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Hybrid Tensor Networks for Fully Supervised and
Semisupervised Hyperspectral Image Classification

Yahui Xiu , Fuyin Ye , Zhao Chen , and Yuxuan Liu

Abstract—Hyperspectral image (HSI) is rich in spectral informa-
tion and spatial information to explore the physical and chemical
properties of the objects, but it also brings many difficulties to the
classification task. The problems of the curse of dimensionality
and spectral variability in HSIs can affect the efficiency of the
classifier and cause the decline of the classification accuracy. Also,
the scarcity of manually labeled samples makes it difficult for the
fully supervised classifiers to obtain the best results. To this end,
this article proposes several novel hybrid tensor networks (HTNs)
that represent multiscale spectral–spatial patterns and low-rank
features for accurate classification. Moreover, the fully supervised
HTN (FHTN) is embedded within a semisupervised framework
with unsupervised modules providing pseudolabels, thus creating
semisupervised HTN (SHTN) to exploit unlabeled data and reduce
dependence on manual annotations. With proper postprocessing
techniques, misclassifications are largely reduced and accuracy is
further increased. The experimental results show that the pro-
posed HTNs exhibit good generalization and robustness. FHTN and
SHTN outperform classic and advanced supervised and semisuper-
vised models in ground object classification for HSIs.

Index Terms—Fully supervised classification, hybrid tensor
network (HTN), hyperspectral image (HSI), low-rank features,
semisupervised classification, spectral–spatial features.

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) are digital images
obtained by airborne or spaceborne hyperspectral im-

agers [1]. Containing rich spectral information, HSIs can reflect
the spectral properties of the photographed substances. There-
fore, HSIs can be used to identify ground objects, which play an
important role in varied fields, such as geological exploration,
crop detection, and urban management [1], [2].

In traditional pattern recognition [2], [3], [4], HSI classifi-
cation can be divided into two major steps: feature extraction
and class decision. In the era of deep learning (DL), feature
extraction and decision making are often realized by one network
instead of separate modules [5], [6], [7], [8]. As HSIs are three-
dimensional (3-D) data cubes with two spatial dimensions and
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one spectral dimension, there are spectral, spatial features, and
spectral–spatial features to be exploited. Not only recognizing
important patterns, feature extraction also reduces data dimen-
sion to eliminate noise and improve efficiency. To deal with the
complex spectral characteristics of HSIs, the methods, such as
manifold learning [9], kernel function transformation [10], and
neural networks (NNs) [11], are proposed. However, spectral
signals alone are not enough for classification since they can
be compromised by limited imaging resolution and distorted
by noise and interference. Thus, spatial features are jointly
extracted with spectral features to compensate for information
loss and exploit local patterns. The spectral–spatial methods
mostly use feature stacking [12], kernel mapping [13], [14],
filtering [15], [16], [17], tensor analysis [18], [19], and DL [20],
[21], [22], [23], [24], which often come in complicated structures
with large computation costs.

For class decision, there are unsupervised, fully supervised,
and semisupervised classifiers. Typical unsupervised methods,
such as K-means [25], make decisions solely on data properties
without any human annotations. Meanwhile, their outputs may
not be comprehensible and needs further processing. The fully
supervised methods, e.g., support vector machine (SVM) [26]
and deep belief network [27], can achieve high accuracy but
often needs lots of labeled samples for training. The semisu-
pervised methods, such as active learning [28], [29], [30], [31],
cotraining [32], [33], [34], and domain adaption networks [35],
[36], allow labeled and unlabeled samples to jointly determine
the classifier parameters, reducing the dependence on manual
annotations. However, if the features of unlabeled data not
properly characterized or learned, they may compromise the
optimization and reduce classification accuracy.

Moreover, there are still problems in HSI classification that
are not well addressed. First, HSIs are high-dimensional data
that contain a large amount of redundant information, which
can lead to the curse of dimensionality. Second, due to the
tradeoff between spatial resolution and spectral resolution in
hyperspectral imaging instruments, there is a phenomenon of
spectral variability, which can result in class confusion and
reduce classification accuracy. Third, calibrating remote sensing
data often requires on-site surveys, which are laborious and
time-consuming. Thus, it is difficult to manually annotate a large
amount of data.

To tackle these problems, this article proposes several
novel hybrid tensor networks (HTNs) that represent multiscale
spectral–spatial patterns and low-rank features for accurate
classification. Assembling the vanilla HTNs as feature
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representation modules, unsupervised clustering modules,
and supervised decision layers, semisupervised HTNs (SHTNs)
are also proposed. The motivations of this work are as follows.
To overcome the curse of dimensionality, it is natural to
represent HSIs as tensors and apply tensor decomposition to
extract low-rank features and reduce redundant data. Instead of
using tensor computations alone, HTNs adopt new architectures
that integrate tensor decomposition into convolutional networks
based on the mathematical connections between tensor algebra
and convolution/pooling/fully connections [37]. Unlike the com-
mon networks based on convolutional blocks [38], [39], [40] or
the preliminary tensor networks that combine tensor analysis
and convolution in simple ways [37], HTNs incorporate
tensor decomposition deeply into NNs on different levels and
in different dimensions, effectively extracting multidomain
low-rank structures and multiscale spectral–spatial patterns.
Specifically, local correlation features [41], [42], [43] that reflect
spatial continuity in distributions of ground objects are exploited
to deal with intraclass heterogeneity and interclass homogeneity.
To address the scarcity of manual labels, HTNs can be adapted
to semisupervised applications, whereas both labeled and
unlabeled data are involved in training and variability of the
data is exploited. The contributions are summarized as follows.

1) Combining tensor decomposition with convolutional neu-
ral networks (CNNs), the novel HTNs allow for the ex-
pression of multiscale spectral–spatial features and mul-
tidomain low-rank features, resulting in excellent perfor-
mances in fully supervised classification for HSIs.

2) In semisupervision, as cluster labels of the unlabeled
pixels are used to train the other parts of SHTNs, the
feature representation is guided by the discriminative
information inherently lying in the data, yielding robust
spectral–spatial features that reflect the variability of the
unlabeled pixels and enabling accurate classification with
minimal manual annotation.

3) High-order HTNs are designed and applied with postpro-
cessing to improve classification performance. In these
techniques, tensor decomposition is combined with 3-D
convolution to gain feature representation ability and re-
duce misclassifications.

Experimental results demonstrate that the proposed meth-
ods can classify HSIs accurately. The fully supervised HTN
achieves higher classification accuracy than fully supervised
CNNs. The semisupervised HTNs outperform state-of-the-art
semisupervised classification methods. The rest of this article
is organized as follows. Section II briefly reviews the related
works. Section III introduces the proposed models in full details.
The experimental results are presented, analyzed, and discussed
in Section IV. The discussion is presented in Section V. Finally,
Section VI concludes this article.

II. RELATED WORKS

HSIs contain hundreds of continuous bands with rich spectral
features, enabling accurate classification [44]. HSI classification
mainly includes feature extraction and class decision. We need
to consider how to extract discriminative features from HSIs

and apply an efficient class decision method to give each pixel
of HSIs an appropriate class label.

A. Feature Extraction

HSIs have high dimensional with redundant information. Fea-
ture extraction not only recognizes important patterns but also re-
duces data dimension to eliminate noise and improve efficiency.
HSIs feature extraction methods can be divided into spectral
feature extraction, spatial feature extraction, and spectral–spatial
feature extraction.

1) Spectral Feature Extraction: Each pixel is regarded as
an independent feature vector without considering the spatial
information of the pixel and its adjacent pixels. For exam-
ple, principal component analysis [3] uses the high correlation
between adjacent bands of HSIs to extract the main feature
components for dimension reduction. As the NN thrives, such
as 1-D generative adversarial network and 1-D recurrent NN
[11] have been applied to extract spectral dimension features of
HSIs. Later, Li et al. [38] convoluted the spectral dimension of
HSIs through 1-D convolution NN to realize HSI classification
by extracting pixel pair features. However, extracting spectral
features alone is not sufficient for HSI classification, as they can
be comprised by limited imaging resolution and distorted by
noise. Also, it cannot deal with the spectral variability.

2) Spatial Feature Extraction: Utilizing the local correlation
of ground objects can address the spectral variability. However,
due to the tradeoff between spatial resolution and spectral resolu-
tion, most HSIs exhibit low spatial resolution despite having high
spectral resolution. Moreover, since the targets might be blocked
out by other objects, the shapes, contours, and other spatial
characteristics of the target objects are not visible. Therefore, it
is almost impossible to determine ground objects by extracting
spatial information alone.

3) Spectral–Spatial Feature Extraction: Extracting both spa-
tial and spectral features simultaneously can leverage local cor-
relations and further improve the classification accuracy. Dong
et al. [39] proposed to extract spatial information through gray-
level co-occurrence matrix and then fuse spatial information and
spectral information through band superposition to obtain the
final spectral–spatial features. The features formed by stacking
may have high dimensions, leading to the curse of dimensional-
ity. By tensor analysis, some methods, such as low-rank tensor
estimation algorithm [18], linear tensor discriminant analysis
[19], and tensor decomposition network [45], can simultane-
ously extract the spectral–spatial features. Based on DL, CNN
is often used to express spectral—spatial features of HSIs. Gao
et al. [40] proposed an HSI feature extraction method based on
a new multiscale residual network and introduced the mixed
depthwise convolution. These spectral–spatial methods often
involve multiple different algorithms, leading to the problems,
such as strong parameter dependencies and high computational
complexity.

B. Class Decision

According to whether the labeled samples are used in the
training process, the classifiers can be divided into unsupervised,



7884 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

fully supervised, and semisupervised. With the development of
DL technology, there are many new supervised modes, such
as self-supervised [44], [46], [47]. As unsupervised and self-
supervised networks are not the focus of this article, these works
are not discussed further.

1) Fully Supervised: Fully supervised learning requires la-
beled samples for classification. Due to the data redundancy
of HSIs, some classic methods, such as the K-nearest neigh-
bor algorithm [48] and Gaussian process classifier [49], are
difficult to obtain good classification results. In recent years,
NN models, such as stacked autoencoder [32], [50], [51] and
CNN [52], [53], [54], [55], [56], have been applied to the HSI
classification. To further improve the classification accuracy,
postprocessing methods are also widely used. For example,
Zhong et al. [6] combine conditional random field (CRF) [7]
with SVM forming support vector CRFs classifier [7] methods
to realize high-accuracy full supervised classification. Then,
Zhong et al. [6] propose combine CRF with CNN forming
CNN-CRF. Spectral–spatial features are extracted by CNN, and
spatial context information is extracted by CRF. However, the
supervised algorithms need lots of labeled samples for training,
and the lack of manual annotations limits their ability to achieve
high accuracy.

2) Semisupervised: Semisupervised learning allows labeled
and unlabeled samples to jointly determine the classifier pa-
rameters, and it can achieve better classification results with
limited manual annotations than fully supervised leaning. Wei
et al. [8] use multiple branch networks to perform clustering
and classification, embed key unsupervised information within
the supervised learning process through sharing modules, and
improve the generalization ability of the model. Sellars et al. [56]
use the superpixel method to define local regions in HSIs, and
then extract spatial–spectral features from the regions. But if the
similarity between the labeled and the unlabeled samples is low,
they may compromise the optimization and reduce classification
accuracy.

From above, it can be seen that HSI classification encounters
challenges, such as spectral variability, curse of dimensionality,
and scarcity of manual annotations. We propose novel HTNs to
address these problems.

III. METHOD

We propose several novel HTNs that represent multiscale
spectral–spatial features and low-rank features for accurate
classification. Moreover, we incorporate the fully supervised
framework into semisupervised framework that includes unsu-
pervised modules providing pseudolabels to reduce dependence
on manual annotations and enhance classification accuracy. In
order to better introduce the basic concepts and operations of
tensor algebra involved in HTNs, we characterize the connected
structures of HTNs by graphics, as illustrated in Fig. 1. The
HSIs are denoted by tensors X ∈ R

I1×I2×I3 , where I1 and I2
represent the rows and columns. I3 represents the number of
bands. The neighborhood of each pixel is represented by the

subtensor X(0) ∈ R
I
(0)
1 ×I(0)

2 ×I(0)
3 as the input of the networks.

Also, the predicted label and the class label of the networks are

Fig. 1. Graphical representation of tensor operations for tensor network. Each
colored node denotes a tensor and each outgoing line indicates a dimension
of the tensor. (a) Basic structure of tensors, which are scalars, the first-order
tensors, the second-order tensors, and tensors with orders higher than 2 from
left to right. (b) Subtensor generation, where the white node with the dashed box

denotes that J1J2 subtensors Q(j1,j2) ∈ RK1×K2×I3 are generated from the

red tensor X ∈ RI1×I2×I3 and stacked into tensor B ∈ RJ1×J2×J3×I3 as
J1 = I1 −K1 + 1, J2 = I2 −K2 + 1, and J3 = K1K2. (c) Matricization
of tensor X ∈ RI1×I2×I3 . (d) Multiplication of X ∈ RI1×I2×I3 and Y ∈
R

J1×J2 . (e) Tensor contraction of X ∈ RI1×I2×I3 and Y ∈ RJ1×J2×J3 .

(f) TD of tensor X ∈ RI1×I2×I3 , where the red node stands for core tensor,
and the green ones represent the projection matrices.

denoted as ŷ ∈ R
C and y ∈ R

C , respectively, where C is the
number of categories.

A. Hybrid Tensor Network

Existing studies [57], [58] show that convolu-
tion/pooling/fully connections and tensor matrix multiplication
can be expressed in the form of tensor contraction.
Therefore, Tucker decomposition (TD) can be mixed
with convolution/pooling/fully connections to build HTN.
High-order convolution and TD can deal with the HSIs in
arbitrary dimensions. HTN not only learns the multiscale
spectral–spatial features based on CNN but also can extract
the low-rank features by combining the TD module. At the
same time, it can compress the amount of data and reduce the
computational complexity of the model.

Suppose that there are L layers in the network and the layer
number is l (l = 1, 2, . . . , L). If the lth is a convolutional layer

and X(l−1) ∈ R
I
(l−1)
1 ×I(l−1)

2 ×I(l−1)
3 is the input, the output is

computed by the tensor contraction as follows:

Y(l) = σ
(
S(l) × 1,2

3,4W
(l)
)

(1)

where Y(l) ∈ R
I
(l)
1 ×I(l)

2 ×I(l)
3 is the output feature, S(l) ∈

R
I
(l)
1 ×I(l)

2 ×K(l)
1 K

(l)
2 ×I(l−1)

3 stores all the spatially overlapping

subtensors generated fromX(l−1),W(l) ∈ R
K

(l)
1 K

(l)
2 ×I(l−1)

3 ×I(l)
3

is the kernel weights, K
(l)
1 and K

(l)
2 are the width and

height of the convolution filter, and K
(l)
3 is the number
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Fig. 2. Architectures of the proposed models. (a) HTN-1. (b) HTN-2. (c) HTN-3.

of feature maps. σ(·) is the nonlinear activation function.
If stride is S

(l)
n ∈ N

∗, padding is P
(l)
n ∈ Z, then I

(l)
n =

(I
(l−1)
n −K

(l)
n + 2P

(l)
n )/S

(l)
n + 1.

If the lth is the TD layer based on the Tucker model, as
illustrated in Fig. 1(f), the output of this layer can be formulated
in tensor matricization as follows:

Y
(l)
low−rank = σ

(
X(l) × 1

1W
(l,1) × 1

1W
(l,2) × 1

1W
(l,3)
)

(2)

where Y
(l)
low−rank ∈ R

I
(l)
1 ×I(l)

2 ×I(l)
3 is the low-rank fea-

ture, X(l) ∈ R
I
(l−1)
1 ×I(l−1)

2 ×I(l−1)
3 is the input, and W(l,n) ∈

R
I
(l−1)
n ×I(l)

n are the three factor matrices. After training, the
TD layer can map the input samples to the optimal low-rank
subspace and extract multidimensional joint features.

Suppose that the lth is the full connection layer. Given x(l) ∈
R

K(l−1)
as input, the output of the fully connected layer can also

be formulated in tensor contraction as follows:

y(l) = σ
(
x(l) × 1

1W
(l)
)

(3)

where y(l) ∈ R
K(l)

is the output, and W(l) ∈ R
K(l−1)×K(l)

is
the weight matrix. σ(·) is the activation function used in (1).

As the classification network, HTN makes a decision on the
final output y(L) through softmax to obtain the estimated label

of training sample

ŷ =
ey

(L)

1T ey(L)
(4)

where y(L) is the output of the Lth layer, and 1 ∈ R
M is an

all-one vector.
1) HTN-1: One of the proposed HTN models is named HTN-

1, as illustrated in Fig. 2(a). There are six layers, including
a two-dimensional convolutional (2D-Conv) layer and a one-
dimensional TD (1D-TD) layer. Then, use flatten to vectorize
the output features. Through the 1D-TD layer, we can extract
the spectral low-rank features and reduce the spectral data re-
dundancy.

Suppose that the lth is the TD layer based on the 1D-Tucker
model. From (2), it can be inferred that

Y(l) = σ
(
X(l) × 1

1W
(l,3)
)
. (5)

2) HTN-2: As shown in Fig. 2(b), the HTN-2 has 12 layers,
which is composed of 3D-Conv layer and 1D-TD layer. In order
to give consideration to both efficacy and efficiency, the TD layer
only projects the subspace of mode-3 (i.e., spectral dimension),
which can ensure the computational efficiency without pooling
layer. Also, some convolutional layers adopt rectangular convo-
lution template (i.e., the dimensions of the first two dimensions
are not equal) [59], [60], [61], which cannot only reduce the
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Fig. 3. Proposed fully supervised network HTN-1.

amount of calculation but also extract features in different di-
rections and improve the effect of feature expression.

3) HTN-3: Fig. 2(c) shows the architectures of HTN-3,
which contains 3D-Conv layer and 3D-TD layer. If the TD
layer is based on 3D-Tucker model, it is defined in (2). After
training, the high-dimensional TD layer will extract the optimal
low-rank subspace of each dimension of the input sample so
as to obtain the multidimensional joint features of the input
sample. Compared with the 1D-Tucker model used in the first
two models, the high-order TD layer not only performs sub-
space projection for mode-3 (i.e., spectral dimension) but also
performs synchronous feature extraction for mode-1 and mode-2
(i.e., spatial dimension).

B. HTN for HSI Classification

Based on HTN-1, we design a fully supervised network for
HSI classification. However, the fully supervised network needs
lots of manual annotations to obtain better classification results.
Therefore, we embed the fully supervised model within the
semisupervised network to reduce the dependence on labeled
data and obtain better classification results. Also, a postpro-
cessing technique is employed to improve the classification
accuracy. Due to the local spatial correlation of HSIs, the pixels
in the same spatial neighborhood have the same class label.
According to this characteristic, the classification result obtained
by the classifier can be further modified. First, select the pixels
that need postprocessing, and count the class labels of other
pixels (including the class label of the current pixel itself) in the
spatial neighborhood of this pixel (such as 8 neighborhood, 24
neighborhood, and 35 neighborhood). Then, select the class label
with the highest proportion as the final classification label of
the pixel. After processing the classification results through the
majority voting (MV) strategy, we can make full use of the spatial
context information, smooth the “salt and pepper noise” on the
classification maps, and improve the classification accuracy.

1) FHTN: The fully supervised network FHTN-1 is illus-
trated in Fig. 3. Through the HTN-1 to extract low-rank spectral
features, use the MV strategy to smooth the noise for postpro-
cessing. Suppose that there are I training samples X

(0)
i (i =

1, 2, . . . , I) and the labels of X(0)
i are yi ∈ R

C , then the loss

Fig. 4. Proposed semisupervised network HTN-2/3.

function of FHTN-1 is

� = −1

I

I∑
i=1

yT
i log(ŷi). (6)

The FHTN-1 is regarded as a nonlinear function f(�,θ),
where the θ is the weight parameter. Then, the FHTN-1 can
be optimized through backpropagation based on the gradient
descent method [37], [62] and it is updated by

θ ← θ − λ∇θ� (7)

where λ is the learning rate. The optimization algorithm is
summarized in Algorithm 1. From (1) and (2), we can compute
the computational complexity of FHTN-1 as follows:

O

(
3

(∑
l∈S1

(
I
(l−1)
3

3∏
n=1

I(l)n

2∏
n=1

K(l−1)
n

)

+
∑
l∈S2

(
I
(l)
3

3∏
n=1

I(l−1)n

)))
(8)

where S1 and S2 are the sets containing all convolutional layer
serial numbers and all Tucker layer serial numbers, respectively.

2) SHTN: As shown in Fig. 4, the two semisupervised net-
works (i.e., SHTN-2 and SHTN-3) are composed of HTN-2 and
HTN-3, respectively. Also, the network contains multiple su-
pervised classifiers and an unsupervised clustering module [52]
to achieve high classification accuracy. K-means [63] generates
unsupervised clustering labels, the classifier U learns all sample
features, the classifier S learns labeled sample features, and the
classifier F fuses labeled sample features. The input samples
of K-means are the original HSIs’ pixels, the input samples of
fully connected classifier U and S are the final output features
of HTN-2/3 (i.e., y(L) ∈ R

K(L)

, K(L) = 512), and the input
samples of F are spliced by the output features of the first hidden
layer of U and S.

In the semisupervised network, the total loss function is
composed of the three submodules’ loss function. Suppose that
K-means get C̃ clusters, and the cluster label of pixel Xi is

yui ∈ R
C̃(i = 1, 2, . . . , I1I2), then the loss function of fully
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Algorithm 1: Optimization of FHTN.

Input: training samples X(0)
i ∈ R

I
(0)
1 ×I(0)

2 ×I(0)
3 (i =

1, 2, . . . , I), testing samples Xtest ∈ R
I
(0)
1 ×I(0)

2 ×I(0)
3 , and

class labels yi ∈ R
C(i = 1, 2, . . . , I);

Output: model f(�,θ) and estimated labels ŷi;

1. Initialize f(�,θ), where θ is the parameter of FHTN-1
and set maximum epochs T;

2. while θ not converged and maximum epochs not
reached do

3. compute � by (6);
4. update θ by (7) using gradient descent;
5. end while
6. Feed the test samples Xtest to f(�,θ) and estimate their

labels ŷi.
7. Return θ and ŷi.

Algorithm 2: Optimization of SHTN.

Input: subtensors Y(0)
i ∈ R

I
(0)
1 ×I(0)

2 ×I(0)
3 (i = 1, 2, . . . ,

I1I2) of HSIs, testing samples Ytest ∈ R
I
(0)
1 ×I(0)

2 ×I(0)
3 , and

a few class labels yj ∈ R
C(j = 1, 2, . . . , Il);

Output: model f(�,θ) and estimated labels
ŷfi ∈ R

C(i = 1, 2, . . . , I1I2);

1. Initialize f(�,θ), where θ = {θU ,θL,θF ,θHTN} and set
maximum epochs T;

2. while θ not converged and maximum epochs not
reached do

3. compute � by (9)–(12);
4. update θ using gradient descent;
5. end while
6. Feed the test samples Ytest to f(�,θ) and estimate their

labels ŷfi.
7. Return θ and ŷfi.

connected network U is

�u = − 1

I1I2

I1I2∑
i=1

yT
ui log(ŷui) (9)

where ŷui is the estimation label of the subtensor sample
Y

(0)
i . Suppose that there are Il manually labeled samples

Y
(0)
j (j = 1, 2, . . . , Il, Il � I1I2), then the loss function of clas-

sifier S is

�l = − 1

Il

Il∑
i=1

yT
j log(ŷj). (10)

Similarly, the loss function of F is

�f = − 1

Il

Il∑
i=1

yT
j log(ŷfi) (11)

where ŷfi is also the estimation label of the subtensor sample

Y
(0)
j generated by F. The total loss is computed as follows:

� = �f + �l + �u. (12)

We also could denote SHTN as a nonlinear function
f(�,θ), where θ contains all learnable parameters (i.e.,
{θU ,θL,θF ,θHTN}). Then, train the SHTN in an end-to-end
fashion by gradient descent. Computational cost in SHTN can
be measured by the number of multiplications contained in
the tensor contraction. Also, the computation of feedforward,
backpropagation, and gradient descent is similar [37].

Therefore, the computational complexity of SHTN-2 and
SHTN-3 is defined as

O

(
3

(∑
l∈S1

(
I
(l−1)
4

4∏
n=1

I(l)n

3∏
n=1

K(l−1)
n

)

+
∑
l∈S2

(
I
(l)
3

4∏
n=1

I(l−1)n

)))
(13)

and

O

(
3

(∑
l∈S1

(
I
(l−1)
4

4∏
n=1

I(l)n

3∏
n=1

K(l−1)
n

)

+
∑
l∈S2

I
(l−1)
4

3∏
n=1

(
I(l−1)n I(l)n

)))
(14)

where S1 and S2 are used in (8). As SHTN-3 uses the high-order
convolutional and TD operations, its computational complexity
is slightly larger than SHTN-2.

IV. EXPERIMENTS

A. Datasets

To evaluate the performance of the proposed models, six
datasets1 are used in our work, including three classic datasets,
i.e., Indian Pines, PaviaU, and Salinas, and three new datasets
named LongKou, HanChuan, and HongHu from WHU-Hi
dataset [6]. The detailed information of datasets is shown in
Table I. The three new datasets are provided by the State Key
Laboratory of Information Engineering in Surveying, Mapping,
and Remote Sensing, Wuhan University. These three datasets
have the characteristics of high spatial resolution, high labeled
pixels proportion, and abundant ground feature types. Fig. 5
shows false-color images of six datasets.

B. Setup

According to whether the proposed networks have postpro-
cessing operation, we divide them into six networks: FHTN-1,
FHTN-1-MV, SHTN-2, SHTN-2-MV, SHTN-3, and SHTN-3-
MV. Then, several state-of-the-art HSI classification methods

1[Online]. Available: http://rsidea.whu.edu.cn/resource_WHUHi_sharing.
htm. Accessed: Feb. 15, 2023. [Online]. Available: http://www.ehu.eus/
ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes, Accessed:
Feb. 15, 2023.

http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://rsidea.whu.edu.cn/resource_WHUHi_sharing.htm
http://www.ehu.eus/ccwintco/index.php{?}title$=$Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php{?}title$=$Hyperspectral_Remote_Sensing_Scenes
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TABLE I
DESCRIPTION OF SIX DATASETS

Fig. 5. False-color images of six datasets. (a) Indian Pines. (b) PaviaU. (c) Salinas. (d) LongKou. (e) HanChuan. (f) HongHu.

are used in the performance comparison. They are two clas-
sic machine learning methods, SVM [64] and KNN [48], a
classic CNN [6] model, an advanced self-supervised learning
with adaptive distillation (SSAD) [46] method, semisupervised
classification with CNN (SCNN) [52], superpixel contracted
graph-based learning (SGL) [56], and with unsupervised feature
learning (WUFL) [8].

All the fully supervised networks and seminetworks are opti-
mized according to Algorithm 1 and Algorithm 2, respectively.
The learning rate is set as 0.001 and the exponential decay index
is set as 0.9. They are then optimized by the Adam optimizer
and use ReLU and Swish [65] activation function for fully
supervised network and semisupervised network, respectively.
For the benchmark datasets, we randomly select 3, 5, 10, 15,
and 20 samples for each class as manual labeled samples and
the first two dimensions of the input subtensor X(0) are 9.
While we choose 100 samples for the new datasets and set
I
(0)
1 = I

(0)
2 = 23. Then, we set the cluster numbers of K-means

as 100 and the experiments carried out in this article are repeated
10 times.

To evaluate the performance of the networks, we use overall
accuracy (OA), average class accuracy (AA), and Kappa coef-
ficient as the evaluation index. All the models are implemented
by Tensorflow and run on a computer equipped with Intel(R)
Xeon E3-1225 V6 CPU @ 3.31 GHz, 64GB RAM, and NVIDIA
GeForce RTX 2080Ti GPU (11GB RAM).

C. Efficacy

1) Feature Representation Ability: In order to verify that our
proposed methods have good multiscale and low-rank feature

Fig. 6. Umap of Indian Pines dataset. (a) Scatter plot of original pixel.
(b) HTN-1 output feature scatter plot. (c) HTN-2 output feature scatter plot.
(d) HTN-3 output feature scatter plot.

Fig. 7. Umap of LongKou dataset. (a) Scatter plot of original pixel. (b) HTN-1
output feature scatter plot. (c) HTN-2 output feature scatter plot. (d) HTN-3
output feature scatter plot.

representation ability, we select two datasets, such as Indian
Pines and LongKou, and use Umap to visualize the original
features and the low-rank features obtained by HTNs. For Indian
Pines, choose 3 samples for each class and, for LongKou dataset,
100 samples per class are selected. From Figs. 6 and 7, we can
see that before HTN processing, hyperspectral pixels generally
exhibit spectral variability, and the confusion between classes is
serious, which is not conducive to classification. Then, the pixels
are input into our proposed HTNs. After processing, the features
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TABLE II
CLASSIFICATION ACCURACIES OF INDIAN PINES THROUGH DIFFERENT METHODS

TABLE III
CLASSIFICATION ACCURACIES OF PAVIAU THROUGH DIFFERENT METHODS

are more distinguishable and easier to classify. Also, through
the feature expression, clustering optimization, and information
fusion, our network can get the better visual effect than them.
It can be seen that the network that we proposed can effectively
express the multiscale and low-rank features of HSIs.

2) Classification Accuracy: Tables II –IV present the metrics
of different methods for the classic datasets. Under different
labeled samples’ conditions for each class, the DL methods
can yield better classification results than the machine learn-
ing methods. It indicates that the DL methods can learn the
useful high-level features for HSI classification. Compared
with other state-of-the-art algorithms, our proposed network
achieves better classification accuracy. For the classic datasets,
our proposed semisupervised networks, such as SHTN-2 and
SHTN-3, are less dependent on manual annotation and achieve
higher classification accuracy. Due to the limitation of spatial
resolution, Indian Pines dataset has obvious spectral variability
problem, which poses great obstacles for HSIs feature learning
and classification, especially has a great negative impact on

classifiers based on spectral features (such as SVM and KNN).
However, the proposed SHTN-2 and SHTN-3 can extract multi-
scale spectral–spatial features for accurate classification, which
shows that it has good learning ability and can mine effective
information. Also, when the amount of manual labeling changes,
the classification performance of SHTN-2 and SHTN-3 is better
than the state-of-the-art comparative algorithms. Meanwhile,
compared with SHTN model, SGL involves a large number of
parameter adjustment steps with strong parameter dependence.
It is a time-consuming and labor-consuming complex task to
select these parameters. For Salinas dataset, when using 20
samples per class, the OA, AA, and Kappa of SHTN-3 can
reach 99.77%, 99.93%, and 99.74%, respectively. Through the
postprocessing operation, the classification accuracy will be
further improved. The overall classification accuracy of SHTN is
higher than the SCNN method, using only stacked convolutional
layer without the TD layer. It demonstrates that TD combined
with convolutional layers can extract low-rank features and
improve classification accuracy. As shown in Figs. 8–10, the
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TABLE IV
CLASSIFICATION ACCURACIES OF SALINAS THROUGH DIFFERENT METHODS

Fig. 8. Ground truth and classification maps achieved by our proposed models on the PaviaU. (a) GT. (b) FHTN-1. (c) FHTN-1-MV. (d) SHTN-2. (e) SHTN-2-MV.
(f) SHTN-3. (g) SHTN-3-MV.

Fig. 9. Ground truth and classification maps achieved by our proposed models on the Salinas. (a) GT. (b) FHTN-1. (c) FHTN-1-MV. (d) SHTN-2. (e) SHTN-2-MV.
(f) SHTN-3. (g) SHTN-3-MV.
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Fig. 10. Ground truth and classification maps achieved by our proposed models on the Indian Pines. (a) GT. (b) FHTN-1. (c) FHTN-1-MV. (d) SHTN-2. (e)
SHTN-2-MV. (f) SHTN-3. (g) SHTN-3-MV.

TABLE V
CLASSIFICATION ACCURACIES OF NEW DATASETS THROUGH DIFFERENT METHODS

Fig. 11. Ground truth and classification maps achieved by our proposed models on the LongKou. (a) GT. (b) FHTN-1. (c) FHTN-1-MV. (d) SHTN-2.
(e) SHTN-2-MV. (f) SHTN-3. (g) SHTN-3-MV.

proposed networks can also obtain good visual classification re-
sults. Compared with the SHTN-2, the SHTN-3 uses high-order
TD layers to extract low-rank features, improving the category
discrimination and reducing information redundancy.

For the new datasets, Table V and Figs. 11–13 show that
our methods also have good classification results. As in the
LongKou dataset, when randomly selecting 100 samples per
class as labeled, due to the high imaging quality of this dataset,
the classifier can be fully trained. The traditional methods, SVM
and KNN, have achieved 94.12% and 83.21% in the OA, but
they do not make full use of spatial information. Under the same

condition, from the perspective of spectral–spatial correlation,
our networks excavate the deep distinguishing features,
alleviating the impact of the spectral variability, and achieve the
OA at 98.58%. Although the scene of HanChuan dataset is com-
plex, and some categories are seriously confused, which is very
easy to cause classification errors, the average classification ac-
curacy and Kappa coefficient obtained by SHTN-3 on HanChuan
dataset are also higher than other methods. When SCNN selects
100 samples for each class on this dataset, class 6 and class 13 are
seriously confused. Under the same condition, the average clas-
sification accuracy of SHTN-3 is 92.23%. It shows that SHTN-3
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Fig. 12. Ground truth and classification maps achieved by our proposed models on the HanChuan. (a) GT. (b) FHTN-1. (c) FHTN-1-MV. (d) SHTN-2.
(e) SHTN-2-MV. (f) SHTN-3. (g) SHTN-3-MV.

Fig. 13. Ground truth and classification maps achieved by our proposed models on the HongHu. (a) GT. (b) FHTN-1. (c) FHTN-1-MV. (d) SHTN-2.
(e) SHTN-2-MV. (f) SHTN-3. (g) SHTN-3-MV.

can combine high-order TD layer and 3D-conv layer to extract
the multiscale spectral–spatial features and low-rank features
between different classes to accurately distinguish different
categories. In the HongHu scene, it has 22 classes, which are dif-
ficult to distinguish accurately only from the spectral dimension.
Especially, class 12 is seriously confused with other categories.
Compared with the other latest methods (i.e., WUFL and SGL),
the SHTN-3-MV gains an average improvement of OA + 4.77
and 6.69%. In summary, it shows that our proposed networks
have strong generalization and robustness and can achieve
good classification results for different datasets with different
difficulties.

3) Ablation Study: The ablation study has been done on the
six datasets. Different forms of TD layers can extract low-
rank features from different dimensions of HSIs. Therefore,

to analyze the effectiveness of our proposed HTNs, SHTN-3
is compared with SCNN, SHTN-Spa, and SHTN-2. The first
model does not contain the TD layer and the remaining two
models only extract spectral or spatial features, respectively.
Table VI presents the OA of SHTN-3 and the ablation methods.
It can be seen that on the six datasets, the results obtained
by SHTN-3 are better than the other three models, indicating
that high-order TD layers can extract spectral–spatial low-rank
features for HSI classification. It is proved that high-order TD
can further improve the classification accuracy on the basis
of other forms of TD. Also, the models with TD layers can
achieve better results than those without TD, which shows that
TD can combine with the convolutional layers to extract the
multiscale spectral–spatial features and low-rank features of the
HSIs that are helpful for classification. From Tables II–V and
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TABLE VI
OA OF SHTN-3 AND ABLATION METHODS ON SIX DATASETS

Fig. 14. Convergence curve of SHTN-3 on the six datasets. (a) Indian Pines.
(b) PaviaU. (c) Salinas. (d) LongKou. (e) HanChuan. (f) HongHu.

Figs. 8–13, we can get that, through the postprocessing tech-
nique, the efficacy of the classification task has been further
improved. Due to the characteristic that the ground object distri-
bution has local spatial continuity, the noise on the classification
map is smoothed, and it has good visual effect.

D. Efficiency

1) Convergence Curves: Fig. 14 shows the convergence
curve of SHTN-3 on the six datasets. For classic datasets and
new datasets, we randomly select 3 and 100 samples per class,
respectively. All the losses decrease as the training epoch moves
on and then it is less than 1e-4. Fig. 15 shows the convergence
curves and OA of the training set at the 3000th epoch of SHTN-3
compared with the classic fully supervised CNN method, and
three other advanced semisupervised algorithms, SSAD, SCNN,
and WUFL algorithms, on the Indian Pines dataset. The In-
dian Pines dataset contains 16 land-cover classes. For the fully
supervised competing model, CNN, we randomly select 500
samples per class (total 3635 samples as some classes having
less than 500 samples, we choose 15 samples for these classes)
for training. For semisupervised methods, we randomly selected
3 samples per class, totaling 48 samples used for training. We
can observe that the convergence curve of our proposed SHTN-3
converges quickly with small fluctuations and a relatively stable
pattern, which demonstrates the feasibility and stability of our
proposed models.

2) Time Costs: Table VII presents the training and testing
time on the Salinas and HongHu datasets with 1000 epochs of

Fig. 15. Convergence curve and classification OA of the training set at the
3000th epoch of the proposed SHTN-3, compared with the classic fully super-
vised CNN model (500 labeled samples per class for training) and three other
semisupervised methods SSAD, WUFL, and SCNN (3 labeled samples per class
for training) on the Indian Pines dataset.

TABLE VII
TRAINING AND TESTING TIME OF THE PROPOSED MODELS (S)

the proposed methods. The proposed FHTN-1 costs less training
time on the Salinas dataset but yields lower classification accu-
racy than the other two semisupervised models. Both training
and testing time of SHTN-3 is longer than SHTN-2, while it
achieves higher classification accuracy. The main reason is that
the high-order TD layers extract spectral and spatial features
simultaneously. Thus, it requires more computation and takes
longer time costs.

V. DISCUSSIONS

HSIs have lots of redundant information, which has a great
impact on classification. Our proposed HTNs combine tensor
analysis and convolutional operation for multiscale spectral–
spatial features and low-rank features representation, which can
reduce the computational complexity of the model and the use
of high-order TD can obtain the spectral–spatial features with
strong correlation. Moreover, the scarcity in manual annotations
is a very important problem for HSI classification. Therefore,
we embed the HTNs into the semisupervised network, which
can obtain the higher classification accuracy. Through the MV
strategy, it can smooth the classification results graph. Although
HTNs have achieved good classification results compared with
the other state-of-the-art algorithm, there is still a room for
improvement in its training and testing efficiency.

VI. CONCLUSION

In this article, several novel HTNs that represent multiscale
spectral–spatial patterns and multidomain low-rank features for
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accurate classification have been proposed. Also, the HTNs
combine both fully supervised and semisupervised frameworks,
leveraging the labeled and unlabeled sample features and im-
proving the classification accuracy through the postprocessing
techniques. Experiments show that, for different datasets, the
proposed networks are stable, and the efficacy and efficiency
are better than some classic methods and a variety of advanced
algorithms. The future direction of our work is to further improve
the efficiency of the semisupervised network. Also, we can in-
troduce the pooling layer into the HTNs for higher classification
accuracy.
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