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CONSS: Contrastive Learning Method for
Semisupervised Seismic Facies Classification

Kewen Li", Wenlong Liu", Yimin Dou

Abstract—Recently, convolutional neural networks (CNNs) have
been widely applied in the seismic facies classification. However,
even state-of-the-art CNN architectures often encounter classifica-
tion confusion distinguishing seismic facies at their boundaries. In
addition, the annotation is a highly time-consuming task, especially
when dealing with 3-D seismic data volumes. While traditional
semisupervised methods reduce dependence on annotation, they
are susceptible to interference from unreliable pseudolabels. To
address these challenges, we propose a semisupervised seismic
facies classification method called CONSS, which effectively mit-
igates classification confusion through contrastive learning. Our
proposed method requires only 1% of labeled data, significantly
reducing the demand for annotation. To minimize the influence of
unreliable pseudolabels, we also introduce a confidence strategy to
select positive and negative sample pairs from reliable regions for
contrastive learning. Experimental results on the publicly available
seismic datasets, the Netherlands F3 and SEAM Al challenge
datasets, demonstrate that the proposed method outperforms clas-
sic semisupervised methods, including self-training and consistency
regularization, achieving exceptional classification performance.

Index Terms—Contrastive learning, deep learning, seismic facies
classification, seismic interpretation, semisupervised learning.

I. INTRODUCTION

EISMIC facies classification is the interpretation of facies
S types based on seismic reflection information, which is a
crucial step in petroleum exploration and reservoir characteriza-
tion. However, seismic facies classification is a labor-intensive
and time-consuming task. Therefore, both the industry and
academia are pursuing automated or semiautomated methods
for seismic facies classification.

In the past, some machine learning methods [1], [2], [3] were
used for seismic facies analysis, but they required manual selec-
tion of seismic attributes as feature inputs. With the development
of deep learning, convolutional neural networks (CNNs) have
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been widely applied to seismic data processing [4], [S], [6] and
seismic facies classification [7], [8], [9], [10]. However, there
are still the following challenges.

1) Time-Consuming Annotation: With the rapid increase in
seismic data volume, seismic interpreters face a heavy burden,
core and well log data available to aid in the interpretation of
seismic facies are scarce and costly.

To address the challenge, we employ a specific division
strategy of dataset and propose a semisupervised method using
few labeled data. The 3-D seismic data volume was uniformly
divided into distinct blocks. Within each block, the first slice was
assigned to the training set, whereas the remaining slices were
allocated to the test set. Only 1% labels of the entire data volume
was utilized for training, significantly reducing the demand for
annotation.

To encompass both high-frequency regions reflecting seismic
event variations and low-frequency regions reflecting overall
trends, the slices spanned the entire depth direction, ensuring
more comprehensive contextual and spatial information. Fur-
thermore, we have made all the code and data openly accessible
to facilitate related research and fair comparison.

2) Difference From Natural Images: Seismic images exhibit
notable distinctions from natural images, as they lack evident
semantic objects and instead possess layer-specific information
associated with depth, and the simultaneous occurrence of mul-
tiple seismic facies within the same seismic profile often leads
to pronounced classification confusion at the boundaries.

To cope with the challenge, we employed contrastive learning
to enhance the feature representation of different seismic facies.
We identified that a significant cause of classification confusion
lies in the confusion of features, where features within the same
class are excessively dispersed, whereas features across different
classes are overly similar. The classifier of the CNN relies on
the features from the last layer of the encoder—decoder for
classification, thus the distribution of features directly influences
the classification results.

To enhance the discriminative nature of features across differ-
ent classes and promote more concentrated feature distributions
within the same class, we constructed central features for each
seismic facies class to capture their common characteristics.
Each class’s features were paired with its corresponding central
feature, forming positive pairs, whereas features from different
classes were paired as negative pairs. By leveraging contrastive
learning, we aimed to reduce the distance between positive pairs
while simultaneously increasing the distance between negative
pairs. In addition, our proposed method offers the advantage of
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end-to-end training, allowing seamless integration into existing
encoder—decoder architectures.

3) Unreliable Pseudolabels: Although traditional semisuper-
vised methods reduce the reliance on labeled data, they are
susceptible to the influence of unreliable pseudolabels, which
actually deteriorate the model’s performance.

To tackle the challenge, we devise a confidence strategy to se-
lectreliable feature samples and mitigate the interference caused
by unreliable pseudolabels. The unreliable pseudolabels refer to
regions that have been erroneously classified. We have observed
that in these regions, the entropy of the classification proba-
bilities tends to be relatively high. The magnitude of entropy
is closely associated with the probability distribution, whereby
a higher probability for a specific class corresponds to lower
entropy, indicating a more reliable classification. Conversely, a
more uniform probability distribution leads to higher entropy,
indicating a less reliable classification outcome. Therefore, re-
lying on the predicted probabilities, we exclude features from
unreliable regions and divide the reliable regions of each class
into two subregions: the weak confidence region and the strong
confidence region. The strong confidence regions represent the
most reliable regions and is utilized for computing the central
features, and the features located within the weak confidence
regions become our primary optimization target.

In summary, the contributions of this article are threefold.

1) We propose a contrastive learning method for semisuper-
vised seismic facies classification. By defining positive
and negative sample pairs at the feature level, we optimize
the feature representation of seismic facies, significantly
reducing the reliance on labeled data and mitigating clas-
sification confusion.

2) We introduce a confidence strategy to mitigate the influ-
ence of unreliable pseudolabels, which provides a promis-
ing solution for efficiently generating feature sample pairs
in the presence of unreliable pseudolabels.

3) We have made our data and codes publicly available to
benefit other research of the geophysical community.

II. RELATED WORK
A. Contrastive Learning

Contrastive learning [11], [12], [13], [14] is a self-supervised
learning method aimed at learning feature representation by
comparing the similarities and differences between data sample
shown in Fig. 1. The fundamental idea of this method is to encode
samples of the same class as similar representations and samples
of different classes as dissimilar representations. The primary
objective of contrastive learning is to bring similar samples
closer together in the feature space while pushing dissimilar
samples further apart. At the core of contrastive learning lies
the construction of a contrastive loss function, a commonly used
contrastive loss function is based on positive and negative sample
pairs [15], [16], where positive sample pairs consist of samples
from the same class, whereas negative sample pairs consist of
samples from different classes.

Kokilepersaud et al. [17] proposed a pretraining method for
seismic facies classification based on slice-level contrastive
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learning, they divided seismic data into different blocks, consid-
ering slices within the same block as similar positive samples
and slices from different blocks as dissimilar negative samples.
This method involves two stages: unsupervised pretraining and
supervised fine-tuning. In our proposed method, we employ
pixel-level contrastive learning, which allows for more efficient
sample sampling. Furthermore, our proposed method is an end-
to-end semisupervised training method that does not involve
pretraining.

B. Semi-Supervised Learning

Semisupervised learning [18] is a learning method that lever-
ages both labeled and unlabeled data for model training. It
aims to improve model performance in situations where labeled
data are limited by utilizing information from unlabeled data.
The most common paradigms in semisupervised learning are
self-training [19], [20] and consistency regularization [21], [22].
Self-training is an iterative method where the model is initially
trained on a limited amount of labeled data. The model is
then applied to unlabeled data, and the model’s predictions are
used as pseudolabels. These pseudolabels serve as approximate
labels for the unlabeled data, which are then combined with
the labeled data for the next round of model training. Consis-
tency regularization represents another semisupervised learning
paradigm, which improves model robustness and generalization
by encouraging the model to produce consistent outputs for
perturbed input data.

Saleem et al. [23] implemented a semisupervised method
based on self-training for seismic facies classification. They
trained the model on labeled data and utilized the model’s
predictions of surrounding seismic facies as pseudolabels for
further training. However, such pseudolabeling methods are
prone to interference from unreliable pseudolabels.

C. Seismic Facies Classification

In the past, seismic facies classification was treated as a
conventional image classification task. Chevitarese et al. [24]
proposed a patch-based seismic facies classification model.
Dramsch and Liithje [25] utilized pretraining and fine-tuning
techniques to improve model performance. However, these
patch-based classification methods suffer from the absence of
contextual and spatial information, failing to capture high-
frequency seismic variations. Considering seismic facies clas-
sification as a semantic segmentation task is more appropriate.
Zhao [26] introduced an encoder—decoder CNN segmentation
model for seismic facies classification and compared it with
patch-based methods. Alaudah et al. [27] released the fully an-
notated 3-D geological model of the Netherlands F3 dataset and
proposed a segmentation model based on transposed convolu-
tions. Tolstaya and Egorov [9] incorporated positional encoding
as an additional input channel to enhance spatial information
and used pseudolabels for further training. Civitarese et al. [10]
replaced the traditional dilated convolutions in the decoder block
with transposed residual units and proposed DanetFCN. Some
work in remote sensing image classification is also worthy
of attention. Hong et al. [28] proposed a general multimodal
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Fig. 1. Contrastive learning aims to increase the interclass distance while
reducing the intraclass distance, thereby improving feature representation.

learning framework for remote sensing image classification,
which achieves fine classification by data fusion of different
modalities and overcomes the limitation of information diver-
sity. In addition to CNNs, Hong et al. [29] proposed a backbone
network based on the transformer architecture to mine and
represent the sequence attributes of spectral signatures and built
relationships between samples based on GCNs [30] to extract
more diverse and discriminative feature representations for the
image classification task.

Relevant to our work in [31] and [32], they computed the
trace of the intraclass variance matrix and interclass variance
matrix using few labeled data and minimized their ratio. They
employed deep autoencoder and a greedy layer-wise pretraining
strategy. In contrast, our proposed method utilizes contrastive
learning with an instance discrimination task [15], it does not
require pretraining and calculating variance matrix with statis-
tical properties. More importantly, our proposed method is not
limited to few labeled data and is applicable to unlabeled data as
well. Furthermore, we use different dataset and division strategy.

III. METHOD
A. Overview

In our proposed CONSS as shown in Fig. 2, during each
forward propagation, both labeled and unlabeled data are in-
put simultaneously with the same batch size. Subsequently,
supervised learning and contrastive learning are performed sep-
arately after a nonlinear transformation. Instead of using the
direct features from the encoder—decoder output, we employ
features obtained after the nonlinear transformation. This choice
is based on the findings of SimCLR [14], which demonstrated
that this straightforward yet effective nonlinear transformation
contributes to improved representation learning, and the nonlin-
earity primarily stems from the ReLU activation function.

The supervised learning branch produces prediction results
and undergoes learning with the aid of supervision signals.
The contrastive learning branch, on the other hand, leverages
the predicted probability of unlabeled data from the supervised
learning branch to determine the classes of different seismic
facies. To avoid interference from unreliable pseudolabels and
optimize the feature representation, the contrastive learning
branch employs a confidence strategy to select positive and neg-
ative samples for contrastive learning. Through the collaborative
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efforts of these two branches, the CONSS effectively integrates
supervised and contrastive learning, leveraging their comple-
mentary strengths. This integration leads to enhanced feature
representation and improved performance in seismic facies clas-
sification. The joint optimization of the two branches involves
minimizing both supervised loss and contrastive loss (1):

L= Esup + Ecun' (l)

We introduce supervised loss, confidence strategy for sample
selection, definition of positive and negative sample pairs, and
contrastive loss in the following sections.

B. Supervised Loss

The supervised loss is computed within the supervised learn-
ing branch, which operates on an output segmentation feature
map M., of dimensions H x W x C. Each position within
the feature map represents a C'-dimensional vector. Following
this, the vector undergoes a softmax (4) layer transformation to
yield a probability distribution that sums to 1. The supervised
loss is a pixel-by-pixel cross-entropy loss function with label
smoothing [33] (3):

HxW C
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where H and W represent the height and width of the model
output, C' is equal to the number of seismic facies classes, pf
is the probability that the pixel at position j belongs to class ¢,
and e is the smoothing factor responsible for dividing the small
probability into other classes. Smoothing [34] hard labels to soft
labels will prevent the model from overfitting due to overcon-
fidence. The y is the true facies class, and ¢] is the predicted
probability of the model. By minimizing the cross-entropy loss
function, the predicted probability distribution will be close to
the true probability distribution.

C. Dual-Level Confidence Strategy

The utilization of pseudolabels strategy in semisupervised
methods renders them susceptible to the influence of unreliable
pseudolabels. Unreliable pseudolabels refer to regions that are
prone to misclassification, the information entropy (5) of pre-
dicted probability in these regions tends to be larger. A higher
information entropy value indicates a more uniform distribution
of the predicted probability, resulting in increased uncertainty in
the model’s predictions. Conversely, a higher confidence level
of the model for a specific class corresponds to a smaller entropy
value, implying more reliable results shown in Fig. 3. To address
this issue, we employ a simple yet effective confidence strategy,
which allows us to exclude features from regions with high
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CONSS pipeline consists of an encoder—decoder network that extracts features, a supervised learning branch for supervised learning, and a contrastive

learning branch for representation learning. The f(6) and g(6) represent simple nonlinear transformations consisting of convolution, ReLu, and upsampling.

entropy values to avoid reliance on unreliable information

anog )

For unlabeled seismic data, the true seismic facies class is
unknown and only be inferred based on the model’s prediction
results. To mitigate the impact of unreliable pseudolabels with
large entropy values, we exclude regions where the maximum
predicted probability is below a certain threshold £,,,. In addition,
we divide the reliable regions of each class ¢ into the following
two distinct subregions shown in Fig. 4.

1) R} is the weak confidence region of class %, the model
predicted probability range is t,, < qg < t4, and the pre-
dicted probability for class ¢ is largest.

2) R; is the strong confidence region of class ¢, the model
predicted probability range is qf > tg, and the predicted
probability for class 7 is largest.

It is important to highlight that the weak confidence region
of unlabeled data exhibits a relatively lower predicted proba-
bility compared with the strong confidence region. However, it
still falls within the realm of higher classification probability,
indicating a lower entropy value for these regions. That is,
weak confidence region and strong confidence region are both
high-confidence regions.

For labeled data, there is no necessity to rely on unreliable
pseudolabels since the true classes are known. Consequently,
there are following notable distinctions in the division of confi-
dence regions when compared with unlabeled data.

1) R} is the weak confidence region of class 4, the model

predicted probability range is qf < ts, and the true class
is 7.

2) R; is the strong confidence region of class ¢, the model
predicted probability range is q{ > tg, and the true class
is 7.

D. Positive and Negative Sample Pairs

The contrastive learning branch operates on a representation
map M., with dimensions H x W x D, where each position
corresponds to a D-dimensional feature vector, and D is set to
128. Based on the confidence strategy, these feature vectors are
categorized into either strong confidence regions R; or weak
confidence regions I} of different classes.

The feature vectors within the strong confidence region of
class 4 are considered strong confidence vectors F°. To capture
the common characteristics of class ¢ features, a central vector
is obtained by averaging the strong confidence vectors. This av-
eraging operation reduces the impact of unreliable pseudolabels
and enhances the robustness

FS

Ft = 2B ,EF? € R}. (6)
G

Each feature vector within the weak confidence region of class
1isaweak confidence vector F;. These weak confidence vectors
form positive sample pairs with the central vector F;“ of class ¢

(F*,F),F" € Ry )

where F}” is also called query vector in contrastive learning.
The query vector F;” of class ¢ and the strong confidence
vectors I} of different classes form negative sample pairs

(sz,F]f),k#Z (8)

The objective of contrastive learning is to bring positive sample
pairs closer together while increasing the distance between
negative sample pairs. The distance between two samples is
evaluated using cosine similarity

F - F

sim (F, F —_— 9
FLF) = TR ET ©)
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Fig. 3. Higher information entropy means the uncertainty of the prediction
results of the model, and a high entropy value means that the probability
distribution of the classification is relatively flat, and the prediction results
will be unreliable. (a) Unreliable predicted probability. (b) Reliable predicted
probability.

E. Contrastive Loss

The contrastive loss function is based on the positive and
negative sample pairs defined above. In our proposed method, we
employed InfoNCE [16] loss, a simplified version of NCE [35],
which effectively transforms the binary classification in con-
trastive learning into a multiclassification problem

1 c sim(Fi“’,F;r)/‘r

1 e
C «

1=1

Leon = Ogesim(F;",Fj)/T N 22721 Sm(F )/
(10)

where the C' is the number of seismic facies classes, 7 is the
temperature coefficient used to control the discrimination of
negative samples, and NN is the number of negative samples.

This formulation is interpreted as an N + 1 classification
problem, aiming to differentiate between positive and negative
sample pairs within N + 1 pairs. Specifically, the objective is
to ensure that one pair of positive samples is similar, whereas
the N pairs of negative samples are dissimilar. In the context of
contrastive learning, this task is referred to as instance discrim-
ination [15]. By minimizing the contrastive loss function, the
distance between positive sample pairs is minimized, whereas
the distance between negative sample pairs is maximized. Con-
sequently, this reduces the intraclass feature distance and in-
creases the interclass feature distance of seismic facies, enabling
the model to generate more distinct decision boundaries.

Furthermore, while certain contrastive learning methods [11],
[12], [15], [36] rely on momentum encoders or auxiliary data
structures to generate or store consistent negative samples, the
nature of seismic data differs from complex natural image
scenes. Seismic data exhibit continuity and similarity in its
distribution, thereby facilitating the generation of more con-
sistent samples. Consequently, our proposed method adopts an
end-to-end training method that does not necessitate momentum
encoders or additional data structures.

Finally, the whole process of CONSS is shown in Algorithm 1.

IV. DATASET OVERVIEW
A. Netherlands F3 Dataset

An F3 block is located in the north of the Netherlands. Alau-
dah et al. [27] artificially interpreted seven groups of lithostrati-
graphic units with reference to well logging data, and merged

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

DDSDDD
ooooo

OO0Oo0o0ooo
Oooooooo
OoOoooooo
OoOoOOO0@DQ
OoOooooo

Weak-confidence Regions:/ <g/ <1,

Oooo O

oo
O

O
oo

Unreliable Regions: ¢/ <7,

Fig.4. Dual-level confidence strategy divides reliable regions into strong con-
fidence regions and weak confidence regions for defining positive and negative
sample pairs.

Algorithm 1: CONSS.

Input: labeled seismic data D; and unlabeled seismic data
D,
Output: £
Msleg, Mrlep < Model(D;)
My, My, < Model(D,,)
Get supervised loss L, by (2)
for 7 in classes do
Get high-confidence region R}, R; from M, U M,
by confidence strategy
end for
for 7 in classes do
Get a central vector F;" from R? by (6)
Get a query vector F¥ from R}’
Get N vectors of other classes F}} from R}, k # i
Form a positive sample pair by (7)
Form N negative sample pairs by (8)
Get contrastive loss L., by (10)
end for
L= £sup + Econ
Return: £

Rijnland Group and Chalk Group into one, so there are following
six types of seismic facies in the F3 dataset shown in Fig. 5.
1) Upper North Sea Group: claystones and sandstones from
Miocene to Quaternary.
2) Lower and Middle North Sea Groups: sands, sandstones,
and claystones from Paleocene to Miocene.
3) Rijnland Group: clay formations with sandstones of Upper
Cretaceous.
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Fig. 5. Size of the Netherlands F3 dataset is 255 x 901 x 601 (depth x
crossline x inline).

d

Basement/Other

Slope Mudstone A
Mass Transport Deposit
Slope Mudstone B

Slope Valley

Submarine Canyon System

v

<

5

\ g
Crossline 5

Fig. 6. Size of the SEAM Al challenge dataset is 1006 x 782 x 590 (depth
X crossline x inline).

4) Chalk Group: carbonates of Upper Cretaceous and Pale-
ocene.

5) Scruff Group: claystones of Upper Jurassic and Lower
Cretaceous.

6) Zechstein Group: evaporites and carbonates of Zechstein.

B. SEAM Al Challenge Dataset

The SEAM Al challenge dataset is a 3-D seismic image from
a public-domain seismic survey called Parihaka, available from
the New Zealand government, has been interpreted by expert
geologists. The dataset consists of the following six types of
seismic facies shown in Fig. 6.

1) Basement/Other: Basement—low S/N; few internal re-
flections; may contain volcanics in places.

2) Slope Mudstone A: Slope to basin floor Mudstones; high
amplitude upper and lower boundaries; low amplitude
continuous/semicontinuous internal reflectors.

3) Mass Transport Deposit: Mix of chaotic facies and low
amplitude parallel reflections.

4) Slope Mudstone B: Slope to basin floor mudstones and
sandstones; high amplitude parallel reflectors; low conti-
nuity scour surfaces.

5) Slope Valley: High amplitude incised channels/valleys;
relatively low relief.

6) Submarine Canyon System: Erosional base is U shaped
with high local relief. Internal fill is low amplitude mix
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Fig.7. 3-D seismic volume is uniformly divided into different blocks. In each
block, the first slices go to the training set and the adjacent rest to the test set.

of parallel inclined surfaces and chaotic disrupted reflec-
tors. Mostly deformed slope mudstone filled with isolated
sinuous sand-filled channels near the basal surface.

C. Label Sampling

We uniformly divide 3-D seismic volume into different blocks
shown in Fig. 7. In each block, the first slices go to the training
set and the adjacent rest to the test set. For the Netherlands
F3 dataset, we sampled a total of seven labels with size of
255 x 901. The remaining labels are exclusively allocated to the
test set and are not utilized during model training. The seismic
data corresponding to these remaining labels are considered as
unlabeled data and are used in semisupervised training. Simi-
larly, for the SEAM dataset, we also sampled seven labels with
size of 1006 x 782. Subsequently, we construct the training
data by utilizing sliding window in the crossline direction, with
a sliding step size of 256. In the Netherlands F3 dataset, this
process yields 28 labeled data slices and 2376 unlabeled data
slices, and the slice size after padding is 256 x 256. As for the
SEAM AI challenge dataset, we obtain 28 labeled data slices,
2332 unlabeled data slices, with the slice size after padding being
1024 x 256.

V. EXPERIMENT

A. Implementation Details

All experimental results in this article were obtained on
NVIDIA Tesla P100 (16 G) GPU. For example, in the Nether-
lands F3 dataset, we use the Adam optimizer with an initial
learning rate of 0.0001. The learning rate was adjusted using the
StepLR strategy, where the step size was set to 4 and the gamma
value was 0.1. A total of eight epochs were executed, with
each epoch comprising 1188 iterations. To ensure fairness in
the comparative experiments, the same encoder—decoder model,
DeepLabv3+ [37], was employed, except for the semisupervised
method.

B. Experimental Results and Analysis

1) Netherlands F3 Dataset: The supervised method exclu-
sively utilizes labeled data for training, serving as the baseline



7844

Fig. 8.
(c) Unreliable pseudolabels. (d) Information entropy.
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Correlation between information entropy value of classification probability and unreliable pseudolabels. (a) Ground Truth. (b) Result by supervised.

TABLE I
METRICS OF NETHERLANDS F3

Class Accuracy

Method pA  [Upper NiST| Middle N.S.  Low N.S.  Rijnland/Chalk  Scruff | Zechstein | MCA MIOU Fl

Supervised 96.62 98.38 93.27 99.14 89.41 92.70 79.53  92.09 87.12 92.87
Pseudolabel 97.04 98.42 93.45 99.11 90.84 92.85 79.88 9243 87.83(+0.71) 93.31
Mean teacher 97.38 98.80 94.57 98.76 92.82 93.26 86.92  94.19  89.06(+1.94)  94.05
Cross pseudosupervision ~ 97.44 98.91 94.33 99.15 92.73 9111 87.93 9402  89.24(+2.12)  94.16
Cross-consistency training ~ 97.48 98.78 94.26 99.05 93.71 91.62 90.04 94.58  89.78(+2.66)  94.49
CONSS w/ single-level ~ 97.52 98.87 9451 98.77 93.37 93.03 93.15 9528  90.01(+2.89)  94.62
CONSS w/ dual-level 97.66 98.95 9431 98.89 94.80 92.65 9409 9652  90.73(+3.61) 95.04

The bold represents the maximum value in the column.

model in this article. The pseudolabel [23] method is offline
self-training, where pseudolabels are generated by the super-
vised method and added to the training set for retraining. The
self-training achieves performance gains over the supervised
baseline by +0.71 mean Intersection over Union (MIOU). The
mean teacher [38] is an online self-training method that performs
better than offline learning (+1.94). However, it is worth noting
that the self-training method is susceptible to interference from
unreliable pseudolabels shown in Fig. 8, and in some cases, its
classification performance may deteriorate.

The cross pseudosupervision [22] method based on consis-
tency regularization has demonstrated superior performance
compared with self-training (+2.12). In contrast to the self-
training method, this method utilizes soft pseudolabels rep-
resented as probability distributions. However, the reliability
of the soft pseudolabels is affected when the entropy value is
high. The cross-consistency training [21] is also a consistency
regularization method designed to promote consistency under
different perturbations (+2.66).

We observed a strong correlation between unreliable pseu-
dolabels and high entropy values shown in Fig. 8, so the proposed
CONSS employed a confidence strategy to mitigate the influence
of unreliable pseudolabels. Furthermore, it utilizes fine-grained
pixel-level contrastive learning at the feature level instead of
directly using pseudolabels as supervisory signals, resulting in
enhanced robustness and interpretability. The single level is

a traditional single confidence threshold strategy, whereas the
dual level utilizes the dual-level confidence strategy proposed in
this article. Our proposed method demonstrates state-of-the-art
performance (+3.61) given in Table I, as evidenced by both
quantitative metrics and visual effects shown in Fig. 9.

2) SEAM Al Challenge Dataset: Compared with the Nether-
lands F3 dataset, the seismic facies change of the SEAM Al
challenge dataset shown in Fig. 10 is more complex, even so,
our propose method still achieves state-of-the-art performance
(+4.59) given in Table II.

C. Confusion Matrix and Visualization of the Feature Space

By analyzing the confusion matrix shown in Fig. 11 of
classification on the Netherlands F3 dataset, we observed that
the supervised model frequently misclassifies the Zechstein as
Scruff, as well as encounters similar misclassifications with
the Rijnland/Chalk and its neighboring facies. Through the
utilization of t-SNE [39] for dimensionality reduction and vi-
sualization of the features, we obtained feature distributions for
both the supervised model and the proposed CONSS, as shown
in Figs. 13 and 14. It is obvious that the feature distribution of the
supervised model exhibits significant scattering within the same
class, particularly for the Rijnland/Chalk, Scruff, and Zechstein.
This scattered distribution of the same class leads to substantial
confusion between the distinct class features, thereby hindering
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Visualized results on the Netherlands F3 dataset, and the black arrows indicate the improvement. (a) Ground Truth. (b) Result by supervised. (c) Result

by pseudolabel. (d) Result by mean teacher. (e) Result by cross pseudosupervision. (f) Result by cross-consistency training. (g) Result by CONSS w/ single level.

(h) Result by CONSS w/ dual level.
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Visualized results on the SEAM Al challenge dataset, and the black arrows indicate the improvement. (a) Ground Truth. (b) Result by supervised.

(c) Result by pseudolabel. (d) Result by mean teacher. (e) Result by cross pseudosupervision. (f) Result by cross-consistency training. (g) Result by CONSS w/

single level. (h) Result by CONSS w/ dual level.
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Confusion matrix of classification on the Netherlands F3 dataset. Classification confusion mainly occurs in Zechstein and Scruff facies, Rijnland/Chalk,
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TABLE II
METRICS OF SEAM Al CHALLENGE

Class Accuracy

Method

PA B/O SMA MTD SMB SV SCS MCA MIOU F1
Supervised 95.04 9843 9399 85.15 98.36  71.47 90.76  89.69 83.40 90.38
Pseudolabel 95.57 98.71 94.35 87.01 98.36 7594 9324 91.27 85.01(+1.61) 91.44
Mean teacher 95.74 98.69  94.23 89.03 98.37 7433 9499 91.61 85.38(+1.98)  91.67

Cross pseudosupervision 96.55 9825 96.71 87.19
Cross-consistency training  96.18  98.54  95.06 91.12
CONSS w/ single-level 96.57 98.34  95.83 90.23
CONSS w/ dual-level 96.67 98.74  95.68 91.98

98.60 6934 93.63 90.62  86.54(+3.14) 92.28
98.47 78.61 9438 9270 86.56(+3.16) 92.41
9890  75.85 94.87 9234  87.09(+3.69) 92.69
9890 7832 9488 93.08 87.99(+4.59) 93.30

The bold represents the maximum value in the column.

Class Accuracy
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Fig. 12.  Confusion matrix of classification on the SEAM Al challenge dataset. Classification confusion mainly occurs in Mass Transport Deposit, Slope Valley,

and Slope Mudstone A. (a) Supervised. (b) CONSS.
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Fig. 13.  Visualization of the feature space learned on the Netherlands F3 dataset, using t-SNE [39]. (a) Supervised. (b) CONSS.

accurate classification. In contrast, the feature distribution in
same class of CONSS is more concentrated.

Inthe SEAM Al challenge dataset, we observe a similar occur-
rence of misclassifications in the Mass Transport Deposit, Slope
Valley, and Slope Mudstone A shown in Fig. 12. In CONSS,

through the contrastive learning, the boundaries between these
classes become more discernible.

In aggregate, these feature visualization outcomes offer a
compelling and intuitive explanation of the pivotal role played
by contrastive learning.
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(a)

Fig. 14.

TABLE III
SMOOTHING FACTOR

€ 0 0.05 0.1 0.2
Netherlands F3 89.56 9031 90.73 90.71
SEAM AI challenge 87.51 87.41 87.99 82.87

The bold represents the maximum value in the column.

TABLE IV
CONFIDENCE THRESHOLD
tw 0.6 0.6 0.7 0.7
ts 0.8 0.85 0.9 0.95
Netherlands F3 90.23  89.57 90.73  90.30
SEAM Al challenge  87.58 87.34 87.32  87.99

The bold represents the maximum value in the column.

TABLE V
FLOATING POINT OPERATIONS

Method FLOPs

Supervised 16.38GFLOPs
Pseudolabel 16.38GFLOPs
Mean teacher 16.38GFLOPs
Cross pseudosupervision 16.38GFLOPs
Cross-consistency training  26.08 GFLOPs
CONSS 18.93GFLOPs

D. Ablation Experiments and Discussion

In order to evaluate the impact of label smoothing in the
supervised loss, we performed ablation experiments on the
two datasets. Specifically, we varied the parameter e for label
smoothing, where ¢ = 0 denotes the absence of label smooth-
ing. The results indicate that appropriate label smoothing can
significantly enhance the model’s performance on both datasets
given in Table III.

We empirically preset different confidence intervals, and se-
lected the optimal t,, and ¢4 values for the two datasets based
on the experimental results given in Table IV.

We computed the floating point operations (FLOPs) for each
method given in Table V. The proposed CONSS method ex-
tends the contrastive learning branch, resulting in higher FLOPs
compared with other semisupervised methods without branch
expansion. Among the methods evaluated, cross-consistency
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Visualization of the feature space learned on the SEAM Al challenge dataset, using t-SNE [39]. (a) Supervised. (b) CONSS.

TABLE VI
NETHERLANDS F3

labeled data  unlabeled data Ly Leon  MIOU
v v 87.12
v v v 87.82
v v v v 90.73
TABLE VII
SEAM AI CHALLENGE
labeled data  unlabeled data ~ Lgyp Lecon MIOU
v v 83.40
v v v 83.78
v v v v 87.99

training exhibits the highest FLOPs due to its reliance on mul-
tiple perturbation branches.

Furthermore, contrastive loss can serve as a regularization
technique for supervised training, allowing training solely on
labeled data given in Tables VI and VII. However, the current
method is only applicable to situations where multiple seismic
facies exist within a single seismic data slice. In the extreme
case where a single slice contains only one class of seismic
facies, contrastive learning cannot be employed due to the lack of
negative samples from other seismic facies. Therefore, the data
slice must be large enough to encompass multiple seismic facies.
In the future, we will explore the method for offline storage of
negative samples to address this issue.

VI. CONCLUSION

In this article, we point out a series of challenges faced in
seismic facies classification and propose a simple yet effective
semisupervised method, CONSS, which significantly reduces
the reliance on labeled data. To address classification confusion,
we employ pixel-level contrastive learning to enhance feature
representation. Furthermore, to mitigate the interference caused
by unreliable pseudolabels, we introduce a confidence strategy
for selecting positive and negative samples. Experimental results
demonstrate the superiority of our proposed method over super-
vised baselines, semisupervised self-training, and consistency
regularization methods. The visualization of features confirms
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that
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the proposed method significantly improves feature repre-

sentation. In addition, our proposed method offers end-to-end

train

ing and seamless integration into existing encoder—decoder

models.

APPENDIX

A. Evaluation Metrics

1)

2)

3)

4)

5)

Pixel accuracy (PA) is the percentage of pixels over all
classes that are correctly classified

> 1PN Gy
Zi Gi

where the set of pixels that belong to class ¢ is denoted as

G;, and the set of pixels classified as class ¢ is denoted as

P;.

Class accuracy for class i (CA,;) is the percentage of pixels

that are correctly classified in a class ¢

_|BNG|

G;
Mean class accuracy (MCA) is the average of CA over all
classes

PA = a1

CA; (12)

1
MCA = 6Zi:czxi. (13)

MIOU is defined as averaging the number of elements of

the intersection of GG; and P; over the number of elements
of their union set

1
MIOU = e Z

F1 score is the harmonic mean of precision and recall

1
Fl:azi:

|P; NG

—_—. 14
| P U G| (14)

2 x Recall; x Precision;
Recall; + Precision;

s)

B. Other Hyperparameter Ablation Experiments

(1]

TABLE VIII
LEARNING RATE

Ir 10-2 1073 10=* 10°°
Netherlands F3 89.27 9022 90.73 81.04
SEAM AI challenge 8629 87.99 87.01 78.73
TABLE IX
TEMPERATURE COEFFICIENT
T 0.05 0.5 1 10
Netherlands F3 89.83  90.06 90.73 90.19
SEAM AI challenge 87.54 87.99 8770 86.61
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