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Graph Attention Convolutional Autoencoder-Based
Unsupervised Nonlinear Unmixing

for Hyperspectral Images
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Abstract—Hyperspectral unmixing has received increasing at-
tention as a technique for estimating endmember spectra and
fractional abundances of land covers. Encoding high-dimensional
hyperspectral data into a low-dimensional latent space to generate
reasonable abundances, autoencoder (AE) has shown its great
potential and attractive advantages in spectral unmixing. AEs
decode abundances back to spectra, which can effectively reflect the
general spectral mixing process. However, most existing AE-based
unmixing methods often do not fully exploit the spatial information
of hyperspectral images, hindering the improvement of unmixing
accuracy. This article proposes a graph attention convolutional
autoencoder architecture for hyperspectral unmixing. By incorpo-
rating graph attention convolution into AE, the proposed method
performs better in leveraging both long-range and short-range
spatial information of hyperspectral images. Accurate abundances
with global and local spatial consistency can be efficiently learned
by the network. Moreover, the decoder is further improved based
on the postpolynomial nonlinear mixing model to make the network
have stronger physical interpretability to deal with the issue of
nonlinear blind unmixing. Experimental results indicate that the
proposed method has good unmixing performance. It can reduce
the root mean squared error of estimated abundances for synthetic
data by over 10% compared to other methods. In experiments
with real hyperspectral data, the difference between its unmixing
results’ accuracy and the best is less than 5%.

Index Terms—Autoencoder, bilinear mixture model, graph
attention convolutional network, hyperspectral remote sensing
imagery, nonlinear spectral unmixing.

I. INTRODUCTION

HYPERSPECTRAL remote sensors capture the reflectance
of the earth’s surface across a wide range of wavelengths,

typically in the visible, near-infrared, and short-wave infrared
regions of the electromagnetic spectrum. Collected from plat-
forms such as aircraft and satellites, hyperspectral images play
an essential role in a variety of applications, such as land cover
classification [1], [2], [3] target detection [4], [5], feature ex-
traction [6], etc. However, problems such as the low resolution
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of imaging instruments have always led to the prevalence of
mixed pixels, i.e., multiple substances exist in a single pixel [7].
Therefore, hyperspectral unmixing techniques are often required
to solve this problem to obtain fine land cover information from
hyperspectral data [8].

In the past few decades, hyperspectral unmixing has become a
research hot spot in the field of hyperspectral image processing.
Typical unmixing methods can be divided into two categories: 1)
supervised methods; and 2) unsupervised methods. Supervised
hyperspectral unmixing methods require a set of known end-
members to be provided to guide the regression of abundances
in unmixing. Unsupervised methods automatically update both
endmembers and abundances during the unmixing process. Typ-
ical blind source separation approaches such as independent
component analysis (ICA) and nonnegative matrix factorization
(NMF) are popularly adopted to develop unsupervised unmixing
algorithms in literature [9], [10], [11]. With the development
of artificial intelligence and machine learning technologies,
supervised or unsupervised methods based on deep learning
(DL) have also been widely used for hyperspectral unmixing
[12], [13], [14], [15]. The DL-based unmixing methods’ main
advantage is that they perform better in learning valuable hidden
features of abundances from hyperspectral data directly without
explicit dependence on complex mathematical models [16].

Deep autoencoder (AE) networks are especially suitable for
unmixing and have shown excellent performance. AEs cannot
only extract robust features from high-dimensional hyperspec-
tral images with different data distributions and capture features
at different scales, but also can be easily integrated with other
advanced deep learning modules. For example, Su et al. [17]
proposed an unmixing method by using stacked nonnegative
autoencoders to remove outliers in the original data whose
reconstructed data were further fed into variational autoencoders
(VAE). Similarly, the idea of combining multiple autoencoders
to improve unmixing is also adopted in some recently pub-
lished works. Gao et al. [18] used two autoencoders to con-
stitute an end-to-end cascaded unmixing network model where
a self-perception loss was further used to enhance the unmixing
performance. Two concatenated autoencoders were introduced
to better find the global optimum in [19]. Hua et al. [20] added
constraints on the basis of AE to enhance the smoothness of
abundances. Two branches of dual-branch autoencoder network
(DBA) proposed in [21] used fully connected layers and 2-D

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0007-7984-1919
https://orcid.org/0000-0002-9762-0788
mailto:dnj19980125@gmail.com
mailto:dnj19980125@gmail.com
mailto:yangb19@dhu.edu.cn


JIN AND YANG: GRAPH ATTENTION CONVOLUTIONAL AUTOENCODER-BASED UNSUPERVISED NONLINEAR UNMIXING 7897

convolutional layers to extract spectral and spatial information,
respectively, which can improve the efficiency and accuracy of
feature extraction.

It is noted that most of the AE-based unmixing methods are
based on the assumption of the linear mixture model (LMM).
The LMM often describes the phenomenon of material mixing
at a macroscale, which assumes that the sensor directly receives
the incident light after only interacting with a single surface
object. However, in many real scenarios, the spectrum of a
pixel is significantly affected by the light’s multiple scatter-
ing and reflection among adjacent objects [22]. Therefore, it
is necessary to explain the nonlinear mixture components of
pixels with a reasonable mixture model [23]. Representative
traditional physical models such as the Hapke model [24] and the
PROSPECT model [25], have complex mathematical forms and
depend on the acquisition of physical parameters. To decompose
the nonlinear mixtures while maintaining the physical meaning,
simplification has been carried out, leading to bilinear mixture
models [26] such as the polynomial posterior nonlinear mixing
(PPNM) model [27], higher-order linear mixture models, and
kernel models that describe different degrees of multiple scat-
tering effects [28].

In order to use AE to improve nonlinear unmixing, researchers
[29] tried to build AE-based unmixing networks by considering
typical numerical nonlinear mixture models such as the PPNM
model in the decoder part. Hapke model and fully convolutional
neural network (CNN) were recently combined to construct the
AE-based nonlinear unmixing model [30]. Zhao et al. considered
every pixel of a hyperspectral image as an additive mixture
of linear and a nonlinear-fluctuation [31], and they recently
introduced 3-D convolution to jointly utilize spatial and spectral
information in nonlinear unmixing [32]. Due to the complexity
of nonlinear unmixing, similar studies resorting to 2-D or 3-D
convolution modules have been done to use spatial information
of hyperspectral images to improve unmixing accuracy [33],
[34], [35]. Moreover, a feasible and common approach is to build
a spatial information-driven constraint term of loss function [36].

The traditional convolution modules can learn spatial infor-
mation in local rectangular blocks. However, the dependence on
the regular convolution kernel and its sizes and the network lay-
ers’ depth hinders the traditional convolution efficiently learning
the complex spatial distribution of land covers. Therefore, to
improve the AE-based nonlinear unmixing, it is meaningful and
challenging to reasonably construct the network structure to not
only better utilize the local and global spatial information of
hyperspectral data, but also have physical interpretability like
nonlinear mixture models. This is the leading research intention
of this work.

In this article, we propose a graph attention convolutional
autoencoder (GACAE) for unsupervised nonlinear unmixing.
Besides the local spatial information of hyperspectral data
learned by traditional CNN modules, the graph attention convo-
lution mechanism is further adopted to learn hyperspectral data’s
global spatial information. First, a group of spatial blocks is auto-
matically generated by superpixel segmentation of hyperspectral
data [37], [38]. Each superpixel block is regarded as a graph node
and they can be connected, which allows for the acquisition of

global spatial information through graph convolution networks
(GCNs) [39], and computational complexity is much lower than
the methods that treat each pixel as a separate graph node [40],
[41]. Second, to improve GCNs, a graph attention network
(GAT) [42] is introduced, which adaptively adjusts the weights
between graph nodes so that the relationship between superpixel
blocks can be better reflected. In this sense, it is promising
that the spatial context of hyperspectral images in line with the
ground truth can be comprehensively learned in the encoding
stage. Finally, the PPNM is employed to improve the decoder
part of the autoencoder, which enables the network to better
explain the nonlinear mixing effects and produce more accurate
and physically meaningful unmixing results.

The main contributions of this article are as follows.
1) Superpixel-based GCNs can effectively encode the hy-

perspectral data’s global spatial information with low
computational complexity. Moreover, GAT enables more
reasonable weight allocation within the graph, leading to
further improvement in unmixing accuracy.

2) The global information obtained by GAT is combined with
the local information obtained by CNN to fully utilize the
spatial information of hyperspectral images.

3) The PPNM is applied in the decoder to make the network
physically meaningful for nonlinear unmixing. Compared
to the current nonlinear unmixing approaches, the pro-
posed method has shown competitive unmixing perfor-
mance.

The rest of this article is organized as follows. Section II intro-
duces the principle of AE and the PPNM model. In Section III,
the proposed method is presented in detail. The performance of
the proposed method on synthetic and real hyperspectral datasets
is evaluated in Section IV. Finally, Section V concludes the
article and provides a perspective for future work.

II. RELATED WORKS

A. AE-Based Unmixing

According to the LMM, an observed pixelx ∈ RB consisting
of B spectral bands can be expressed as follows:

x = Ms+ ε (1)

where M = (m1,m2, . . . ,mR) ∈ RB×R denotes the end-
member matrix with each column mi being an endmember
spectral signature vector. s = (s1, s2, . . . , sR)

T and ε ∈ RB

represents the abundance vector and the noise vector associated
with the pixel x, respectively. In the nonlinear mixing case, x
can be denoted as follows:

x = ϕ (M , s) + ε (2)

where ϕ(·) represents the nonlinear influence.
An autoencoder network consists of an encoder and a decoder

[43]. In (3), S = (s1, s2, . . . , sN ) refers to the high-order
hidden features generated by the encoder, which can represent
the physically meaningful abundance matrix of the hyperspectral



7898 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

image, and N represents the number of pixels in the hyperspec-
tral image.

S = fE (X) (3)

where X = (x1,x2, . . . ,xN ) is the input hyperspectral im-
age. fE(·) represents the operation of compressing X into a
low-dimensional representation by the encoder, which is highly
consistent with the process of unmixing. Then, the decoder
reconstructs S back to the hyperspectral data

X̂ = fD (S) (4)

where fD(·) decodes S into the reconstructed image X̂ . In the
context of LMM, this process is typically achieved by a fully
connected layer, and the weights of this layer correspond to the
endmember matrix of the hyperspectral image.

B. GAT

GAT is an attention mechanism used in graph neural net-
works [42]. In the field of hyperspectral unmixing, a graph
structure can be built by treating pixels or superpixels generated
by segmenting the spatial region of hyperspectral images as
nodes. Then, GAT aggregates and updates the information of
the nodes on the graph. Compared with traditional GCNs, GAT
can learn the importance weights of each node, instead of simply
averaging the contribution of all neighboring nodes. Therefore,
GAT can address the issue that aggregating neighboring node
information equally may not be conducive to learning spatial
information if two adjacent nodes have significantly different
material compositions. More accurate spatial information can be
learned by GAT. Moreover, GAT can handle graphs of arbitrary
structures, making it suitable for any shape and size of the graph
structure.

C. PPNM

LMM cannot explain the nonlinear mixing residual contained
in hyperspectral images [22]. Among the nonlinear mixture
models, bilinear mixing models (BMMs) consider the main
second-order scattering effects between objects by using the
Hadamard product and nonlinear coefficients. So, BMMs com-
monly have relatively simple model forms to express nonlinear-
ity. The PPNM [27] is a typical BMM that is usually used. It can
be represented as follows:

xj = gb (Msj) + εj = Msj + bj (Msj)� (Msj) + εj
(5)

where gb(·) denotes the nonlinear mixing transformation, and
� represents the Hadamard product. The parameter bj is used to
regulate the influence of the nonlinear components in a pixel, and
all bilinear terms in a pixel are multiplied by the same parameter
bj . If bj = 0, PPNM turns to the LMM. Since bj is closely related
to the degree of the nonlinearity of pixels, it can be used to detect
the degree of nonlinear mixing of the pixels.

III. PROPOSED METHOD

This section introduces the proposed method GACAE which
consists of two main modules: 1) a GAT-based spatial feature

extraction module; and 2) an improved autoencoder module. The
overall structure of the GACAE algorithm is shown in Fig. 1. In
brief, a hyperspectral image is first segmented into superpixels
to build a graph structure. Graph attention convolution is then
performed to make the obtained graph structure information of
pixels. In the spectral dimension, the mapped graph structure
information and the original hyperspectral image are concate-
nated into the AE. The encoder of the AE consists of four 2-D
convolutional layers, and the decoder uses a PPNM layer to
represent nonlinearity. A detailed description of the modules is
provided as follows.

A. GAT-Based Spatial Feature Extraction Module

Different land covers commonly present dominance in their
own specific regions of the entire image scene and these regions
are commonly irregular. The relationship between these irregular
local regions can better reflect the land covers’ global spatial
distributions. To overcome the drawbacks of traditional convolu-
tion, a new module is designed to obtain the complex long-range
spatial information of a hyperspectral image through the use of
the GAT. It is noted that the construction of the GAT module
relies on the definition of the graph nodes. Due to the high com-
putational complexity of regarding every pixel directly as a node
on the graph, a classical superpixel segmentation method simple
linear iterative clustering (SLIC) [44] is employed to separate
the hyperspectral data into a group of irregular homogeneous
superpixel patches which are considered as graph nodes. And
then, by establishing the adjacency relationship between each
superpixel block, the hyperspectral image is converted into an
undirected graphG = (V, E), whereV andE represent the sets of
nodes and edges of the graph, respectively [45]. Inspired by [46],
the proposed method regards the centroid of each superpixel as
the nodes of the graph.

An incidence matrixQ is generated which represents the map-
ping relationship between pixels and superpixels. Assuming the
number of superpixel blocks is Z, and P denotes the superpixel
set, the incidence matrix Q ∈ RN×Z can be defined as follows:

Qi,j =

{
1, ifXFi ∈ Pj

0, otherwise
,XF = Flatten(X) (6)

where Flatten(·) denotes the operation of flattening the hyper-
spectral image by the spatial dimension. XFi denotes the ith
pixel in XF , and Pj is the jth superpixel.

Since superpixels can have different spatial and spectral re-
lationships, an adjacency matrix A ∈ RZ×Z should be used
to establish their adjacency relationship. Specifically, for any
two superpixels, their adjacency relationship Ai,j is defined as
follows:

Ai,j =

{
1, if Pi andPj are adjacent (i �= j)

0, otherwise
. (7)

In addition, a node matrix H = (h1,h2, . . . ,hZ) ∈ RB×Z

is used to represent the information contained in the graph nodes
of V . hi denotes the information vector of the ith graph node.
After H and A enter into the GAT layer, a weighted aggregated
matrix H ′ = (h′

1,h
′
2, . . . ,h

′
Z) ∈ RB×Z of the neighboring
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Fig. 1. Overall structure of the GACAE algorithm.

TABLE I
NETWORK LAYER STRUCTURE OF GACAE

nodes can be obtained, the ith column vector of which can be
denoted as follows:

h′
i = σ

⎛
⎝∑

j∈Ni

αijW 1hj

⎞
⎠ . (8)

In (8), σ(·) represents the activation function, and Ni rep-
resents the set of adjacent nodes of the target node i. W 1 is
a learnable weight matrix. The coefficient αij is the similarity
weight between the target node i and one of its adjacent nodes.
αij can be calculated by the attention mechanism and its specific

expression is given as follows:

αij = softmax(eij) =
exp (eij)∑

k∈Ni
exp (eik)

(9)

eij = aTLeakyReLU (W 2 · [hi ‖ hj ]) (10)

where eij represents the importance of node j to node i. (10)
is used [47] to avoid the collapse of W 2 and a into a linear
layer in the original GAT [42]. In the formula, a and W 2 are the
2B× 1 learnable parameter vector and 2B× 2B weight matrix,
respectively, and ‖ denotes the vector concatenation operation.

As shown in Fig. 1 and Table I, the constructed graph G
is processed through two GAT layers and an ELU activation
function. Compared to ReLU, the ELU activation function is
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smoother, which helps to improve the robustness and stability
of the network model [48]. To maintain the consistency of data
structures, node features of the superpixel-based graph should
be mapped to the corresponding pixel-level features through
the corresponding relationship in Q. In this sense, the pixels
within the same superpixel could share the spatial relationship
expressed by the corresponding graph node.

B. Improved Autoencoder Module

1) 2-D Convolution-Based Local Spatial Information Extrac-
tion: The details of the autoencoder network architecture are
shown in Table Ⅰ. As a supplement to the GAT module, in the
encoder part, 2-D convolutional layers with 3× 3 kernels are
used to learn short-range spatial information in smaller local
regions. The batch normalization (BN) layer is added before
each convolutional layer [45], [49], which is used to normalize
each batch of data during the training. It prevents the network’s
activation values from being too biased toward a certain direction
when the data distribution shifts, which can mitigate the gradient
vanishing or exploding and make the training of the network
more stable [50]. CNN is used to exploit the local spatial
information of hyperspectral images to improve the accuracy
of unmixing. This is because CNN can extract features within
small local regions defined by the kernel size, allowing it to
effectively learn the short-range local spatial characteristics of
the hyperspectral image. Moreover, the LeakyReLU activation
function is used after the CNN layer. LeakyReLU assigns a small
gradient to each negative neuron value to replace a zero gradient,
which allows negative values to backpropagate [51].

The features generated in the hidden layer are abundances,
which should satisfy the abundance nonnegative constraint
(ANC) and the abundance sum-to-one constraint (ASC)

ANC : si ≥ 0, ∀i ∈ {1, 2, . . . , R}

ASC :

R∑
i=1

si = 1. (11)

To satisfy (11), abundances are generated by normalizing the
absolute values of the output of the encoder.

2) PPNM Improved Decoder: In the decoder, a PPNM layer
is used to reconstruct the abundance features back to pixels,
which is illustrated in Fig. 1. Specifically, a linear part is gener-
ated first using a fully connected layer [29], [32], and the weights
of this linear layer are initialized by the endmembers obtained by
vertex component analysis (VCA) algorithm [52]. The PPNM
layer consists of a linear part and a nonlinear part, as shown in (5).
According to the PPNM, the nonlinear part of a reconstructed
pixel is obtained by taking the Hadamard product of its linear
part, and the nonlinear parameter b is learned during the training.

C. Loss Function

Further, the proposed method’s loss function is

Loss = ReLoss+ λ·‖S‖1/2 (12)

where ReLoss represents the reconstruction error which is
calculated by the mean squared error (MSE).

ReLoss =
1

N

N∑
i=1

(x̂i − xi)
2 (13)

where xi and x̂i denote the input original pixel and the recon-
structed pixel of the autoencoder, respectively.

The second term ‖S‖1/2 in (12) is introduced to enforce
the sparsity of the abundance [53]. Compared to the L0 norm
that leads to an intractable NP-hard problem and the L2 norm
that generates less sparse results, the L1/2 norm can better
enforce the sparsity of the abundance matrix [54]. Therefore, the
intrinsic structural features of abundances including the spatial
correlation and sparsity are promising to be effectively expressed
in the unmixing results of the proposed method. The parameter
λ is used to control the degree of influence of the sparsity term.

IV. EXPERIMENTAL RESULTS

A. Data Description

Experiments with synthetic data and real hyperspectral re-
mote sensing data1 were carried out to evaluate the unmixing
performance of the proposed method.

In terms of the generation of synthetic data, the reference
endmembers were selected from the United States Geological
Survey (USGS) spectral library. Each endmember has 224 bands
in the spectral range from 0.39 to 2.56 μm. Abundances were
generated by the Gaussian field method [32], and the maximum
mixing degree was set to 0.8. Simulated data with a size of
64× 64 pixels were generated based on the PPNM and Gaussian
white noise was added. Different numbers of endmembers (from
3 to 5) and noise with different intensities (i.e., evaluated by
the signal-to-noise ratio (SNR) [55] from 20 to 40 dB) were
considered in the experiments.

For real hyperspectral data experiments, two subregions of
the popularly used Samson and Jasper Ridge datasets were taken
into account. It is noted that different from the synthetic data, true
endmembers and abundances of the real data’s ground truth are
unknown. Therefore, similar to recently published works [17],
[18], [33], [34], reference endmembers and abundances provided
by specific processing methods in [56], [57], [58] were used for
quantitative comparisons in this article.

The Samson dataset owned by Oregon state university was
obtained by a push broom visible to near-infrared sensor [57].
It consists of 952×952 pixels each of which has 156 bands
captured in the spectral range of 401 nm–889 nm with a spectral
resolution up to 3.13 nm. For experimental evaluation, a 95×95-
pixel subregion in Fig. 2 was used. Three typical endmembers
including soil, trees, and water are commonly considered to exist
in the observed area.

The Jasper Ridge dataset was captured by Airborne Visible-
Infrared Imaging Spectrometer (AVIRIS) over the standard
scene of the Jasper Ridge, a biological reserve in California [59].
It contains 512×614 pixels and each pixel was recorded at 224

1[Online]. Available: https://rslab.ut.ac.ir/data.

https://rslab.ut.ac.ir/data.
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Fig. 2. Real hyperspectral remote sensing data: (a) Samson. (b) Jasper ridge.

channels ranging from 0.38to 2.5 μm. The spectral resolution is
up to 9.46 nm. A subregion containing 100×100 pixels with 198
bands (i.e., 1–3, 108–112, 154–166, and 220–224 bands were
removed due to dense water vapor and atmospheric influence)
in Fig. 2 was used in the experiments. Four main endmembers
including trees, soil, water, and road exist in the region of
interest.

B. Quantitative Metric for Unmixing Evaluation

The root means squared error (RMSE) is used to evaluate the
accuracy of abundance estimation, and the mean spectral angle
distance (MSAD) is used to evaluate the accuracy of endmember
extraction. Smaller values of RMSE in (14) and MSAD in (15)
means better accuracy of abundance estimation and endmember
extraction.

RMSE =

√
1

NR

∑N

i=1
‖ai − âi‖22 (14)

MSAD =
1

R

R∑
i=1

cos−1

(
mT

i m̂i

‖ mi ‖‖ m̂i ‖
)

(15)

where âi is the estimated abundance vector of the ith pixel and
ai is the corresponding reference of abundance. m represents
the reference endmember vector and m̂ represents the estimated
endmember vector. xi and x̂i have the same definitions in (13).

C. Compared Algorithms

The following typical algorithms are compared:
1) L1/2NMF [53]: An NMF-based linear unmixing algo-

rithm that exploits the sparse characteristics of abundances
in most real-world scenarios.

2) uDAS [60]: A cascaded autoencoder algorithm that com-
bines both the edge-preserving denoising autoencoder and
nonnegative sparse autoencoder for unmixing.

3) MAC_U [61]: A model-based unmixing algorithm that
improves the AE’s structure according to the nonlinear
mixing models for nonlinear unmixing.

4) CyCU [18]: A linear unmixing method that uses the cyclic
consistency of two autoencoders connected head to tail for
unmixing.

5) rNMF [62]: A nonlinear unmixing method based on NMF
that calculates the endmembers and abundances simulta-
neously using a block-coordinate descent algorithm.

Fig. 3. Selection of the regularization parameter λ in GACAE.

Fig. 4. Convergence curve of GACAE on the simulated data.

6) NAE [63]: An approach for blind nonlinear unmixing that
uses a deep autoencoder network to solve the postnonlin-
ear mixing problem.

The compared algorithms, excluding the rNMF, are the AE-
based unmixing algorithms. In addition, MAC_U, rNMF, and
NAE are specifically designed for nonlinear unmixing. All
the algorithms are unsupervised unmixing algorithms. VCA
is used to initialize endmembers. Hyperparameters including
the number of epochs, learning rates, etc., were set according
to the descriptions in the corresponding published papers. In
quantitative comparison, every algorithm was independently run
ten times and the mean and standard deviation of the MSAD
values and the RMSE values were compared.

D. Experiments With Synthetic Data

By using synthetic data constructed by four endmembers with
SNR being 40 dB, the sparsity parameter λ in (12) was discussed
in the first. It can be seen from Fig. 3 that the RMSE is the
best when λ was set to 1e-7 which was used in the following
experiments.

During the training, the network was optimized by the Adap-
tive Moment Estimation (Adam) optimizer. The learning rate for
Adam and the linear layer of the decoder was set as 1e-3 and
1e-5, respectively. A weight decay rate of 1e-5 was used, and the
number of epochs was set as 1000. Fig. 4 shows the convergence
curve of GACAE under the condition that four endmembers were
considered, the maximum abundance was set as 0.8, and SNR
was set as 40 dB in simulated data. It can be observed that the
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TABLE II
COMPARISON OF ESTIMATED ABUNDANCES’ RMSES FOR THE SYNTHETIC DATA

TABLE III
COMPARISON OF EXTRACTED ENDMEMBERS’ MSADS FOR THE SYNTHETIC DATA

proposed method converges fast in the early stage and decreases
slowly with the increase of epochs in the later stage to provide
stable unmixing results.

Tables II and III provide the RMSE and MSAD of each
algorithm for different simulated datasets. In Table II, it can be
seen that the nonlinear unmixing algorithms including MAC_U,
rNMF, and the proposed GACAE have better RMSE than
most of the linear unmixing algorithms. As the number of
endmembers and the SNR decreases, although the RMSE of
GACAE increases slightly, it remains at a low level, indi-
cating its robustness to noise and the number of endmem-
bers. The reason may be that compared with the other algo-
rithms, GACAE better uses the global and local spatial in-
formation of hyperspectral data in unmixing. Moreover, Ta-
ble III also proves the superiority of GACAE. The MSAD of
GACAE is competitive and can achieve the best performance
in most cases, indicating that the improvement of abundance
estimation by GACAE also helps to extract more accurate
endmembers.

In addition, to further verify the beneficial function of different
modules used in the proposed method, an ablation experiment
was conducted. To generate the synthetic data, four endmembers
were used and the SNR was 40 dB. In this experiment, the GAT
module and the PPNM layer were removed to execute unmix-
ing, respectively. Table IV compares the quantitative unmixing
results obtained by using three module combinations. It is clear
that the best results are achieved when all the modules are used
in GACAE. Particularly, the GAT module has shown significant
contribution to improving the unmixing accuracy even when the
decoder is only based on the LMM. It implies that the complex
spatial distribution of land covers can be effectively learned by
the GAT module.

TABLE IV
ABLATION STUDY OF THE PROPOSED METHOD

TABLE V
RMSE AND MSAD OF THE SAMSON DATA

E. Experiments With Real Hyperspectral Data

For the Samson dataset, GACAE was trained with the fol-
lowing parameters: the learning rate for Adam was set as 5e-5,
the learning rate for the decoder was 1e-4, and λ was 5e-5. The
Samson dataset is trained for 500 epochs. Table V quantitatively
lists the RMSEs of abundances and the MSADs of endmembers
estimated by the compared algorithms for the Samson dataset.
Fig. 5 displays the best abundance maps of each algorithm in
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Fig. 5. Estimated abundance maps of the Samson data.

Fig. 6. Estimated endmember spectral curves of samson data: (a) soil, (b) tree, (c) water.

ten experiments. The spectral curves of extracted endmembers
can be clearly observed in Fig. 6.

From Figs. 5 and 6, it can be observed that the abundances
of GACAE are sparser than that of the other nonlinear algo-
rithms and similar to the reference abundance maps [58]. In
comparison, GACAE’s endmembers are much closer to the
references. rNMF has a large deviation in its water endmember,
and some oscillation exists in the CyCU’s endmembers. In
Table V, according to the reference endmembers [58],
L1/2NMF achieves the smallest RMSE, but the MSAD of
its endmembers is very large. In terms of MSAD of endmem-
bers, two nonlinear unmixing algorithms MAC_U and NAE
perform better, but they have poor abundances. In comparison,
the unmixing results of GACAE are acceptable. The RMSE of
GACAE’s abundances is better than most nonlinear unmixing
and AE-based unmixing methods, and its difference from the
best is less than 5%. The MSAD of GACAE’s endmembers is
about 60% smaller than the L1/2NMF algorithm’s.

For the Jasper dataset, the learning rate for Adam was 9e-3,
the learning rate for the decoder was 5e-7, and λ was set as
2e-7. The Jasper dataset is trained for 1000 epochs. Figs. 7
and 8 show the qualitative unmixing results of the compared
methods for the Jasper dataset. Table VI provides the quantitative

TABLE VI
RMSE AND MSAD OF THE JASPER RIDGE DATA

comparison of the methods on the Jasper dataset. In terms of
qualitative comparison, most methods can clearly reveal the
ground covers’ distribution in Fig. 7, but NAE may wrongly esti-
mate the abundance map of the road. And it can be observed that
the proposed method has better sparsity compared to the other
nonlinear algorithms. From Fig. 8, it can be observed that most
algorithms perform well in endmember extraction, but rNMF
has significant differences in its tree endmember compared with



7904 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 7. Estimated abundance maps of the Jasper ridge data.

Fig. 8. Estimated endmember curves of Jasper ridge data: (a) tree, (b) water, (c) soil, (d) road.

the reference. For the road endmember, uDAS, MAC_U, NAE,
and GACAE all show significant differences from the reference
endmembers. The two NMF-based methods extract better end-
members, indicating that deep learning-based methods may be
further improved to perform better in endmember extraction.

In addition, the endmembers extracted by CyCU suffer from
oscillation issues. In terms of quantitative comparison, accord-
ing to Table VI, GACAE performs better than all the nonlinear
unmixing algorithms which is similar to the case of the Samson
dataset. It possibly indicates that the use of graph attention
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TABLE VII
COMPUTATIONAL TIME OF EACH ALGORITHM ON DIFFERENT DATASETS (IN SECONDS)

convolutional operation can improve the nonlinear unmixing
performance.

Finally, Table VII compares computational time on the syn-
thetic dataset containing 64× 64 pixels and two real hyperspec-
tral remote sensing datasets. The L1/2NMF algorithm is the
fastest, while the deep neural network-based algorithms usually
need more time, especially for the data containing more pixels.
An important work in the future is to improve the unmixing
accuracy of deep neural network-based algorithms with a smaller
epoch and less time.

V. CONCLUSION

This article presents a graph attention convolution-based
autoencoder method GACAE for nonlinear unmixing. It can
effectively integrate long-range and local spatial information
by using GAT and CNN. Therefore, the spatial information of
hyperspectral images can be reasonably exploited to improve
unmixing accuracy. Moreover, the decoder of the proposed
method simulates the PPNM to give a physical interpretation
for the nonlinear mixing effects so that the nonlinear unmixing
problem can be well addressed. Experimental results on simu-
lated and real hyperspectral remote sensing datasets demonstrate
the effectiveness of GACAE and show its competitive perfor-
mance compared to the state-of-the-art unmixing methods that
more than ten percent of abundance estimation RMSE has been
reduced by GACAE. In our future work, the proposed method’s
limitations such as the large time cost will be considered to be
overcome.
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