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Improved Ocean—Fog Monitoring Using Himawari-8
Geostationary Satellite Data Based on Machine
Learning With SHAP-Based Model Interpretation

Seongmun Sim

Abstract—QOcean—fog is a type of fog that forms over the ocean
and has a visibility of less than 1 km. Ocean—fog frequently causes
incidents over oceanic and coastal regions; ocean—fog detection
is required regardless of the time of day. Ocean—fog has distinct
thermo-optical properties, and spatially and temporally extensive
ocean—fog detection methods based on geostationary satellites are
typically employed. Infrared (IR) channels of Himawari-8 were
used to construct three machine-learning models for the continuous
detection of ocean—fog. In contrast, visible channels are valid only
during the daytime. As control models, we used fog products from
the National Meteorological Satellite Center (NMSC) and machine-
learning models trained by adding a visible channel. The extreme
gradient boosting model utilizing IR channels corrected ocean—fog
perfectly day and night, with the highest F'1 score of 97.93% and a
proportion correct (PC) of 98.59 % throughout the day. In contrast,
the NMSC product had a probability of detection of 87.14%, an
F1 score of 93.13%, and a PC of 71.9%. As demonstrated by the
qualitative evaluation, the NMSC product overestimates clouds
over small and coarsely textured ocean—fog regions. In contrast,
the proposed model distinguishes between ocean—fog, clear skies,
and clouds at the pixel scale. The Shapley additive explanation
analysis demonstrated that the difference between channels 14 and
7 was very useful for ocean—fog detection at night, and its extremely
low values contributed significantly to distinguishing nonfog during
the daytime. Channel 15, affected by water vapor absorption, con-
tributed most to ocean—fog detection among atmospheric window
channels. The research findings can be used to improve operational
ocean—fog detection and forecasting.

Index Terms—Himawari-8, machine learning, ocean—fog,
Shapley additive explanation (SHAP), whole-day, extreme gradient
boosting (XGB).

1. INTRODUCTION

OG is a near-surface cloud composed of small water
droplets (1-50 pm) that strongly scatter visible light [1].
A phenomenon in which horizontal visibility falls below 1 km
is defined as fog, which frequently causes traffic problems
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[11, [2], [3], [4]. Low visibility is even more dangerous when
sailing because it takes longer to steer and brake than other
ground vehicles [5], [6]. Even though many marine activities
are susceptible to poor visibility, ocean—fog monitoring based
on weather stations and video surveillance facilities is located
on coastal land or ports, whereas the entire ocean is a potentially
dangerous ocean—fog area [7], [8], [9], [10]. Therefore, monitor-
ing ocean—fog over vast oceanic areas not limited to the coastal
regions is essential.

Numerical weather prediction is widely used to estimate and
forecast weather conditions by simulating atmospheric interac-
tions and producing maps of atmospheric conditions, including
ocean—fog over a large area. Although relative humidity can
theoretically be used to estimate ocean—fog, the conditions
that favor ocean—fog are intricately linked from microscale
(~10-7 m) aerosol particle concentrations to synoptic-scale
(~106 m) airmass behavior, resulting in poor modeling per-
formance [11]. Numerous studies have proposed methods to
improve multiscale modulation by combining multiple models,
such as the Lagrangian cloud model, with large-eddy simu-
lations; however, these approaches are insufficient to produce
definitive ocean—fog simulations [12].

In addition to numerical simulations, satellite remote sensing
provides data over vast areas. Owing to its unique thermo-optical
properties, ocean—fog can be detected using meteorological
satellite sensors [13], [14]. In addition, because ocean—fog
monitoring necessitates frequent data acquisition, geostationary
meteorological satellites with high temporal resolution (e.g.,
10 min) may be an attractive option. As small water particles
largely comprise ocean—fog-scattered short-wavelength light,
visible channels of satellite sensors are frequently used to iden-
tify ocean—fog during the daytime [2], [14], [15], [16]. However,
the spectral characteristics of visible wavelengths on ocean—fog
are not easily distinguished from those on clouds. Spatial tex-
ture information has been used to distinguish ocean—fog from
clouds because vertical mixing is more dynamic in clouds than
in ocean—fog, resulting in a smoother top surface texture of
ocean—fog [16],[17], [18]. The standard deviation of pixel values
within the surrounding area (e.g., 3 x 3 and 5 x 5) was used to
indicate the spatial texture of ocean—fog; however, it can result
in underestimation at the edge of ocean—fog or a jumbled area
of ocean—fog with clouds where the texture is relatively rough
[13]. Ocean—fog and clouds can be distinguished by the thermal
properties of ocean—fog even during the daytime, and thermal IR
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(TIR) and brightness temperature differences (BTDs) between
TIR and short-wavelength IR (SWIR) channels with their texture
information have been used to detect ocean—fog [18]. At night,
ocean—fog detection is typically implemented using the thermal
properties of ocean—fog because visible channels are unavailable
[17], [19], [20]. Even though an SWIR channel indicates mixed
information on solar reflectance and surface emissions during
the daytime, it can be used as aremarkable channel for ocean—fog
detection by differentiating it from TIR channels at night because
itimplies only surface emissions during the nighttime [17], [19].

The National Meteorological Satellite Center (NMSC) of
the Korean Meteorological Administration and the National
Oceanic and Atmospheric Administration of the USA operate
near real-time ocean—fog detection in Korea and the USA,
respectively. They detected ocean—fog throughout the day by
utilizing successively connected models with various temporal
windows (i.e., daytime, nighttime, and dawn/dusk models).
Although each model was properly calibrated for its target
temporal window, spatiotemporal discontinuities in the detected
ocean—fog were observed during the model transitions. Discon-
tinuous ocean—fog detection negatively affects traffic control
and forecasters; thus, spatiotemporally continuous ocean—fog
detection is required.

A temporally integrated model based on infrared (IR) chan-
nels is a suitable solution for ocean—fog monitoring. However,
although IR channels can discriminate ocean—fog from other
classes, such as clouds and clear skies, for both day and night,
ocean—fog characteristics vary with time [17], [18]. Thus, us-
ing solar position information in advanced empirical models
may improve the spatiotemporal continuity of ocean—fog. In
this article, machine-learning approaches (random forest, RF;
extreme gradient boost, XGB; and logistic regression, LR),
which have been demonstrated to be effective for detecting
meteorological features under complex conditions [21], [22],
[23], [24], [25], [26], were utilized to detect ocean—fog with
various characteristics. However, nonfog phenomena (e.g., clear
skies and clouds) were trained to mitigate the confusion between
ocean—fog and other phenomena. Two schemes were examined:
one scheme using only IR channels (IRO) that can be applied
regardless of the time of day, and another scheme employing
both IR and visible channels (VIS). The models with the two
schemes were compared with the NMSC product. This article
used Himawari-8 data to detect ocean—fog between China and
the Korean Peninsula over the Yellow Sea. The Shapley addi-
tive explanation (SHAP) approach was employed to interpret
the contributions and interactions of the input variables in the
models.

II. STUDY AREA AND DATA

A. Study Area and Data

The study area was the Yellow Sea (33—40°N, 119-128°E) in
Northeast Asia, which is surrounded by the Korean Peninsula
and China and features active fishing and maritime trade (see
Fig. I). The Yellow Seais characterized by a shallow bathymetry,
leading to the formation of stratified cold-water masses beneath
the seasonal thermocline layer [27]. During the warm season,
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Fig. 1. Study area with the location of automated surface observing system
stations that measure visibility located in the coast or islands. Four stations are
Baenyeongdo (BN), Heuksando (HS), Incheon (IC), and Mokpo (MP).

strong vertical mixing results in cool sea surface temperature
(SST) [27], [28]. Advection fog, the most common type of
ocean—fog, forms when warm and humid air masses interact
with a cold surface; ocean—fog is prevalent in this region from
May to October during the summer season [7], [29].

B. Ocean—Fog Reference Data

To construct an accurate ocean—fog detection model, nonfog
classes, such as clear skies and clouds, should be specified.
The Automated Surface Observing System (ASOS) and Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) were used as reliable reference data sources for
collecting samples for three classes (ocean—fog, clear skies,
and clouds) [13], [14], [17], [19], [20]. The ASOS field mea-
surement system provides hourly meteorological and weather
information, including visibility, to determine ocean—fog [16],
[30], [31]. South Korea has 102 ASOS stations and autonomous
visibility measurements have been available since 2017 [32];
therefore, data from 2017 to 2021 were utilized for this article.
Baenyeongdo (BN) at 37.97°N, 124.71°E, Heuksando (HS) at
34.69°N, 125.45°E, Incheon (IC) at 37.48°N, 126.62°E, and
Mokpo (MP) at 34.82°N, 126.38°E were chosen as reference
ASQOS stations for this article because they are located on the
coast or islands where ocean—fog frequently occurs (see Fig. 1
and Table I). Although visibility is automatically measured,
human experts still measure clouds subjectively. Therefore,
additional quality checks are necessary to utilize the cloud data
collected from ASOS stations.

CALIPSO, launched in 2007, is a polar-orbiting laser altime-
try satellite equipped with cloud-aerosol lidar with an orthogo-
nal polarization sensor. Using two distinct active beams (532
and 1064 nm) with a 5-km swath and 5-km intervals along
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TABLE I
NUMBER OF COLLECTED REFERENCE CASES OF THREE CLASSES FOR EACH DATA SOURCE FrROM 2015 TO 2021
Daytime Nighttime
Ocean—fog Clear skies Clouds Ocean—fog Clear skies Clouds

Baenyeongdo 75 32 189 294 177 19

(BN) ) (0) (30) (26) (0) 3)
Heulksando 55 11 177 122 109 31

(HS) ) (0) (3D (18) (0) (6)

ASOS

Incheon 5 10 179 40 60 23

I€) (0) (0) 17 (5) (0) (1

Mokpo 2 12 133 3 43 25

(MP) (0) (0) (25) (2) (0) (1

17 145 280 34 146 234

CALIPSO

“) (24) (53) 3) (33) (58)

Total 154 210 958 493 535 332
(21) (24) (156) (54) (33) (69)

The number of cases in 2021 used for Hindcast evaluation is in parentheses.

the track, CALIPSO investigates the particle components of
the atmospheric column, including aerosols and clouds, with
545 vertical layers at time intervals of less than 1 min [33].
Information about the particle composition was converted into
the presence of clouds and aerosols and provided as a vertical
feature mask (VFM), a level-2 product. Owing to the absence
of ocean—fog information in the VFM product, an algorithm
proposed by Wu et al. [3] was used to obtain ocean—fog reference
data. This algorithm identifies ocean—fog layers by detecting
abnormally high ocean surfaces or surface-attaching clouds and
implementing additional quality control (QC) rules using the
attenuated backscatter of a 532 nm beam. Raw VFM data with
an additional quality check were utilized for the clear-sky and
cloud layers, and homogeneous cases were selected across the
CALIPSO swath (5 km). This article utilized CALIPSO data
collected between April 2015 and December 2021, matching
the availability of Himawari-8 satellite imagery as the input
data. Because the ocean—fog detection system must guarantee
performance for newly acquired cases when operational, cases
from 2021 were used for the hindcast evaluation. In contrast,
cases from 2015 to 2020 were used for calibration. Table I
summarizes the number of reference cases by class, data source,
and model.

C. Himawari-8

Himawari-8 is a meteorological satellite in a geostation-
ary orbit administered by the Japan Meteorological Agency.
Himawari-8 is equipped with an advanced Himawari Imager
and a multispectral sensor with three visible, three near-IR, and
ten IR wavelength channels [34]. To distinguish ocean—fog from
other classes—clear skies and clouds—well-known ocean—fog
and cloud-sensitive channels (Ch02, Ch07, and Ch14), high-,
mid-, and low-level water vapor absorption channels (ChOS,

Ch09, and Ch10), and dirty window channels (Ch11 and Ch15)
were considered as input features, as marine atmospheric condi-
tions typically exhibit different characteristics on these channels
(see Table II) [14], [17],[20], [35],[36],[37]. The BTDs between
the IR channels and the solar zenith angle (SOZ) were used
as input features to enhance and clarify the signals of marine
atmospheric conditions over time (see Table II) [35], [36], [37],
[38].

III. METHODOLOGY

This article proposes whole-day composite models for
ocean—fog detection based on machine-learning techniques and
Himawari-8 data (see Fig. 2). To construct and evaluate the mod-
els, samples of target classes (i.e., ocean—fog, clear skies, and
clouds) were collected from a homogeneous region identified
through K-means clustering. Uncertainties can be introduced
even if a homogeneous area spatially matches a reference point;
therefore, QC procedures (e.g., target class agreement test,
shape filtering, potential cloud-intruding filtering, and theoret-
ical filtering) are implemented. As two types of schemes (i.e.,
IRO and VIS) were examined independently, machine-learning
models (i.e., RF, XGB, and LR) were constructed after the
optimization of the target class composition and hyperparameter
tuning using the calibration set (2015-2020), and evaluated
using the hindcast validation set (2021). The SHAP method was
adopted to interpret the machine-learning models, focusing on
the contribution and interactions of the input features, followed
by spatiotemporal evaluations.

A. Sample Extraction

Because ocean—fog reference data are typically collected as
points (e.g., specific ASOS stations or CALIPSO shots), pre-
vious articles have usually increased their sample size through
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TABLE II
SUMMARY OF INPUT VARIABLES FROM HIMAWARI-8 SATELLITE DATA FOR DEVELOPING OCEAN—FOG DETECTION MODELS IN THIS ARTICLE

Variable
Description Characteristics

name

Ch02 Albedo of 0.50-0.52 um channel (unitless) Sensitive to the feature reflectance

Ch07 BT* of 3.74-3.96 um channel (Kelvin) Surface emission. Solar reflectance in the daytime

Cho08 BT of 5.77-6.6 um channel (Kelvin) High-level water vapor absorption

Ch09 BT of 6.75-7.15 um channel (Kelvin) Mid-level water vapor absorption

Ch10 BT of 7.26—7.43 pm channel (Kelvin) Low-level water vapor absorption

Chl1 BT of 8.44-8.76 um channel (Kelvin) Atmospheric window/ water vapor absorption

Chl14 BT of 11.1-11.3 um channel (Kelvin) Classical atmospheric window

Ch15 BT of 12.2-12.5 yum channel (Kelvin) Atmospheric window/ water vapor absorption
TBT;) 100 BTD between Ch10 and Ch07 (Kelvin) Emphasizing low-level clouds at night
BTD1107 BTD between Chl1 and Ch07 (Kelvin) Emphasizing low-level water clouds at night
BTD1407 BTD between Ch14 and Ch07 (Kelvin) Emphasizing low-level clouds at night
BTD1411 BTD between Ch14 and Chl11 (Kelvin) Emphasizing warm cloud

SOZ Solar zenith angle (degree) Implying time information

BT: Brightness temperature
"BTD: Brightness temperature difference

spatial oversampling, such as collocation with human-inspected
ocean—fog patches [14], [16] or the use of neighborhood pixels
[13], [17]. However, although human inspection of ocean—fog
patches can provide as many ocean—fog samples (pixels) as pos-
sible, they require considerable human resources. In addition,
they are only available under ideal conditions (i.e., daytime, no
cloud contamination, and large expanded ocean-fog). Merging
nearby pixels, on the other hand, works without human resources
and specific conditions but produces a much smaller number
of pixels (e.g., 9-pixel or 25-pixel) regardless of how large an
ocean—fog patch is, and it has spatial autocorrelation issues.
Unsupervised image segmentation is a promising approach
for acquiring spatially expanded potential ocean—fog patches
[39], [40]. It divides the images into several mutually exclusive
segments with similar characteristics. This article used the K-
means clustering method to obtain spatially expanded ocean—fog
patches [37], [38], [39], [40], [41], [42], [43]. The K-means
clustering method divides the input data into K groups with sim-
ilar properties by minimizing the sum of the squared distances
between the data points and centroids of the clusters, where each
data point is assigned to the cluster with the nearest centroid
[44], [45]. Images of Ch02, Ch14, BTD1107, BTD1407, and
BTD1514, which have relatively distinct value ranges for the

target classes (i.e., ocean—fog, clear skies, and clouds), were used
as inputs for K-means clustering. At night, all pixel values of the
visible Ch02 images were filled with zeros so that they could not
be used for clustering. As the k value increased, the segments’
average size decreased while each segment’s purity increased;
consequently, a relatively high K value of 25 was chosen based
on numerous empirical experiments to extract pure sample data.

An additional QC was implemented due to the spatial scale
difference between the point reference and grid satellite data. For
instance, a cluster may contain two or more reference classes
or a cloud edge above an ocean—fog cluster may be assigned.
Clusters containing multiple classes were easily eliminated, but
ocean—fog clusters assigned to cloud edges required a more
intricate correction process owing to their high transparency.
Edge segments typically have an irregular shape, thin or long,
and can therefore be filtered using a metric called the fractal
dimension index (FRAC) (1) [46], [47], [48]. FRAC is a metric
used to quantify the shape irregularity of an object based on its
perimeter and area and ranges from 1 to 2. A shape with an FRAC
close to 1 is considered simple, whereas a shape with an FRAC
close to 2 is considered extremely convoluted [48]. Through
empirical testing, a QC procedure was added to the segments of
the three classes—ocean—fog, clear skies, and clouds—to filter
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Fig. 2. Process flow proposed in this article.

out those with an FRAC value >1.4 and 1.6, respectively

2 x log (0.25 x perimeter)

FRAC =
log (area)

(D

When matching ocean—fog reference data with the Himawari-
8 images, temporal buffers (i.e., a time difference of less than 5
min) were applied to the CALIPSO data. Even a time difference
of less than 5 min can cause mismatching between the refer-
ence data and Himawari-8 images owing to migrating clouds;
therefore, spatial buffers were used to eliminate the possibility
of cloud intrusion: only reliable when reference points were
located more than 2 or 4 km away from the edge of segments
with time differences of less than 3 min or more, respectively.
Finally, several physical quality-checking criteria were applied
to each segment to guarantee the reliability of the input data:
Chl14 > 273.15 K and Ch02 > 0.1 for daytime ocean-fog and
Chl14 > 273.15 K for nighttime ocean-fog; Ch14 > 273.15 K
and Ch02 < 0.15 for daytime clear skies and Ch14 > 273.15 K
for nighttime clear skies; Ch02 > 0.1 for daytime clouds, Ch07
< 284 K for summer nighttime clouds, and Ch07 < 270 K for
winter nighttime clouds (Ch02 related rules are only executed
when the visible channel is valid). These criteria are based on the
theoretically valid range of each marine atmospheric condition,

!

Evaluation and Interpretation

» Quantitative evaluation

» Model interpretation using Shapley
additive index (SHAP)

> Spatiotemporal evaluation

except for cloud-related criteria, which are enhanced by human
inspection of cloud reports [49], [50].

B. Modeling

This article evaluated two IRO and VIS schemes for ocean—
fog detection. The IRO scheme was designed to detect ocean—
fog throughout the day using only IR channels. In contrast,
the VIS scheme was designed to detect ocean—fog during the
daytime using IR channels with a visible channel. Three dis-
tinct machine-learning algorithms were used for each scheme
to detect ocean—fog: RF, XGB, and LR inspired by bagging,
boosting, and logarithmically adapted regression, respectively
[51], [52], [53]. The RF model is an ensemble of classification
and regression trees (CART) that generates decisions through
recursive binary divisions [54], [55].

Given that the CART is susceptible to overfitting based on
training samples, random subsets of training samples and vari-
ables were applied to each CART to produce multiple indepen-
dent trees in the RF. The XGB is also composed of CARTS;
however, the calibration process differs from that of the RF
model. To achieve high performance, XGB recursively updates
a model with the incremental weighting of misclassified sample
components [53]. The RF and XGB models are rule-based and
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TABLE III

Input
variable

Infrared channel only (IRO) scheme

Infrared with a visible channel (VIS) scheme

Random forest
(IRO_RF)

Extreme gradient

boosting
(IRO_XGB)

Logistic
regression
(IRO_LR)

Random forest
(VIS_RF)

Extreme gradient

boosting
(VIS_XGB)

Logistic
regression
(VIS_LR)

Ch07, Ch08, Ch09, Ch10, Ch11, Ch14, Ch15, BTD1007,
BTD1107, BTD1407, BTD1411, and SOZ

Ch02, Ch07, ChO8, Ch09, Ch10, Ch11, Ch14, Chl5, BTD1007,
BTD1107, BTD1407, BTD1411, and SOZ

Target class
composition
ratio

Ocean-fog: Clear skies: Clouds = 1.0: 1.0: 0.7

Ocean-fog: Clear skies: Clouds = 1.0: 1.0: 1.0

n_estimators n_estimators max_iter n_estimators n_estimators max_iter
=500 =500 =1000 =500 =500 =1000
max_depth max_depth C=1 max_depth max_depth C=0.01
=10 =10 penalty ="12' =8 =10 penalty ="12'
min_samples_leaf colsample_bytree multi_class min_samples_leaf colsample_bytree multi_class
=14 =0.9 = 'multinomial’' =3 =0.8 = "multinomial'
min_samples_split min_child_weight min_samples_split min_child_weight
=12 =2 =14 =2

subsample subsample

Model =0.8 =0.8
parameter learning_rate learning_rate

=0.1 =0.1

min_split_loss min_split_loss

=0.05 =0.05

reg_alpha reg_alpha

=0.01 =0.01

objective objective

= 'multi:softprob' = "multi:softprob'

eval_metric eval_metric

= 'mlogloss' = 'mlogloss'

TABLE IV
CONTINGENCY TABLE OF THREE CLASSES FOR QUANTITATIVE EVALUATION OF THE PROPOSED OCEAN-FOG DETECTION MODELS

Observation
Ocean-fog Clear Cloud Sum
Ocean-fog Nt Nys Nat Spred_f
Prediction
Clear N¢r Ner Ngr Spred_r
Cloud Nty Nrg Nad spred_d
Sum Sorg_f Sorg_r Sorg_d Sall

make decisions based on threshold-based classification nodes,
whereas the LR model relies on regression. LR is a sophisticated
form of linear regression-based classification that uses a logistic
function to calculate the probability of a target variable class.
Although LR has a simpler structure than tree-based models,
its log-transformed regression forms enable the incorporation
of nonlinear relationships between input variables and targets
[56].

The collected samples were divided into a calibration set
(from 2015 to 2020) and a hindcast validation set (samples
from 2021). As the sample size varied greatly by class, it was
further optimized to avoid biased modeling results caused by
imbalanced training data [23]. Based on the performance of
the 10-fold cross-validation, the optimum sample size ratio by
class (i.e., ocean—fog, clear skies, and clouds) was determined

to be 1.0:1.0:0.7 for the IRO scheme and 1.0:1.0:1.0, for the
VIS scheme, with 96 600 and 20 600 ocean—fog samples for
the TRO and VIS schemes, respectively (see Table III). To
ensure a fair evaluation of the hindcasts, the case numbers of
each nonfog class (i.e., clear skies and clouds) were matched
to those of ocean—fog. A grid search was used to optimize
the hyperparameters of the machine-learning models (see Ta-
ble III) [57]. The maximum depth of a tree (max_depth), the
minimum number of samples required to be at a leaf node
(min_sample_leaf), the minimum number of samples required
to split an internal node (min_samples_split), and the number
of trees (n_estimators) were optimized for RF; the step size
shrinkage used in the update to prevents overfitting (learning
rate), n_estimators, max_depth, the minimum sum of instance
weight needed in a child (min_child_weight), the subsample
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TABLE V
HINDCAST CLASSIFICATION RESULTS OF MACHINE-LEARNING MODELS AND AMI PRODUCTS
IR-only scheme (IRO) With visible scheme (VIS) Control
RF XGB LR RF XGB LR NMSC
POD 100 100 70 100 100 100 90
FAR r 0 0 6.67 0 0 0 0
Day FAR d 4.76 0 0 4.76 4.76 4.76 0
F1 97.56 100 80 97.56 97.56 97.56 94.74
PC 98.33 100 88.33 98.33 98.33 98.33 96.67
POD 96.08 100 78.43 86
FAR r 0 5.56 29.82 0
Night FAR d 0 0 0 0
F1 98 97.14 74.08 92.47
PC 98.69 98.04 81.05 62
POD 97.18 100 76.06 87.14
FAR r 0 4.05 25 0
Whole-day = FAR d 1.43 0 0 0
F1 97.87 97.93 75.53 93.13
PC 98.59 98.59 83.1 71.9

Hindcast samples (2021) are independent of the training samples (2015-2020) used to develop the machine-learning-based models.

All the units of indices are converted to the range from 0% to 100%.

ratio of the training instances (subsample), the subsample ratio
of columns when constructing each tree, the L1 regularization
term on weights (reg_alpha), and the minimum loss reduction
required to make a further partition on a leaf node of the tree
(min_split_loss) for XGB; and the inverse of regularization
strength (C), and the specific the norm of the penalty (penalty),
for LR [57].

C. Accuracy Assessment

The probability of detection (POD), false alarm ratio (FAR),
F1-score, and proportion correct (PC) were used to evaluate
the performance of the models in detecting ocean—fog. A case-
by-case quantitative evaluation was conducted by assigning the
most-classified class to each pixel set (see Table IV). POD
is the proportion of ocean—fog cases classified as ocean—fog,
representing the ocean—fog detection performance (3). FAR is
the proportion of nonfog cases classified as ocean—fog, repre-
senting the false alarm rate for ocean—fog detection (3). For a
more accurate analysis, the clear-sky and cloud cases of FAR
were separated into FAR_r (4) and FAR_d (5), respectively. The
F1-score is a harmonic mean of POD, and the complement of
FAR represents a balanced performance for ocean—fog detection
(6). PC is the proportion of corrected cases to the total number of
cases, representing the overall performance of the classification
(7) [58], [59]. The fog product of GeoKompsat-2A produced by

NMSC (referred to as NMSC) [13] was compared to examine
the operational feasibility of the models.

Because the reference data were collected at specific locations
or times, such as ASOS stations or CALIPSO passing local time,
a qualitative evaluation of the spatial distribution of ocean—fog
was conducted using the CALIPSO VFM track as an example.
In addition, the BN station was used to qualitatively assess the
temporal continuity of the ocean—fog. Finally, all qualitative
evaluations were compared to the control product (NMSC) and
the inferred input variables Ch02 and Ch14

POD = Nit/Sore 1 x 100% )
FAR = Nt/ Sprea 1 X 100% 3)
FAR = Nit/Sprea s X 100% (4)
FAR_d = Nut/Sprea_f % 100% (5)

POD x (100% — FAR)
POD + (100% — FAR)

PC = (fo + Ny + Ndd) /Sall x 100%. (7)

F'1_score =2 x

(6)

D. Model Interpretation

The SHAP was used to investigate the contribution and in-
teractions of the input variables on the modeling results. The
SHAP quantifies the contribution of input variables based on
game theory to determine the effect of each input variable [60],
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through the mean absolute SHAP values.

[61], [62]. Due to the complexity of the machine-learning model
structure, SHAP considers the model as an aggregation of each
input variable’s value (z) and weight (). For example, the weight
of input variable i can be interpreted as the contribution amount,
which is estimated by calculating the difference in score between
using and not using the variable (8) to determine the contribution
(i) of input variable i as follows:

[SITANT =[S = 1!
[NV]!

>

SCN/{i}

(f(SU{i}) = f(9))
®)

i =

SHAP value summary plots on XGB models in IRO and VIS scheme for target classes. The variables on the y-axis were arranged in descending order

where N denotes the entire set of variables, S denotes a subset
of variables excluding i, the vertical bar brackets (|#[) denote the
number of variables, and the factorial (!) denotes the number
of possible combinations of provided variables. Equation (8)
calculates the average score change (f(x)) for every possible
combination of input variables. As this was a classification study,
the score of the SHAP approach was defined as the classification
probability for each target class. Not only is the mean absolute
SHAP value used to determine the contribution rank of the
input variables, but the dependence of variable contributions
on the SOZ is also used to interpret the change in variable
contribution as the SOZ changes, as the diurnal variation of the
SOZ influences some variables.
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IV. RESULTS AND DISCUSSION

A. Quantitative Model Assessment

The hindcast validation results of the models are listed in
Table V. During the daytime, except for IRO_LR and NMSC,
all models accurately classified ocean—fog cases (POD of 100%).
IRO_XGB and NMSC correctly classified daytime nonfog cases
(FAR_r = 0% and FAR_d = 0%), whereas the IRO_RF and
VIS models misclassified 4.76% of cloud cases as ocean—fog,
and IRO_LR misclassified 6.67% of clear-sky cases as ocean—
fog. Overall, IRO_XGB had an F1 of 100% but also a PC
of 100%, indicating perfect classification across all classes,
followed by the IRO_RF and VIS models with an F1 of 97.56%,
and PC of 98.33%, NMSC with F1 of 94.74% and PC of
96.67%, and IRO_LR with F1 of 80% and PC of 88.33%,
respectively.

During the nighttime, IRO_XGB had the best performance
in detecting ocean—fog, with a POD of 100%, followed by
IRO_RF with a POD of 96.08%, NMSC with a POD of 86%,

and IRO_LR with a POD of 78.43%. However, in contrast to the
daytime, some clear-sky cases were misclassified as ocean—fog
(FAR_r of 5.56%) from IRO_XGB. In contrast, all nonfog cases
were correctly classified as nonfog from IRO_RF and NMSC,
and 29.82% of the clear-sky cases were misclassified as ocean—
fog from IRO_LR. In terms of overall performance, IRO_RF
exhibited the best results with an F1 of 98% and PC of 98.69%,
followed by IRO_XGB with an F'1 of 97.14% and PC of 98.04%,
NMSC with an F1 of 92.47% and PC of 62%, and IRO_LR with
an F1 of 74.08% and PC of 81.05%.

Even though IRO_XGB had the second-highest performance
during nighttime, it correctly classified ocean—fog cases with no
confusion with cloud cases, resulting in a POD of 100%, F'1 of
97.93%, and PC of 98.59%, which was the highest performance
of all models and products considering both day and night.
However, although machine-learning models were designed to
classify three types of marine atmospheric conditions (e.g.,
ocean—fog, clear skies, and clouds), the NMSC can only dis-
tinguish between ocean—fog and nonfog during the nighttime,
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resulting in poor performance on PC (62%) but high F'1 (92.47%)
during the nighttime [13].

Even though the VIS-based models were trained using day-
time samples, IRO_XGB outperformed the VIS-based mod-
els regarding cloud discrimination, regardless of the time.
The reason for this unexpected result is analyzed via SHAP
analysis in Section IV-B. Furthermore, in contrast to the
other machine-learning models, IRO_LR performed poorly
for both daytime and nighttime, whereas VIS_LR performed
comparably to the other models during the daytime. Further-
more, the regression-based LR calculation formula is inef-
fective when utilizing input variables with disorderly trends,
such as Ch07, BTD1007, BTD1107, and BTD1407, whose
day and night trends are radically dissimilar [63]. Finally,
TRO_XGB was chosen as the best model for subsequent anal-
ysis, and VIS_XGB and NMSC were chosen as the day-
time and whole-day control models, respectively, for further
comparison.

B. Model Interpretation

Fig. 3 depicts summary plots of the SHAP values for each
target class using IRO_XGB and VIS_XGB. Ch02 did not
contribute significantly to ocean—fog classification (see Fig. 3
and Table V). However, it ranks second in variable contributions
for classifying clear skies and clouds. Specifically, a lower Ch02
value significantly contributed negatively (< —2) to the noncloud
detection. In contrast, most samples tilted toward an SHAP value
of approximately zero for the clear sky classification.

Low ChO2 reflectance was used exclusively as an indicator of
nonclouds for VIS_XGB (see Fig. 3), which could lead to con-
fusion when low-reflectance cloud cases are provided, resulting
in an atypically higher FAR_d for VIS_XGB than for IRO_XGB
(see Table V). Because the values of ChO7-related variables vary
significantly between day and night in ocean—fog and clouds,
SOZ was anticipated to be utilized as a variable indicating
diurnal variation in the IRO scheme. In the variable contribution
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summary, SOZ ranked third for all target classes of IRO_XGB;
it also ranked third for ocean—fog classification of VIS_XGB
with a noticeable pattern in SHAP values. Specifically, the high
values of SOZ (night in IRO and day—night transition in the VIS
scheme) contributed positively to the detection of ocean—fog,
and the low values of SOZ (day in IRO and close to noon in
the VIS scheme) contributed positively to the detection of clear
skies and clouds. This SHAP distribution was deduced from the
statistical tendency of ocean—fog, which is typically observed
after sunset. Therefore, this variable indicates diurnal status;
therefore, it was used as an independent variable in the analysis
of the change in contribution due to diurnal variation in the
dependence plot, despite its high contribution to the model. As
the influence of Ch02 on VIS_XGB ocean—fog detection was
minimal, dependency analysis by SOZ change was conducted
only for IRO_XGB.

Among the input variables for ocean—fog detection con-
tribution, BTD1407 and BTD1107 ranked first and second,
respectively. Ch07, a component of BTD1407, is sensitive to

solar radiation; thus, the relationship between BTD1407 and
SOZ was analyzed using a dependency plot (see Fig 4). During
the daytime (SOZ < 80°), BTD1407 values (from —35 to —5 K)
contributed positively to the classification of ocean—fog samples,
with some values having a negative contribution. Nonetheless,
extremely low values (~<—35) contributed significantly to
eliminating nonfog samples with SHAP lower than —1, while
these values positively contributed to identifying clouds si-
multaneously. While ocean—fog and clouds have higher Ch07
reflectance than clear skies, ocean—fog and clear skies have high
Ch14 BTs, and clouds have low Ch14 BTs. The reflectance of
ocean—fog and clouds varies with their optical transparency and
solar incidence angle; only very cold BT with high reflectance
of clouds indicates extremely low values of BTD1407, which
contributed significantly to distinguishing clouds, whereas the
other positive contributing ranges overlapped with those for
discriminating ocean—fog.

During the nighttime, values over 2K of BTD1407 con-
tributed to the SHAP up to a value of 5. At the same time, this
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positive contribution range of ocean—fog overlapped with the
negative contribution range of clear skies and clouds. As solar
radiation is absent at night, the primary source of Ch07 is surface
emissions; therefore, blocking surface emissions by ocean—fog
or clouds is implied. Consequently, positive values close to
0 K and negative values of BTD1407 are generally related to
ocean—fog, clear skies, and clouds, respectively, resulting in
positive SHAP values. Like BTD1407, BTD1107 contributed
positively to ocean—fog; however, its positive contribution to
clouds was more difficult to separate from ocean—fog, resulting
in a lower contribution rank than BTD1407. Because Chll
and Ch14 are both atmospheric window channels, ice crystals
in clouds absorb more radiation at longer wavelengths [35];
consequently, the BT difference between ice-phase clouds and
water-phase ocean—fog is greater in Ch14 than in Ch11, resulting
in a more distinguishable pattern of positive and negative SHAP
contributions to clouds (see Figs. 4 and 5). The contribution
of the SOZ to ocean—fog detection ranked third. The SOZ is
expected to reveal temporal information regarding the diurnal
cycles of radiation and reflection.

Chl5 contributed the most to detecting ocean—fog among
the atmospheric window channels. Ch15 > 280 K contributed
to the detection of daytime ocean—fog with an SHAP of up
to 1, whereas Chl5 < 270 K contributed to the omission of
nonfog throughout the day with an SHAP of down to —3 (see
Fig. 6). Chl4, however, is regarded as a classic atmospheric
window channel and is widely used to distinguish atmospheric
phenomena. Still, it contributed the least (see Fig. 7). Although
Ch14 indicated the top kinetic temperature of a feature, its
diurnal variation (lower temperature during the daytime and
higher temperature at night) resulted in multiple peaks of
positive SHAP values (see Fig. 7) [64]. However, Chl5, with
a longer wavelength than Ch14, loses its BT from water vapor,
which has a diurnal cycle of atmospheric water vapor (lower
density in daytime and higher density at night) [56], [57], [58],
[59], [60], [61], [62], [63], [64], [65], [66], [67], resulting in
the cancellation of both diurnal variations and stable thermal
property of ocean—fog on Ch15 regardless of the time of day.

In addition to the atmospheric window channels, Ch07,
ranked fifth, contri<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>