CHM. For our study, we choose to
use the available gridded products, which contain completely
preprocessed CHM estimates, aggregated and sampled at a GSD
of 25 m [60]. As a reference metric, we use the CH value
corresponding to the 99th percentile of the total backpropagated
laser energy. This statistic takes the name of relative height and
is selected in order to improve robustness against noise and
outliers.

B. TanDEM-X Bistatic Products and Derived Features

Between 2015 and 2016, a series of dedicated TanDEM-X
bistatic acquisitions were commanded over Gabon, in order to
cover the same test sites of the AfriSAR campaign. The illumi-
nated footprints mainly overlap with four of the five AfriSAR
test sites, as depicted in Fig. 1. Thus, the test site of Lope is not
considered for this investigation.

All the acquisitions were commanded in StripMap, single
polarization mode (HH channel), extending by about 30 km in
range and with different incidence angles and bistatic geome-
tries.

In the present work, we consider as TanDEM-X input data
the CoSSC products, corresponding to coregistered single-look
complex bistatic SAR data products at full resolution. Focusing
and coregistration are performed by the operational TanDEM-X
processor [62]. The complete list of the utilized TanDEM-X
products and their main acquisition parameters is presented in
Table IV in the Appendix.

For each acquisition, we compute the backscattering coef-
ficient σ0 from the monostatic channel only, as recorded by
the transmitting satellite. σ0 is derived from the absolutely
calibrated intensity β0 (i.e., the radar brightness) and the local
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TABLE I
OVERALL PREDICTION PERFORMANCE FOR ALL THE ANALYZED TEST CASE SCENARIOS

incidence angle θinc as

σ0 = β0 sin(θinc) (5)

where θinc is computed by considering the satellite orbit position
and the underlying global TanDEM-X edited DEM product (see
Section III-C). For the estimation of the total interferometric
coherence γtot, we apply Φ-Net [63], a novel residual DL archi-
tecture for the joint estimation of the InSAR phase and coher-
ence, which has been shown to achieve state-of-the-art denoising
performance by preserving the spatial resolution. Moreover,
from the coherence, we also derive the volume decorrelation
factor γvol by following the estimation procedure presented
in [41]. Finally, a 2-D map of the height of ambiguity hamb

is generated by considering the annotated information on the
satellites position and by applying (4).

C. Ancillary Data

As additional ancillary data, we make use of the following
two products.

1) The global TanDEM-X edited DEM: This is an edited
version of the original global TanDEM-X DEM product,
processed at a lower resolution of 30 m by DLR. The
applied editing algorithm is a fully automatic procedure,
which takes care of filling voids and flattening water
surfaces [64]. No artificial correction was applied over
forested areas. Therefore, in the presence of vegetation, the
TanDEM-X DEM height does not correspond to the height
of the top of the canopy, but, given the radar penetration
effects explained in Section II, it is located close to or
below the canopy surface, depending on the characteristics
of the vegetation [42], [57], [65].

2) The ESA 2021 WorldCover map: This is a 10-m-resolution
global land cover product that refers to 2021. It was
generated using both ESA’s Sentinel-1 and Sentinel-2 con-
stellation, and it is freely accessible. The WorldCover map
categorizes different land cover types among 11 classes.
The product was independently validated with an overall
global accuracy of 76.7% [66]. We take advantage of the

information it provides to coarsely mask out nonforested
areas from our dataset.

D. Common-Grid Interpolation

At the end of the preprocessing steps, all available reference
datasets and input feature maps are projected onto a com-
mon pixel grid. First, all products are reprojected to the target
coordinate reference system by means of bilinear interpolation.
Second, the products are resampled to match the reference extent
and GSD. Operationally, we align all features onto the grid
used by the AfriSAR reference data. For continuous features,
this is achieved by means of averaging when downscaling and
of bilinear interpolation otherwise. For features with discrete
value ranges, the mode of the samples is used instead. After this
processing step, all features are aligned at pixel level.

IV. PROPOSED DL FRAMEWORK

We propose the use of a DL framework based on a CNN
for the estimation of the CHM. At its core, a CNN consists
in the computation of the cross-correlations between a stack
of input features with a set of kernel functions. A nonlinear
activation function is then applied to the results to generate
a new stack of output features. By stacking multiple of these
sequences of operations, the complexity of the network can be
increased, with each subsequent layer yielding a higher level of
representation, which results in progressively more expressive
features with respect to the task the network has to deal with.
The kernel functions are empirically determined during the
training phase of the network, consisting in a forward pass
in which the network is used to generate a prediction from a
certain input, followed by a backpropagation phase in which the
weights of the model are updated according to their impact on
the prediction’s error. By repeating the process over multiple
heterogeneous examples, the network will iteratively converge
toward a set of kernel filters well suited for the downstream
task.
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Fig. 2. Proposed CNN architecture for CHM regression. It can be functionally split into one input block, ten hidden blocks, and an output block.

A. CNN Architecture

The DL model that we conceived for this article consists
of a fully CNN. This choice was made considering the strong
capabilities of such architectures to handle 2-D data, such as
SAR images and related features [67]. We converged to the
final architecture by means of hyperparameter tuning of different
layer typologies, regularization techniques, and model dimen-
sions. This was implemented by evaluating and comparing the
potential impact of these choices using the validation set detailed
in Section V-A. Notably, we empirically verified that our model
was not benefiting from the introduction of skip connections
between the blocks. We suppose that, due to its relatively shallow
depth, our model is likely to be less affected by problems of
vanishing gradients.

The overall architecture of the resulting CNN is shown in
Fig. 2. It can be broken down into three types of functional
blocks: an input block, a sequence of ten hidden blocks, and
an output block. We built our network to process as input
SAR and InSAR features computed from a single TanDEM-X
acquisition pair. To this end, we begin each block structure with a
2-D convolution operation, which simultaneously applies a 3-D
kernel across all input features while sliding along the spatial
dimensions of the datacube. In order to preserve the shape of
the input, the feature stack is padded before each convolution
along its spatial dimensions. In the input and output blocks,
two 1 × 1 convolutional operations are applied in sequence to
gradually increase and decrease the number of input features.
Each convolutional layer is followed by a batch normalization
operation, which shifts and scales the data to be approximately
zero mean with unitary variance. This operation was found to
lead to better and faster convergence, as it allows for using
higher learning rates as well as reducing the sensitivity to the
initialization of the model weights [68]. For all but the last layer,
we apply the rectified linear unit as a nonlinear activation func-
tion, which clips negative values to zero and preserves positive
ones. In the last block, the second convolutional operation is
directly followed by a linear activation function to deliver the
final regression output.

We purposefully avoid to change the spatial resolution of the
features in all layers (e.g., by applying pooling layers) as we
want to limit any unnecessary loss in geometric resolution.

The network performance was assessed over a dedicated
validation set, sampled from areas geographically disconnected
from those of the training and test sets, respectively. More details
on these aspects are addressed later on in Section V.

B. Input Features

As input feature maps to the network, we selected the fol-
lowing quantities, derived from TanDEM-X geocoded and co-
registered bistatic products:

1) backscattering coefficient σ0 in HH polarization, com-
puted according to (5);

2) associated local incidence angle θinc;
3) total interferometric coherenceγtot, derived byΦ-Net [63];
4) volume decorrelation factor γvol, computed from (2);
5) height of ambiguity hamb, computed from (4);
6) global TanDEM-X edited DEM.
θinc and hamb are both required to correctly inform the model

of the dependence of γvol, γtot, and σ0 on such geometry-related
features, as described in (2), (3), and (5). The DEM is used
as input feature to exploit the capability of CNNs to recognize
spatial patterns in the data and, thus, to better contextualize the
radar-related input features with respect to the observed terrain
characteristics.

An example of input feature maps is presented in Fig. 3. From
the resulting input and output datacubes, we derived patches
of 15 × 15 pixels, corresponding to an extension on ground of
375 × 375 m2 or, equivalently, to an area of approximately 14 ha.
The patches are sampled at runtime, from areas which contain
forested pixels (i.e., covered by the reference LVIS dataset)
and which are fully covered by the input sources to the DL
architecture.

C. Training Strategy

To train the model, we use a mini-batch strategy, consisting in
the constant update of the model weights based on the iterative
prediction over individual batches of training samples. We use
batches composed of 250 patches each.

At each training iteration, we build a new batch of randomly
sampled patches, and we then perform a forward pass in which
the CH for the current batch is estimated. The quality of the
prediction is then assessed by computing a loss function. This
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Fig. 3. Example of input feature maps. (a) Backscattering coefficientσ0. (b) Local incidence angle θinc. (c) TanDEM-X edited DEM. (d) Interferometric coherence
γtot. (e) Volume decorrelation factor γvol. (f) Height of ambiguity hamb.

function quantifies the prediction error by computing the mean
squared error between the prediction and its associated ground
truth. It also includes a regularization term in the form of the
l2-norm (i.e., the Euclidean distance) among the model weights.
We can, therefore, express the training objective as the solution
to the minimization of the following loss function:

Loss =
1

n

n∑
i=1

(ŷi − yi)
2 + λ ·

m∑
j=1

w2
j (6)

where ŷi is the ith CH sample predicted by the model, yi is
the corresponding ith ground-truth sample, wj is the jth weight
of the model, n is the total number of samples, m is the total
number of weights, and λ is a factor that scales the impact that
the l2-norm has on the overall loss.

The impact of each model weight on the loss is computed
as the gradient of the loss with respect to that weight (i.e.,
the partial derivative). By applying the chain rule, the local
gradient is iteratively backpropagated from the output layers
to the input of the network. Given the resulting set of local
gradients, the corresponding weights are then updated following
a stochastic-gradient-descent-based strategy; for our work, we
apply the commonly used Adam optimization algorithm [69].
The initial learning rate of the network is set to 10−4.

To monitor the training status of the model, we group the
process into epochs of 500 batches each. At the end of each
epoch, the training state of the model is evaluated on a dedicated
independent validation set using the loss function in (6).

The relative evolution of two losses, one computed on the
training set (i.e., the training loss) and the other computed on
the validation set (i.e., the validation loss), is used to determine
the completion of the training phase. If the network does not

improve in terms of validation loss for 30 consecutive epochs,
the learning rate is reduced by an order of magnitude. In order
to avoid overfitting of our network on the training samples, we
adopt an early stopping approach to cease the training if the
network has not improved for a total of 35 consecutive epochs.
Finally, at the end of the training phase, we select the weights
corresponding to the epoch with the lowest validation loss.

D. Performance Evaluation Metrics

In order to test the performance of our trained model, we
perform an inference run for all input acquisitions that cover
the previously designated test sites. The prediction accuracy
is evaluated using the mean error (ME), which identifies the
estimator’s bias, the MAE, the mean absolute percentage error
(MAPE), the RMSE, and the coefficient of determination (R2),
which are defined as follows:

ME =
1

n

n∑
i=1

(ŷi − yi) (7)

MAE =
1

n

n∑
i=1

|ŷi − yi| (8)

MAPE =
100

n

n∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣ (9)

RMSE =

√
1

n

∑n

i=1
(ŷi − yi)

2 (10)

R2 = 1−
∑n

i=1 (ŷi − yi)
2

∑n
i=1 (yi − ȳi)

2 (11)
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where ŷi is the predicted CH value, yi is the corresponding
reference value, and ȳi is the mean reference value.

V. FEATURE ANALYSIS

In this section, we aim at obtaining a comprehensive overview
of the impact that different input settings have on the final perfor-
mance. In more detail, we are interested in better understanding
the following key aspects:

1) the relevance that the different input features have in
terms of regression performance, with particular inter-
est on the SAR backscatter and InSAR information
complementarity;

2) the impact that the SAR acquisition geometry has on the
prediction accuracy, and the role that ancillary geometric
features play in the contextualization of the side-looking
geometry peculiarity of SAR systems.

We also performed an analysis of the impact of ascending
and descending orbit directions on the final performance.1 We
observed that training and testing with either ascending-only
or descending-only acquisitions, as well as with mixed-orbit ac-
quisitions paired with supplementary orbit direction, acquisition
time of day, or no information, showed negligible influence on
the overall performance. Thus, to guarantee the best possible
temporal coverage, our results are based on a similar ratio of
both ascending and descending orbit acquisitions, as reported in
Table IV.

A. Baseline Scenario

In order to properly conduct each of the proposed analyses,
we start by setting up a baseline scenario against which the
subsequent experiments will be compared. To this end, we aim
at building three homogeneous but not overlapping subsets for
a best case scenario, one for each of the training, validation, and
test phases. To do so, we geographically split each of the four
considered study areas into three subareas of equal dimensions.
From West to East, each resulting subarea is assigned to the
validation, training, and test sets, respectively. This concept is
depicted in Fig. 1. The histograms of the reference CHM for
the training, validation, and test sets are presented in Fig. 4. All
the subsets show similar distribution trends, with most of the
vegetation heights concentrated below 10 m (short vegetation),
and between 30 and 40 m (which are typical of mature primary
tropical forest).

During the training phase, the model weights are randomly
initialized. Similarly, all training and validation patches are
randomly shuffled after each one has been used once. These
elements of randomness potentially cause the model to converge
toward different local minima during the training phase, each
time the process is repeated. In an effort to find the best possible
local solution, we train five independent models. For each of
them, we follow the training and validation procedure detailed
in Section IV. Fig. 5 shows, in practice, the impact of random

1The considered TanDEM-X data were acquired in the morning in ascending
orbit direction and in the afternoon in descending orbit direction.

Fig. 4. Reference CHM value distributions for the three subsets, training,
validation, and test, as defined for the baseline scenario.

Fig. 5. RMSE values obtained for each independent training run, computed
on each test site individually and overall (Total). The best run is automatically
selected based on the validation loss.

weights initialization on the RMSE performance of four test im-
ages, one for each test site. The different test sites show different
degrees of variability. When looking at the overall variability, the
RMSE spread is in the order of several decimeters.

Given that the model was trained using 15 × 15 pixels
patches, the edges of each scene were symmetrically padded by
half of the patch size as a preprocessing step prior to the infer-
ence. These borders were then removed to preserve the original
size. Furthermore, we enlarged internal areas with invalid pixels
by half the patch size as a final postprocessing step. These steps
guarantee that the model is evaluated only over areas with similar
conditions with respect to the training phase.

The loss behavior of the overall best performing model can
be seen in Fig. 6. The results of the performance analysis on
such a model are shown in the first row (Baseline case) of
Table I. Here, the performance is computed for the joint combi-
nation of all available predictions. The detailed values for each
test site and experiments can be found in Tables III and V (in
the Appendix).

Overall, a good agreement between the prediction and the
reference measurements can be seen from the scatterplot in
Fig. 7, which comprises all test sites. Similar distributions of
the reference CHM and of the prediction can be identified.
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Fig. 6. Loss evolution computed on the training and validation sets for the
baseline scenario.

TABLE II
OVERALL PREDICTION PERFORMANCE FOR THE DL BASELINE CASE

COMPARED TO THE RVOG PREDICTIONS

TABLE III
RESULTS FOR THE BASELINE SCENARIO PRESENTED IN SECTION V AND FOR

ALL CROSS-VALIDATION PERMUTATIONS OF THE SPATIAL TRANSFER ANALYSIS

When assessing the relationship between the estimation bias
and the CHs, Fig. 8 shows that the estimation bias remains on
average quite stable and close to 0 m for CHM below 35 m, above
which the model starts to increasingly underestimate taller trees.

When looking at the performance of the individual test areas
in Table III and Fig. 9, as expected, a clear relation with the
distribution of the reference CH can be assessed. The Mondah
forest is predominantly characterized by large extents of low
vegetation, with isolated patches of tall forests. This reflects
on the MAE and MAPE metrics, which are the smallest and
the largest among all test sites, respectively. With lower tree
heights, the absolute error scales accordingly, but the relative
estimation error has a bigger impact on average. Differently, the

Fig. 7. Scatterplot in logarithmic scale of the predicted and reference CH
values over all four test sites in Gabon, Africa, together with the side distributions
of both the reference and the prediction for the baseline scenario.

Fig. 8. Training sample distribution (blue histogram in the background—left
axis) compared to the ME, which represents the regression bias (red lines in the
foreground—right axis). The boxplots display the regression bias spread (5th,
25th, 50th, 75th, and 95th percentiles, respectively) across the CHM range.

site corresponding to the Pongara National Park is characterized
by a more homogeneous tree height population. At first glance,
the scatterplot in Fig. 9 shows a good agreement between the
predicted and the expected CHs. Indeed, the performance is well
balanced for all metrics, and it notably achieves an MAPE of only
16.21%, while obtaining a R2 value of 0.82. A small cluster
of samples is spotted outside of the main distribution (in the
low-right corner of the image), corresponding to large values
of CH being strongly underestimated (such samples are also
clearly visible in the overall scatterplot in Fig. 7). This error
can be attributed to inconsistencies in the TanDEM-X edited
DEM, as represented in Fig. 10. Further investigations revealed
how the area lacked of TanDEM-X data during the first two
global coverages used for the generation of the global DEM,
requiring the automatic editing algorithm to rely on an ALOS-
based DEM to fill the gap. Unfortunately, also the ALOS-based
DEM showed some inconsistencies in the same area, resulting
in mutual calibration problems between the two different DEM
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Fig. 9. Baseline scenario: scatterplots of the reference CHM versus the predicted CHM for each of the four considered test sites in logarithmic scale. (a) Mabounié.
(b) Mondah. (c) Pongara. (d) Rabi.

sources. This led to an underestimated terrain height which was
clipped to that of the adjacent sea level.

To quantify the impact of this nonnegligible inconsistency
in the edited DEM, we manually masked the region (as de-
picted in Fig. 10) and reevaluated the performance metrics
on the remaining valid areas. This resulted in a loss of 4686
test samples, corresponding to 1.85% of the Pongara samples,
and 0.32% of the overall available test samples. The results in
Table V (Baseline w/ DEM mask case) show a significant im-
provement across all metrics by removing the critical region.
Indeed, the RMSE performance was especially negatively af-
fected by the aforementioned problem and saw an improvement
from 6.42 to 4.83 m, making Pongara the site with the best
performance after Mondah. The overall performance in Table I
shows the MAPE fall to 14.91% and the R2 rise to 0.76.

The sites of Mabounié and Rabi exhibit similar behaviors,
as they are predominantly covered by tall forest structures in
the range of 25–45 m of height. In this scenario, the model
uncertainty appears to increase, with the R2 metric in particular

being penalized by the very clustered concentration of tree
heights. The MAE for both sites also worsens to about 4.4 m,
while the MAPE improves as the estimation error for taller tree
stand population has a lower relative impact on average.

Next, we assess the impact of the local topography in com-
bination with the side-looking geometry of the instrument, by
evaluating the relationship between the local terrain slope and
the performance degradation. In order to compute a vegetation-
independent slope estimate, we use the DTM derived from the
LVIS measurements acquired during the AfriSAR campaign.
We then subdivide the slope range into equally sized intervals,
plotting for each of them the MAE of all associated predicted
CHs (see Fig. 11). For slopes from 0◦ to 40◦, an almost linear re-
lationship can be identified between slope inclination and MAE.
Notably, the MAE remains below the global average of 4.20 m up
to slope inclinations of 25◦, suggesting that the performance re-
mains reasonably consistent even over high-relief terrain, where
geometric distortions and geocoding errors in the SAR imagery
and LiDAR measurements may become increasingly significant.
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Fig. 10. Analysis of the Pongara test site, which is characterized by a region
of heavily underestimated tree heights. (a) CHM prediction. (b) Prediction error.
(c) Binary mask used for the identification of the problematic area. (d) TanDEM-
X Global Edited DEM.

Fig. 11. Test sample distribution compared to the MAE. The boxplots display
the MAE spread (5th, 25th, 50th, 75th, and 95th percentiles, respectively) across
the terrain slope range.

Finally, Fig. 12 shows prediction samples for each of the
four study areas for the Baseline scenario. In particular, sample
transects are plotted following the red solid lines, in order to
compare the estimated tree line with that of the reference. This
shows an overall good agreement for both tall and low vegetation
heights. Also, the TanDEM-X global edited DEM is depicted for
comparison purposes, indeed highlighting how the mean phase
center falls within the canopy. The DEM struggles to match
all changes in canopy height, and, in general, it maintains a
nonlinear relationship with the tree height.

B. Impact of DEM and Local Incidence Angle

The side-looking acquisition geometry characterizing SAR
causes the TanDEM-X acquisitions to be intrinsically dependent
on the local incidence angle, which is related to the acquisition
geometry and the local topography. In order to allow the network
to better contextualize the variations in the backscattered signal,
ancillary information in the form of the local incidence angle
(θinc) and the TanDEM-X DEM were assumed to be necessary
additions to the input feature pool. To test this assumption

against the baseline scenario performance, we repeat the tests in
Section V-A, while removing θinc, the DEM, or both features.

The overall performance metrics are summarized in Table I
(cases: w/o DEM, w/o θinc and w/o DEM, w/o θinc). A significant
drop in estimation accuracy is associated with the removal of
one of the two features.

Moreover, Table I shows indeed that removing both features
from the input causes the performance to drop significantly, but
somewhat in line with the w/o θinc scenario.

C. SAR and Bistatic InSAR Feature Comparison

One of the main advantages of the TanDEM-X constellation
is the capability to acquire bistatic InSAR information. As
described in [35] and [42], the quality of the interferometric
product correlates with the composition of forests through the
volume scattering mechanism. To properly assess the impact
that the additional bistatic interferometric feature set shows with
respect to the available single-polarization backscatter map, we
present two more scenarios in which we selectively remove one
of the two feature sets and validate them against the Baseline
scenario. For both test scenarios, we keep the ancillary θinc and
DEM features.

The accuracy for the SAR-only (w/o InSAR features case) and
InSAR-only (w/o σ0 case) predictions are presented in Table I.
Both the scenarios see a decrease in the overall performance
when compared to the Baseline scenario. In particular, testing
the results for the SAR-only scenario sees the MAPE worsen by
2.12% and the RMSE increase by 0.68 m when compared to the
InSAR-only scenario.

In the previous experiments, we used as InSAR-related input
features both the interferometric coherence (γtot) and the volume
decorrelation factor (γvol), derived from the original coherence,
as well as the ancillary height of ambiguity (hamb) information,
to help the network to better contextualize the relationship
between the volumetric decorrelation effects and the acquisition
geometry, as detailed in Section II. In order to fully understand
the importance that each single InSAR-related feature holds for
solving the regression problem, we alternatively remove each of
these from the input set, achieving the regression performance
detailed in the last five rows of Table I. Notably, removing either
the coherence (w/o γtot case) or the volume decorrelation factor
(w/o γvol case) results in a very consistent and minor loss in the
overall prediction accuracy.

Removinghamb from the input (w/ohamb case) sees the regres-
sion performance fall in line with the baseline scenario. This is an
interesting result given that both γtot and the γvol over vegetated
areas are strictly related to hamb [42]. To better contextualize this
result, we set up two further scenarios in which we never use
hamb, and we alternate γtot and γvol as sole InSAR-based input
features. This refers to the w/o γvol, w/o hamb and w/o γtot, w/o
hamb cases in Table I, respectively.

The results in Table I suggest that γtot does not require in-
formation about the acquisition hamb in order to maximize the
prediction accuracy, while the addition of γvol helps to further
improve the performance bringing it in line with the baseline
scenario. Contrary to γtot, using γvol also requires the additional
information about hamb in order to achieve comparable results.
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Fig. 12. Prediction examples over the four considered test sites for the Baseline scenario. For each area, the prediction, the reference, the estimation error, and
sample vertical transect (identified by the red line) are presented from left to right, respectively. The transects in the rightmost column compare the reference CHM
(in green) with our predictions (in blue), on top of ALS-derived DEM (in brown). The corresponding TanDEM-X Global Edited DEM is plotted (in red) for visual
comparison, highlighting how the mean phase center lies within the canopy.

D. Comparison With the RVoG Model

In order to help better contextualize the performance of the
proposed DL model, we implemented a high level comparison of
the baseline scenario with the RVoG model, which is often used
in the literature [23], [24], [44], [45]. Given the relationship
expressed in (3), the RVoG model parameterizes the vertical
reflectivity function F (z) as a two-layer model consisting of a
Dirac-like ground component and a vegetation volume compo-
nent, which is modeled as a continuously extended volume layer
of randomly oriented scatterers [21]. This results in the complex
volume coherence γvol to depend on multiple model parameters,
requiring fully polarimetric acquisitions or external reference
data in order to allow for the model inversion. By following
the strategies detailed in [44] and [45], it is possible to reduce
the number of unknowns required for the inversion, ultimately
allowing the CH hv to be directly estimated from single-pol
acquisitions according to the following relationship:

hv = hamb

(
1− 2

π
sin−1(|γvol|)

)
. (12)

The resulting equation is independent of external sources and
only requires information about the height of ambiguity hamb

and the estimated volume decorrelation γvol, making it feature

compatible with our proposed method. Using this model approx-
imation, we repeat the tests detailed in the baseline scenario to
provide a direct comparison between the two approaches.

The resulting performance metrics presented in Table II show
that the overall performance of the approximated RVoG model
is worse than the one of the proposed DL model, with an
RMSE of 8.33 m that is sharply higher than 5.69 m obtained
in the proposed baseline scenario. Of particular interest is the
comparison between Figs. 7 and 13. It is possible to note that
the RVoG model typically fails to properly predict the height
of canopies below 10 m and tends to overestimate up to about
30 m of height. For higher tree heights, the bias decreases, but
the uncertainty of the prediction increases. This behavior can
partially be explained by the approximations and assumptions
used by the RVoG model, as well as by the lack of proper
ground topography information to precisely estimate the height
of ambiguity.

VI. ANALYSIS OF THE GENERALIZATION CAPABILITY IN THE

SPATIAL DOMAIN

As highlighted in Section I, the goals for our proposed DL
framework include the capability to extend the work on both
larger scales and across different scenarios. In order to investi-
gate the generalization capabilities of the network, we choose to
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Fig. 13. Scatter plot in logarithmic scale for the RVoG model, comparing the
predicted and reference CH values over all four test sites in Gabon, Africa,
together with the side distributions of both the reference and the prediction for
the baseline scenario.

adopt a leave-one-site-out cross-validation approach, by which
we iteratively set aside one of the four study areas to be solely
used to test the model performance, leaving the other three sites
for training and validation. Within each experiment, we start
from the study area assignment strategy detailed in Section V-A
and depicted in Fig. 1, but we reassign the rightmost third area
of each of the three training and validation sites to be part of the
training set instead. This choice guarantees that we can dispose
of enough training samples to replace those which are lost by
dedicating a whole site to testing alone. Furthermore, given the
implicit assumption that data-driven approaches are fundamen-
tally limited in their application scope by the comprehensive-
ness and representativeness of the training set composition, the
proposed test approach represents a fair attempt to provide a
rich-enough training pool to the network, while keeping the test
area geographically isolated. The subdivision of the different
sites for training, validation, and testing is presented in Fig. 14
for each of the four cross-validation permutations.

The results for each testing permutation are presented in
Table III, together with those of the baseline scenario for each
test site for comparison purposes. Overall, the results show an
appreciable loss in regression accuracy when compared to the
baseline scenario. The MAE and MAPE increase from 4.2 m and
15.1% to 4.7 m and 17.1%, respectively, while R2 drops from
0.73 to 0.68. The test results for the Mabounié and Mondah
sites show a better agreement with the baseline performance,
indicating that the complexities of both areas were equivalently
well captured by the remaining training sites.

In the case of the Pongara area, the performance is consider-
ably degraded. A comparison of the scatterplot in Fig. 15 with
that of Fig. 9 suggests that in the cross-validation scenario, the
model struggles to regress higher canopies, essentially saturating
at around 45 m of height. As described in Section III-A, the sites
of Mondah and Pongara are partially covered by Mangroves.

Fig. 14. Geographical composition of training, validation, and test sets, for
each of the four cross-validation permutations implemented for the spatial
generalization analysis. (a) Mabounié. (b) Mondah. (c) Pongara. (d) Rabi.

In particular, Pongara presents taller canopies than those found
in Mondah. Indeed, Fig. 16 highlights how the underestimation
problem is evident close to the shorelines, where the WorldCover
Map predicts mangrove coverage. We conclude that removing
Pongara from the training set severely limits the amount of tall
mangrove examples, compromising the regression performance.

Finally, the analysis of the Rabi test site also highlights a
performance lower than expected. In particular, the prediction
associated with the TanDEM-X imagery acquired on October
28, 2016 displays significant underestimation issues. A specific
investigation into the problem revealed that the underestimated
area coincides with that of an anomalous drop in backscatter
intensity. Fig. 17 shows a comparison between the examined
acquisition and a reference one, which does not display the
same issues. Neither the reference dataset nor high resolution
optical satellite imagery gives a potential explanation for the
drop in backscatter intensity. We suppose that this could have
been induced by severe weather conditions, as thunderstorms
are known to be capable of causing strong attenuation of the
backscatter returns [70].

VII. DISCUSSION

The results of the experiments related to the feature analysis
presented in Section V provide interesting insights on the capa-
bilities of TanDEM-X data in combination with DL for forest
height retrieval, which are extremely useful for understanding
the impact and the relationship of different input features.
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Fig. 15. Spatial transfer analysis: cross-validation scatterplots for each of the four test sites in logarithmic scale. (a) Mabounié. (b) Mondah. (c) Pongara.
(d) Rabi.

From the baseline scenario in Section V-A, where all input
features are considered, we observe a sudden increase in the
estimation bias for trees taller than 35 m, resulting in underes-
timation. On the one hand, this behavior might be linked to the
poor availability of training samples for such heights, as it can be
inferred from the corresponding histogram. On the other hand,
it could be due to the limited penetration capability of X-band,
which leads to saturation effects in the data when the radar
wave is not able to penetrate deep enough into extremely tall
vegetation [65]. Moreover, by separately analyzing the different
test sites, one can note that none of the considered performance
metrics is on its own sufficient to conclusively evaluate the pre-
diction performance of the model. This happens as the different
scenarios, and in particular their CH distributions, have different
impacts on the accuracy metrics.

By analyzing the impact of the DEM and the local inci-
dence angle as input features, one can notice that removing the
DEM-derived θinc map has a bigger impact than removing the
DEM itself. This is probably caused by the fact that θinc shows
an intrinsic dependence on the slant-range distance, which is
directly mirrored in SAR features such as the backscatter. The
performance analysis in the baseline scenario (see Section V-A)
already demonstrated the potential impact of inconsistencies in

the input DEM, pointing out the overall relevance that the DEM
holds in terms of inference performance. These two insights sug-
gest that the model is able to partially substitute the information
contained in the DEM with that of θinc, but not vice versa. As
expected, both features are required to achieve peak accuracy,
with neither of them being able to completely supersede the
other one.

Regarding the impact of SAR and bistatic InSAR features, the
five considered test scenarios resulted in the following intuitions.

1) We noted that removing the backscatter information has
a significantly smaller impact than removing the InSAR
features.

2) The removal of either the coherence or the volume decor-
relation factor causes a minor loss in the overall accuracy.
This suggests that, while not completely redundant, both
features hold very similar information. This is in line with
the theoretical expectations of their respective definitions,
as the volume decorrelation factor quantifies a constituent
decorrelation source of the total interferometric coher-
ence, as detailed in (2).

3) The use of the total coherence γtot does not strictly require
information about the height of ambiguity hamb, whereas
the use of the volume decorrelation factor γvol requires
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Fig. 16. Example of underestimation over Pongara. (a) CHM prediction.
(b) Reference LiDAR CHM. (c) Prediction error. (d) Corresponding land cover
map. The areas covered by tall mangroves are particularly affected by error.

Fig. 17. Prediction comparison for the same area in Rabi, resulting from
two different TanDEM-X acquisitions. The prediction on the left presents a
significant region of underestimation (a), well aligned with a region of low
backscatter values (c). (b) and (d) Image on the right does not present either
pattern.

information about hamb. The use of either γtot or γvol

(and hamb) achieves similar performance, while using both
matches the baseline scenario. Differently, the use of both
γtot andγvol drops the requirement for the presence ofhamb.
We think that these inconsistencies between the γtot and
γvol cases might come from the fact that γvol is potentially
more sensitive to changes in hamb than γtot, as the latter
still contains the other decorrelation factors, as described
in (2).
Furthermore, the composition of the utilized TanDEM-X
dataset presented in the Appendix (see Table IV) shows
that the vast majority of data were acquired with hamb

in the 75–90 m range. Only three products have hamb

between 67 and 69 m, and other three have hamb between
44 and 50 m. For hamb values above 60 m, the γvol de-
cay over forested areas has been shown to be relatively

small [42], whereas it rapidly increases when hamb falls
below 50 m. This suggests that our test set is not represen-
tative enough across the hamb range to require a complete
complex modeling of the relationship between γvol and
hamb.

The additional comparison of the proposed baseline scenario
with the RVoG model confirms the potential of the proposed DL
framework for CH estimation, with a considerable performance
improvement of almost 3 m in terms of RMSE.

Finally, the preliminary analysis on the spatial generalization
capability of the neural network presented in Section VI high-
lights that this is able to correctly regress forest height when con-
sidering previously unseen areas. Nevertheless, given the strong
dependence of the achievable performance on the distribution
of the training dataset, we are aware that the currently designed
architecture still needs to be further optimized in order to reach
a level of robustness and generalization, which is suitable for
a reliable large-scale inference. Indeed, given the focus on the
AfriSAR 2016 Campaign test sites, only a limited amount of
both TanDEM-X acquisition geometries and kinds of vegetation
were considered to train the network.

VIII. CONCLUSION

In this article, we presented a novel study on the potential of
DL for the regression of forest height from TanDEM-X bistatic
InSAR data. We proposed a fully convolutional framework,
which is capable of delivering tree height estimates from a single
TanDEM-X acquisition, enabling the creation of large-scale
and up-to-date geomaps. We trained the model in a supervised
fashion using LVIS data from the 2016 AfriSAR campaign,
consisting of ALS-derived CH maps covering tropical forests
in Gabon, West Africa. We achieved an overall regression per-
formance of 4.12-m MAE, 14.9% MAPE, and 5.41-m RMSE,
for a best case scenario (baseline).

Our feature analysis showed that the regression performance
is primarily driven by InSAR features and that ancillary informa-
tion about the acquisition geometry as well as scene topography
is crucial to deliver peak performance. We also performed a
high-level comparison of the baseline scenario settings with
the single-polarization approximation of the RVoG model. The
obtained performance is in line with or above the performance
of state-of-the-art methods for CH estimation using TanDEM-X
data, presented in [19], [23], and [24] and using Sentinel-2 and
Sentinel-1 data as in [28] and [29].

Our spatial transfer analysis demonstrated that under suitable
conditions, the network is capable of correctly transferring
knowledge acquired during training onto previously unseen
regions of the same geographical area.

Our experiments have also highlighted that the achievable
accuracy remains strongly connected with the characteristics
of the training set, requiring a careful balancing in order to
preserve performance over different challenging scenarios. We
also encountered saturation problems for very tall canopies,
which we attribute to two separate phenomena: on the one hand,
the limited penetration capabilities of X-band over forested
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TABLE IV
LIST OF THE UTILIZED TANDEM-X COSSC PRODUCTS AND MAIN

ACQUISITION PARAMETERS

areas and, on the other hand, a general lack of labeled data for
very tall trees above 40 m.

In order to mitigate these effects, in future works, we will
extend the analysis to higher resolutions, as TanDEM-X prod-
ucts with fewer looks have already shown a certain potential to
retrieve the location of the ground surface [71]. Furthermore,
we will investigate smarter sampling and balancing approaches
for our training dataset, aiming at homogenizing the network
performance. As a final remark, we would like to point out
that the proposed spatial transfer analysis was performed on a
limited region of interest (the state of Gabon) and, thus, should
be considered as a preliminary assessment of the generaliza-
tion capability of the network. Therefore, more effort will also
be devoted to the generalization of the model for large-scale
inference, e.g., by considering a larger span of viewing ge-
ometries and InSAR configurations, as well as forest types,
local terrain characteristics, and spaceborne-derived reference
data.

APPENDIX

ADDITIONAL TABLES

The complete list of utilized TanDEM-X CoSSC (single-look
coregistered L1b bistatic) products for this work is presented
in Table IV. The performance for all analyzed scenarios as in
Section V and for each test site, separately, is summarized in
Table V. Note that the performance of the baseline scenario can
already be found in Table III.

TABLE V
PERFORMANCE SUMMARY OF ALL ANALYZED SCENARIOS AS IN SECTION V

AND FOR EACH TEST SITE, SEPARATELY
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