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Improved Ocean–Fog Monitoring Using Himawari-8
Geostationary Satellite Data Based on Machine

Learning With SHAP-Based Model Interpretation
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Abstract—Ocean–fog is a type of fog that forms over the ocean
and has a visibility of less than 1 km. Ocean–fog frequently causes
incidents over oceanic and coastal regions; ocean–fog detection
is required regardless of the time of day. Ocean–fog has distinct
thermo-optical properties, and spatially and temporally extensive
ocean–fog detection methods based on geostationary satellites are
typically employed. Infrared (IR) channels of Himawari-8 were
used to construct three machine-learning models for the continuous
detection of ocean–fog. In contrast, visible channels are valid only
during the daytime. As control models, we used fog products from
the National Meteorological Satellite Center (NMSC) and machine-
learning models trained by adding a visible channel. The extreme
gradient boosting model utilizing IR channels corrected ocean–fog
perfectly day and night, with the highest F1 score of 97.93% and a
proportion correct (PC) of 98.59% throughout the day. In contrast,
the NMSC product had a probability of detection of 87.14%, an
F1 score of 93.13%, and a PC of 71.9%. As demonstrated by the
qualitative evaluation, the NMSC product overestimates clouds
over small and coarsely textured ocean–fog regions. In contrast,
the proposed model distinguishes between ocean–fog, clear skies,
and clouds at the pixel scale. The Shapley additive explanation
analysis demonstrated that the difference between channels 14 and
7 was very useful for ocean–fog detection at night, and its extremely
low values contributed significantly to distinguishing nonfog during
the daytime. Channel 15, affected by water vapor absorption, con-
tributed most to ocean–fog detection among atmospheric window
channels. The research findings can be used to improve operational
ocean–fog detection and forecasting.

Index Terms—Himawari-8, machine learning, ocean–fog,
Shapley additive explanation (SHAP), whole-day, extreme gradient
boosting (XGB).

I. INTRODUCTION

FOG is a near-surface cloud composed of small water
droplets (1–50 μm) that strongly scatter visible light [1].

A phenomenon in which horizontal visibility falls below 1 km
is defined as fog, which frequently causes traffic problems
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[1], [2], [3], [4]. Low visibility is even more dangerous when
sailing because it takes longer to steer and brake than other
ground vehicles [5], [6]. Even though many marine activities
are susceptible to poor visibility, ocean–fog monitoring based
on weather stations and video surveillance facilities is located
on coastal land or ports, whereas the entire ocean is a potentially
dangerous ocean–fog area [7], [8], [9], [10]. Therefore, monitor-
ing ocean–fog over vast oceanic areas not limited to the coastal
regions is essential.

Numerical weather prediction is widely used to estimate and
forecast weather conditions by simulating atmospheric interac-
tions and producing maps of atmospheric conditions, including
ocean–fog over a large area. Although relative humidity can
theoretically be used to estimate ocean–fog, the conditions
that favor ocean–fog are intricately linked from microscale
(∼10-7 m) aerosol particle concentrations to synoptic-scale
(∼106 m) airmass behavior, resulting in poor modeling per-
formance [11]. Numerous studies have proposed methods to
improve multiscale modulation by combining multiple models,
such as the Lagrangian cloud model, with large-eddy simu-
lations; however, these approaches are insufficient to produce
definitive ocean–fog simulations [12].

In addition to numerical simulations, satellite remote sensing
provides data over vast areas. Owing to its unique thermo-optical
properties, ocean–fog can be detected using meteorological
satellite sensors [13], [14]. In addition, because ocean–fog
monitoring necessitates frequent data acquisition, geostationary
meteorological satellites with high temporal resolution (e.g.,
10 min) may be an attractive option. As small water particles
largely comprise ocean–fog-scattered short-wavelength light,
visible channels of satellite sensors are frequently used to iden-
tify ocean–fog during the daytime [2], [14], [15], [16]. However,
the spectral characteristics of visible wavelengths on ocean–fog
are not easily distinguished from those on clouds. Spatial tex-
ture information has been used to distinguish ocean–fog from
clouds because vertical mixing is more dynamic in clouds than
in ocean–fog, resulting in a smoother top surface texture of
ocean–fog [16], [17], [18]. The standard deviation of pixel values
within the surrounding area (e.g., 3 × 3 and 5 × 5) was used to
indicate the spatial texture of ocean–fog; however, it can result
in underestimation at the edge of ocean–fog or a jumbled area
of ocean–fog with clouds where the texture is relatively rough
[13]. Ocean–fog and clouds can be distinguished by the thermal
properties of ocean–fog even during the daytime, and thermal IR
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(TIR) and brightness temperature differences (BTDs) between
TIR and short-wavelength IR (SWIR) channels with their texture
information have been used to detect ocean–fog [18]. At night,
ocean–fog detection is typically implemented using the thermal
properties of ocean–fog because visible channels are unavailable
[17], [19], [20]. Even though an SWIR channel indicates mixed
information on solar reflectance and surface emissions during
the daytime, it can be used as a remarkable channel for ocean–fog
detection by differentiating it from TIR channels at night because
it implies only surface emissions during the nighttime [17], [19].

The National Meteorological Satellite Center (NMSC) of
the Korean Meteorological Administration and the National
Oceanic and Atmospheric Administration of the USA operate
near real-time ocean–fog detection in Korea and the USA,
respectively. They detected ocean–fog throughout the day by
utilizing successively connected models with various temporal
windows (i.e., daytime, nighttime, and dawn/dusk models).
Although each model was properly calibrated for its target
temporal window, spatiotemporal discontinuities in the detected
ocean–fog were observed during the model transitions. Discon-
tinuous ocean–fog detection negatively affects traffic control
and forecasters; thus, spatiotemporally continuous ocean–fog
detection is required.

A temporally integrated model based on infrared (IR) chan-
nels is a suitable solution for ocean–fog monitoring. However,
although IR channels can discriminate ocean–fog from other
classes, such as clouds and clear skies, for both day and night,
ocean–fog characteristics vary with time [17], [18]. Thus, us-
ing solar position information in advanced empirical models
may improve the spatiotemporal continuity of ocean–fog. In
this article, machine-learning approaches (random forest, RF;
extreme gradient boost, XGB; and logistic regression, LR),
which have been demonstrated to be effective for detecting
meteorological features under complex conditions [21], [22],
[23], [24], [25], [26], were utilized to detect ocean–fog with
various characteristics. However, nonfog phenomena (e.g., clear
skies and clouds) were trained to mitigate the confusion between
ocean–fog and other phenomena. Two schemes were examined:
one scheme using only IR channels (IRO) that can be applied
regardless of the time of day, and another scheme employing
both IR and visible channels (VIS). The models with the two
schemes were compared with the NMSC product. This article
used Himawari-8 data to detect ocean–fog between China and
the Korean Peninsula over the Yellow Sea. The Shapley addi-
tive explanation (SHAP) approach was employed to interpret
the contributions and interactions of the input variables in the
models.

II. STUDY AREA AND DATA

A. Study Area and Data

The study area was the Yellow Sea (33–40°N, 119–128°E) in
Northeast Asia, which is surrounded by the Korean Peninsula
and China and features active fishing and maritime trade (see
Fig. 1). The Yellow Sea is characterized by a shallow bathymetry,
leading to the formation of stratified cold-water masses beneath
the seasonal thermocline layer [27]. During the warm season,

Fig. 1. Study area with the location of automated surface observing system
stations that measure visibility located in the coast or islands. Four stations are
Baenyeongdo (BN), Heuksando (HS), Incheon (IC), and Mokpo (MP).

strong vertical mixing results in cool sea surface temperature
(SST) [27], [28]. Advection fog, the most common type of
ocean–fog, forms when warm and humid air masses interact
with a cold surface; ocean–fog is prevalent in this region from
May to October during the summer season [7], [29].

B. Ocean–Fog Reference Data

To construct an accurate ocean–fog detection model, nonfog
classes, such as clear skies and clouds, should be specified.
The Automated Surface Observing System (ASOS) and Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observation
(CALIPSO) were used as reliable reference data sources for
collecting samples for three classes (ocean–fog, clear skies,
and clouds) [13], [14], [17], [19], [20]. The ASOS field mea-
surement system provides hourly meteorological and weather
information, including visibility, to determine ocean–fog [16],
[30], [31]. South Korea has 102 ASOS stations and autonomous
visibility measurements have been available since 2017 [32];
therefore, data from 2017 to 2021 were utilized for this article.
Baenyeongdo (BN) at 37.97°N, 124.71°E, Heuksando (HS) at
34.69°N, 125.45°E, Incheon (IC) at 37.48°N, 126.62°E, and
Mokpo (MP) at 34.82°N, 126.38°E were chosen as reference
ASOS stations for this article because they are located on the
coast or islands where ocean–fog frequently occurs (see Fig. 1
and Table I). Although visibility is automatically measured,
human experts still measure clouds subjectively. Therefore,
additional quality checks are necessary to utilize the cloud data
collected from ASOS stations.

CALIPSO, launched in 2007, is a polar-orbiting laser altime-
try satellite equipped with cloud-aerosol lidar with an orthogo-
nal polarization sensor. Using two distinct active beams (532
and 1064 nm) with a 5-km swath and 5-km intervals along
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TABLE I
NUMBER OF COLLECTED REFERENCE CASES OF THREE CLASSES FOR EACH DATA SOURCE FROM 2015 TO 2021

the track, CALIPSO investigates the particle components of
the atmospheric column, including aerosols and clouds, with
545 vertical layers at time intervals of less than 1 min [33].
Information about the particle composition was converted into
the presence of clouds and aerosols and provided as a vertical
feature mask (VFM), a level-2 product. Owing to the absence
of ocean–fog information in the VFM product, an algorithm
proposed by Wu et al. [3] was used to obtain ocean–fog reference
data. This algorithm identifies ocean–fog layers by detecting
abnormally high ocean surfaces or surface-attaching clouds and
implementing additional quality control (QC) rules using the
attenuated backscatter of a 532 nm beam. Raw VFM data with
an additional quality check were utilized for the clear-sky and
cloud layers, and homogeneous cases were selected across the
CALIPSO swath (5 km). This article utilized CALIPSO data
collected between April 2015 and December 2021, matching
the availability of Himawari-8 satellite imagery as the input
data. Because the ocean–fog detection system must guarantee
performance for newly acquired cases when operational, cases
from 2021 were used for the hindcast evaluation. In contrast,
cases from 2015 to 2020 were used for calibration. Table I
summarizes the number of reference cases by class, data source,
and model.

C. Himawari-8

Himawari-8 is a meteorological satellite in a geostation-
ary orbit administered by the Japan Meteorological Agency.
Himawari-8 is equipped with an advanced Himawari Imager
and a multispectral sensor with three visible, three near-IR, and
ten IR wavelength channels [34]. To distinguish ocean–fog from
other classes—clear skies and clouds—well-known ocean–fog
and cloud-sensitive channels (Ch02, Ch07, and Ch14), high-,
mid-, and low-level water vapor absorption channels (Ch08,

Ch09, and Ch10), and dirty window channels (Ch11 and Ch15)
were considered as input features, as marine atmospheric condi-
tions typically exhibit different characteristics on these channels
(see Table II) [14], [17], [20], [35], [36], [37]. The BTDs between
the IR channels and the solar zenith angle (SOZ) were used
as input features to enhance and clarify the signals of marine
atmospheric conditions over time (see Table II) [35], [36], [37],
[38].

III. METHODOLOGY

This article proposes whole-day composite models for
ocean–fog detection based on machine-learning techniques and
Himawari-8 data (see Fig. 2). To construct and evaluate the mod-
els, samples of target classes (i.e., ocean–fog, clear skies, and
clouds) were collected from a homogeneous region identified
through K-means clustering. Uncertainties can be introduced
even if a homogeneous area spatially matches a reference point;
therefore, QC procedures (e.g., target class agreement test,
shape filtering, potential cloud-intruding filtering, and theoret-
ical filtering) are implemented. As two types of schemes (i.e.,
IRO and VIS) were examined independently, machine-learning
models (i.e., RF, XGB, and LR) were constructed after the
optimization of the target class composition and hyperparameter
tuning using the calibration set (2015–2020), and evaluated
using the hindcast validation set (2021). The SHAP method was
adopted to interpret the machine-learning models, focusing on
the contribution and interactions of the input features, followed
by spatiotemporal evaluations.

A. Sample Extraction

Because ocean–fog reference data are typically collected as
points (e.g., specific ASOS stations or CALIPSO shots), pre-
vious articles have usually increased their sample size through
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TABLE II
SUMMARY OF INPUT VARIABLES FROM HIMAWARI-8 SATELLITE DATA FOR DEVELOPING OCEAN–FOG DETECTION MODELS IN THIS ARTICLE

na

spatial oversampling, such as collocation with human-inspected
ocean–fog patches [14], [16] or the use of neighborhood pixels
[13], [17]. However, although human inspection of ocean–fog
patches can provide as many ocean–fog samples (pixels) as pos-
sible, they require considerable human resources. In addition,
they are only available under ideal conditions (i.e., daytime, no
cloud contamination, and large expanded ocean-fog). Merging
nearby pixels, on the other hand, works without human resources
and specific conditions but produces a much smaller number
of pixels (e.g., 9-pixel or 25-pixel) regardless of how large an
ocean–fog patch is, and it has spatial autocorrelation issues.

Unsupervised image segmentation is a promising approach
for acquiring spatially expanded potential ocean–fog patches
[39], [40]. It divides the images into several mutually exclusive
segments with similar characteristics. This article used the K-
means clustering method to obtain spatially expanded ocean–fog
patches [37], [38], [39], [40], [41], [42], [43]. The K-means
clustering method divides the input data into K groups with sim-
ilar properties by minimizing the sum of the squared distances
between the data points and centroids of the clusters, where each
data point is assigned to the cluster with the nearest centroid
[44], [45]. Images of Ch02, Ch14, BTD1107, BTD1407, and
BTD1514, which have relatively distinct value ranges for the

target classes (i.e., ocean–fog, clear skies, and clouds), were used
as inputs for K-means clustering. At night, all pixel values of the
visible Ch02 images were filled with zeros so that they could not
be used for clustering. As the k value increased, the segments’
average size decreased while each segment’s purity increased;
consequently, a relatively high K value of 25 was chosen based
on numerous empirical experiments to extract pure sample data.

An additional QC was implemented due to the spatial scale
difference between the point reference and grid satellite data. For
instance, a cluster may contain two or more reference classes
or a cloud edge above an ocean–fog cluster may be assigned.
Clusters containing multiple classes were easily eliminated, but
ocean–fog clusters assigned to cloud edges required a more
intricate correction process owing to their high transparency.
Edge segments typically have an irregular shape, thin or long,
and can therefore be filtered using a metric called the fractal
dimension index (FRAC) (1) [46], [47], [48]. FRAC is a metric
used to quantify the shape irregularity of an object based on its
perimeter and area and ranges from 1 to 2. A shape with an FRAC
close to 1 is considered simple, whereas a shape with an FRAC
close to 2 is considered extremely convoluted [48]. Through
empirical testing, a QC procedure was added to the segments of
the three classes—ocean–fog, clear skies, and clouds—to filter
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Fig. 2. Process flow proposed in this article.

out those with an FRAC value >1.4 and 1.6, respectively

FRAC =
2× log (0.25× perimeter)

log (area)
. (1)

When matching ocean–fog reference data with the Himawari-
8 images, temporal buffers (i.e., a time difference of less than 5
min) were applied to the CALIPSO data. Even a time difference
of less than 5 min can cause mismatching between the refer-
ence data and Himawari-8 images owing to migrating clouds;
therefore, spatial buffers were used to eliminate the possibility
of cloud intrusion: only reliable when reference points were
located more than 2 or 4 km away from the edge of segments
with time differences of less than 3 min or more, respectively.
Finally, several physical quality-checking criteria were applied
to each segment to guarantee the reliability of the input data:
Ch14 ≥ 273.15 K and Ch02 ≥ 0.1 for daytime ocean-fog and
Ch14 ≥ 273.15 K for nighttime ocean-fog; Ch14 ≥ 273.15 K
and Ch02 ≤ 0.15 for daytime clear skies and Ch14 ≥ 273.15 K
for nighttime clear skies; Ch02 ≥ 0.1 for daytime clouds, Ch07
< 284 K for summer nighttime clouds, and Ch07 < 270 K for
winter nighttime clouds (Ch02 related rules are only executed
when the visible channel is valid). These criteria are based on the
theoretically valid range of each marine atmospheric condition,

except for cloud-related criteria, which are enhanced by human
inspection of cloud reports [49], [50].

B. Modeling

This article evaluated two IRO and VIS schemes for ocean–
fog detection. The IRO scheme was designed to detect ocean–
fog throughout the day using only IR channels. In contrast,
the VIS scheme was designed to detect ocean–fog during the
daytime using IR channels with a visible channel. Three dis-
tinct machine-learning algorithms were used for each scheme
to detect ocean–fog: RF, XGB, and LR inspired by bagging,
boosting, and logarithmically adapted regression, respectively
[51], [52], [53]. The RF model is an ensemble of classification
and regression trees (CART) that generates decisions through
recursive binary divisions [54], [55].

Given that the CART is susceptible to overfitting based on
training samples, random subsets of training samples and vari-
ables were applied to each CART to produce multiple indepen-
dent trees in the RF. The XGB is also composed of CARTs;
however, the calibration process differs from that of the RF
model. To achieve high performance, XGB recursively updates
a model with the incremental weighting of misclassified sample
components [53]. The RF and XGB models are rule-based and
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TABLE III
INPUT VARIABLES AND TRAINING PARAMETERS OF MACHINE LEARNING MODELS USED IN THIS ARTICLE

TABLE IV
CONTINGENCY TABLE OF THREE CLASSES FOR QUANTITATIVE EVALUATION OF THE PROPOSED OCEAN–FOG DETECTION MODELS

make decisions based on threshold-based classification nodes,
whereas the LR model relies on regression. LR is a sophisticated
form of linear regression-based classification that uses a logistic
function to calculate the probability of a target variable class.
Although LR has a simpler structure than tree-based models,
its log-transformed regression forms enable the incorporation
of nonlinear relationships between input variables and targets
[56].

The collected samples were divided into a calibration set
(from 2015 to 2020) and a hindcast validation set (samples
from 2021). As the sample size varied greatly by class, it was
further optimized to avoid biased modeling results caused by
imbalanced training data [23]. Based on the performance of
the 10-fold cross-validation, the optimum sample size ratio by
class (i.e., ocean–fog, clear skies, and clouds) was determined

to be 1.0:1.0:0.7 for the IRO scheme and 1.0:1.0:1.0, for the
VIS scheme, with 96 600 and 20 600 ocean–fog samples for
the IRO and VIS schemes, respectively (see Table III). To
ensure a fair evaluation of the hindcasts, the case numbers of
each nonfog class (i.e., clear skies and clouds) were matched
to those of ocean–fog. A grid search was used to optimize
the hyperparameters of the machine-learning models (see Ta-
ble III) [57]. The maximum depth of a tree (max_depth), the
minimum number of samples required to be at a leaf node
(min_sample_leaf), the minimum number of samples required
to split an internal node (min_samples_split), and the number
of trees (n_estimators) were optimized for RF; the step size
shrinkage used in the update to prevents overfitting (learning
rate), n_estimators, max_depth, the minimum sum of instance
weight needed in a child (min_child_weight), the subsample
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TABLE V
HINDCAST CLASSIFICATION RESULTS OF MACHINE-LEARNING MODELS AND AMI PRODUCTS

ratio of the training instances (subsample), the subsample ratio
of columns when constructing each tree, the L1 regularization
term on weights (reg_alpha), and the minimum loss reduction
required to make a further partition on a leaf node of the tree
(min_split_loss) for XGB; and the inverse of regularization
strength (C), and the specific the norm of the penalty (penalty),
for LR [57].

C. Accuracy Assessment

The probability of detection (POD), false alarm ratio (FAR),
F1-score, and proportion correct (PC) were used to evaluate
the performance of the models in detecting ocean–fog. A case-
by-case quantitative evaluation was conducted by assigning the
most-classified class to each pixel set (see Table IV). POD
is the proportion of ocean–fog cases classified as ocean–fog,
representing the ocean–fog detection performance (3). FAR is
the proportion of nonfog cases classified as ocean–fog, repre-
senting the false alarm rate for ocean–fog detection (3). For a
more accurate analysis, the clear-sky and cloud cases of FAR
were separated into FAR_r (4) and FAR_d (5), respectively. The
F1-score is a harmonic mean of POD, and the complement of
FAR represents a balanced performance for ocean–fog detection
(6). PC is the proportion of corrected cases to the total number of
cases, representing the overall performance of the classification
(7) [58], [59]. The fog product of GeoKompsat-2A produced by

NMSC (referred to as NMSC) [13] was compared to examine
the operational feasibility of the models.

Because the reference data were collected at specific locations
or times, such as ASOS stations or CALIPSO passing local time,
a qualitative evaluation of the spatial distribution of ocean–fog
was conducted using the CALIPSO VFM track as an example.
In addition, the BN station was used to qualitatively assess the
temporal continuity of the ocean–fog. Finally, all qualitative
evaluations were compared to the control product (NMSC) and
the inferred input variables Ch02 and Ch14

POD = Nff/Sorg_f × 100% (2)

FAR = Nrf/Spred_f × 100% (3)

FAR_r = Nrf/Spred_f × 100% (4)

FAR_d = Ndf/Spred_f × 100% (5)

F1_score = 2× POD × (100%− FAR)
POD + (100%− FAR)

(6)

PC = (Nff +Nrr +Ndd) /Sall × 100%. (7)

D. Model Interpretation

The SHAP was used to investigate the contribution and in-
teractions of the input variables on the modeling results. The
SHAP quantifies the contribution of input variables based on
game theory to determine the effect of each input variable [60],
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Fig. 3. SHAP value summary plots on XGB models in IRO and VIS scheme for target classes. The variables on the y-axis were arranged in descending order
through the mean absolute SHAP values.

[61], [62]. Due to the complexity of the machine-learning model
structure, SHAP considers the model as an aggregation of each
input variable’s value (z) and weight (ϕ). For example, the weight
of input variable i can be interpreted as the contribution amount,
which is estimated by calculating the difference in score between
using and not using the variable (8) to determine the contribution
(ϕi) of input variable i as follows:

ϕi =
∑

S⊆N/{i}

|S|! (|N | − |S| − 1)!

|N |! (f (S ∪ {i})− f (S))

(8)

where N denotes the entire set of variables, S denotes a subset
of variables excluding i, the vertical bar brackets (|#|) denote the
number of variables, and the factorial (!) denotes the number
of possible combinations of provided variables. Equation (8)
calculates the average score change (f(x)) for every possible
combination of input variables. As this was a classification study,
the score of the SHAP approach was defined as the classification
probability for each target class. Not only is the mean absolute
SHAP value used to determine the contribution rank of the
input variables, but the dependence of variable contributions
on the SOZ is also used to interpret the change in variable
contribution as the SOZ changes, as the diurnal variation of the
SOZ influences some variables.
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Fig. 4. Dependency plots of the brightness temperature difference between Ch14 and Ch07 by the solar zenith angle on extreme gradient boosting of infrared
only used scheme in each temporal period. X-axis indicates values of input variables, the y-axis indicates SHAP values, and the color indicates the solar zenith
angle.

IV. RESULTS AND DISCUSSION

A. Quantitative Model Assessment

The hindcast validation results of the models are listed in
Table V. During the daytime, except for IRO_LR and NMSC,
all models accurately classified ocean–fog cases (POD of 100%).
IRO_XGB and NMSC correctly classified daytime nonfog cases
(FAR_r = 0% and FAR_d = 0%), whereas the IRO_RF and
VIS models misclassified 4.76% of cloud cases as ocean–fog,
and IRO_LR misclassified 6.67% of clear-sky cases as ocean–
fog. Overall, IRO_XGB had an F1 of 100% but also a PC
of 100%, indicating perfect classification across all classes,
followed by the IRO_RF and VIS models with an F1 of 97.56%,
and PC of 98.33%, NMSC with F1 of 94.74% and PC of
96.67%, and IRO_LR with F1 of 80% and PC of 88.33%,
respectively.

During the nighttime, IRO_XGB had the best performance
in detecting ocean—fog, with a POD of 100%, followed by
IRO_RF with a POD of 96.08%, NMSC with a POD of 86%,

and IRO_LR with a POD of 78.43%. However, in contrast to the
daytime, some clear-sky cases were misclassified as ocean–fog
(FAR_r of 5.56%) from IRO_XGB. In contrast, all nonfog cases
were correctly classified as nonfog from IRO_RF and NMSC,
and 29.82% of the clear-sky cases were misclassified as ocean–
fog from IRO_LR. In terms of overall performance, IRO_RF
exhibited the best results with an F1 of 98% and PC of 98.69%,
followed by IRO_XGB with an F1 of 97.14% and PC of 98.04%,
NMSC with an F1 of 92.47% and PC of 62%, and IRO_LR with
an F1 of 74.08% and PC of 81.05%.

Even though IRO_XGB had the second-highest performance
during nighttime, it correctly classified ocean–fog cases with no
confusion with cloud cases, resulting in a POD of 100%, F1 of
97.93%, and PC of 98.59%, which was the highest performance
of all models and products considering both day and night.
However, although machine-learning models were designed to
classify three types of marine atmospheric conditions (e.g.,
ocean–fog, clear skies, and clouds), the NMSC can only dis-
tinguish between ocean–fog and nonfog during the nighttime,
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Fig. 5. Dependency plots of the brightness temperature difference between Ch11 and Ch07 by the solar zenith angle on extreme gradient boosting of infrared
only used scheme in each temporal period. X-axis indicates values of input variables, the y-axis indicates SHAP values, and the color indicates the solar zenith
angle.

resulting in poor performance on PC (62%) but high F1 (92.47%)
during the nighttime [13].

Even though the VIS-based models were trained using day-
time samples, IRO_XGB outperformed the VIS-based mod-
els regarding cloud discrimination, regardless of the time.
The reason for this unexpected result is analyzed via SHAP
analysis in Section IV-B. Furthermore, in contrast to the
other machine-learning models, IRO_LR performed poorly
for both daytime and nighttime, whereas VIS_LR performed
comparably to the other models during the daytime. Further-
more, the regression-based LR calculation formula is inef-
fective when utilizing input variables with disorderly trends,
such as Ch07, BTD1007, BTD1107, and BTD1407, whose
day and night trends are radically dissimilar [63]. Finally,
IRO_XGB was chosen as the best model for subsequent anal-
ysis, and VIS_XGB and NMSC were chosen as the day-
time and whole-day control models, respectively, for further
comparison.

B. Model Interpretation

Fig. 3 depicts summary plots of the SHAP values for each
target class using IRO_XGB and VIS_XGB. Ch02 did not
contribute significantly to ocean–fog classification (see Fig. 3
and Table V). However, it ranks second in variable contributions
for classifying clear skies and clouds. Specifically, a lower Ch02
value significantly contributed negatively (<−2) to the noncloud
detection. In contrast, most samples tilted toward an SHAP value
of approximately zero for the clear sky classification.

Low Ch02 reflectance was used exclusively as an indicator of
nonclouds for VIS_XGB (see Fig. 3), which could lead to con-
fusion when low-reflectance cloud cases are provided, resulting
in an atypically higher FAR_d for VIS_XGB than for IRO_XGB
(see Table V). Because the values of Ch07-related variables vary
significantly between day and night in ocean–fog and clouds,
SOZ was anticipated to be utilized as a variable indicating
diurnal variation in the IRO scheme. In the variable contribution
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Fig. 6. Dependency plots of Ch15 by the solar zenith angle on extreme gradient boosting of infrared only used scheme in each temporal period. X-axis indicates
values of input variables, the y-axis indicates SHAP values, and the color indicates the solar zenith angle.

summary, SOZ ranked third for all target classes of IRO_XGB;
it also ranked third for ocean–fog classification of VIS_XGB
with a noticeable pattern in SHAP values. Specifically, the high
values of SOZ (night in IRO and day–night transition in the VIS
scheme) contributed positively to the detection of ocean–fog,
and the low values of SOZ (day in IRO and close to noon in
the VIS scheme) contributed positively to the detection of clear
skies and clouds. This SHAP distribution was deduced from the
statistical tendency of ocean–fog, which is typically observed
after sunset. Therefore, this variable indicates diurnal status;
therefore, it was used as an independent variable in the analysis
of the change in contribution due to diurnal variation in the
dependence plot, despite its high contribution to the model. As
the influence of Ch02 on VIS_XGB ocean–fog detection was
minimal, dependency analysis by SOZ change was conducted
only for IRO_XGB.

Among the input variables for ocean–fog detection con-
tribution, BTD1407 and BTD1107 ranked first and second,
respectively. Ch07, a component of BTD1407, is sensitive to

solar radiation; thus, the relationship between BTD1407 and
SOZ was analyzed using a dependency plot (see Fig 4). During
the daytime (SOZ � 80°), BTD1407 values (from−35 to−5 K)
contributed positively to the classification of ocean–fog samples,
with some values having a negative contribution. Nonetheless,
extremely low values (∼<−35) contributed significantly to
eliminating nonfog samples with SHAP lower than −1, while
these values positively contributed to identifying clouds si-
multaneously. While ocean–fog and clouds have higher Ch07
reflectance than clear skies, ocean–fog and clear skies have high
Ch14 BTs, and clouds have low Ch14 BTs. The reflectance of
ocean–fog and clouds varies with their optical transparency and
solar incidence angle; only very cold BT with high reflectance
of clouds indicates extremely low values of BTD1407, which
contributed significantly to distinguishing clouds, whereas the
other positive contributing ranges overlapped with those for
discriminating ocean–fog.

During the nighttime, values over 2 K of BTD1407 con-
tributed to the SHAP up to a value of 5. At the same time, this
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Fig. 7. Dependency plots of Ch14 by the solar zenith angle on extreme gradient boosting of infrared only used scheme in each temporal period. X-axis indicates
values of input variables, the y-axis indicates SHAP values, and the color indicates the solar zenith angle.

positive contribution range of ocean–fog overlapped with the
negative contribution range of clear skies and clouds. As solar
radiation is absent at night, the primary source of Ch07 is surface
emissions; therefore, blocking surface emissions by ocean–fog
or clouds is implied. Consequently, positive values close to
0 K and negative values of BTD1407 are generally related to
ocean–fog, clear skies, and clouds, respectively, resulting in
positive SHAP values. Like BTD1407, BTD1107 contributed
positively to ocean–fog; however, its positive contribution to
clouds was more difficult to separate from ocean–fog, resulting
in a lower contribution rank than BTD1407. Because Ch11
and Ch14 are both atmospheric window channels, ice crystals
in clouds absorb more radiation at longer wavelengths [35];
consequently, the BT difference between ice-phase clouds and
water-phase ocean–fog is greater in Ch14 than in Ch11, resulting
in a more distinguishable pattern of positive and negative SHAP
contributions to clouds (see Figs. 4 and 5). The contribution
of the SOZ to ocean–fog detection ranked third. The SOZ is
expected to reveal temporal information regarding the diurnal
cycles of radiation and reflection.

Ch15 contributed the most to detecting ocean–fog among
the atmospheric window channels. Ch15 > 280 K contributed
to the detection of daytime ocean–fog with an SHAP of up
to 1, whereas Ch15 < 270 K contributed to the omission of
nonfog throughout the day with an SHAP of down to −3 (see
Fig. 6). Ch14, however, is regarded as a classic atmospheric
window channel and is widely used to distinguish atmospheric
phenomena. Still, it contributed the least (see Fig. 7). Although
Ch14 indicated the top kinetic temperature of a feature, its
diurnal variation (lower temperature during the daytime and
higher temperature at night) resulted in multiple peaks of
positive SHAP values (see Fig. 7) [64]. However, Ch15, with
a longer wavelength than Ch14, loses its BT from water vapor,
which has a diurnal cycle of atmospheric water vapor (lower
density in daytime and higher density at night) [56], [57], [58],
[59], [60], [61], [62], [63], [64], [65], [66], [67], resulting in
the cancellation of both diurnal variations and stable thermal
property of ocean–fog on Ch15 regardless of the time of day.

In addition to the atmospheric window channels, Ch07,
ranked fifth, contributed to detecting ocean–fog. Because Ch07
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Fig. 8. Dependency plots of Ch07 by the solar zenith angle on extreme gradient boosting of infrared only used scheme in each temporal period. X-axis indicates
values of input variables, the y-axis indicates SHAP values, and the color indicates the solar zenith angle.

reflects solar radiation during the daytime, high values of
Ch07 greater than 290 K contributed to detecting ocean–fog
(see Fig. 8). In contrast, low values of Ch07, less than 280 K,
contributed to the omission of nonfog data. However, clouds
also have high reflectance during the daytime; therefore, the
positive contribution range is mixed with the negative contribu-
tion range, resulting in the worst variable contribution to cloud
detection.

C. Spatiotemporal Distribution of Ocean–Fog

Fig. 9 shows ocean–fog detection maps along with Ch02 and
Ch14 images at 14:40 KST on July 10, 2021, when CALIPSO
detected ocean–fog. A large convective cloud with extremely
high reflectance and a cold top temperature was found in
region A’s Ch02 and Ch14 images. Despite the solid forma-
tion of the convective cloud, weak Ch02 signals were detected
in the peripheral regions of the cloud owing to the lower

density of obstructions. Most edges were classified as ocean–fog
in VIS_XGB, with Ch02 being the most influential variable,
whereas IRO_XGB and NMSC classified clouds well.

A CALIPSO-based reference confirmed that Region B is
primarily cloudy, with unknown ocean–fog conditions in the
south. According to Ch02 and Ch14, stratus cumulus clouds
with rough textures and high reflectance were suspected in
B’s northern and central regions; consequently, all models ac-
counted for these regions as cloudy. However, NMSC missed
all ocean–fog regions south of Region B, which the machine-
learning models correctly classified. Even though ideal ocean–
fog signals were detected in the south of region B, NMSC
could classify them as clouds owing to the rough texture of
the region, whereas machine-learning models, which do not
utilize texture information, detect ocean–fog pixel-by-pixel
correctly.

CALIPSO revealed that Region C consists of ocean–fog
and clear skies in its one-dimensional data. This region was
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Fig. 9. Ocean–fog distribution maps of Ch02, Ch14, extreme gradient boosting using infrared only scheme (IRO_XGB), extreme gradient boosting with a visible
channel (VIS_XGB), and product of NMSC at July 10, 2021, 14:40 KST. The scattered dots indicate ocean–fog reference from the CALIPSO.

uniformly warm with a mean Ch14 of 288 K and transparent with
a mean Ch02 of 0.05. It was classified as a cloud by the NMSC
algorithm, identifying pixels over a Ch02 of 0.26 as ocean–fog.
Machine-learning models detected ocean–fog pixels perfectly in
this region. In contrast, NMSC misclassified ocean–fog pixels
and surrounding clear-sky pixels as clouds because of the rough
texture information caused by sparse small ocean–fog pieces;
this is an excessive misclassification compared to region A in
which the ocean–fog and the surrounding clouds were classified
as clouds.

Region C was further evaluated using the time-series results
starting from 14:40 KST (i.e., the CALIPSO observation time) to
30 min later with 10-min intervals (see Fig. 10). During this time,
the horizontal movement of obstacles (potential ocean–fog) was
minimal. Still, transparency variation was present, resulting in a
change in radiation on the ocean–fog edge regions. For example,
at approximately 39°20’N, 124°E (yellow box region of Ch02
at 14:40 KST), IRO_XGB had confusion between ocean–fog
and clouds, whereas VIS_XGB showed well-segmented ocean–
fog consistently. In contrast, NMSC classifies this region as a
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Fig. 10. Ocean-fog distribution maps of Ch02, Ch14, extreme gradient boosting using infrared only scheme (IRO_XGB), extreme gradient boosting with a visible
channel (VIS_XGB), and product of NMSC over an area 38–40°N 123–126°E from July 10, 2021, 14:40 KST to 15:10 KST with a 10-min interval. The yellow
box region of Ch02 at 14:40 KST demonstrates a temporally unstable transparency region.

blend of cloudy and unknown classes. Furthermore, because
NMSC classifies ocean–fog as having a uniform texture, this
area’s uneven texture led to misclassification by NMSC as a
cloud class.

The BN station also acquired reports of ocean–fog occur-
rences near this time; consequently, an hourly quantitative as-
sessment was implemented using a window of 5 × 5 pixels
surrounding the station (see Fig. 11). The ASOS station re-
ports hourly. At 14:00 KST, BN reported a mist with 80%
stratus cumulus (Sc) and cirrus (Ci) coverage. Although mist
was reported, clouds covered approximately 80% of the sky.
Consequently, IRO_XGB classified this instance as clouds with
minor ocean–fog. VIS_XGB and NMSC also classified this
region as clouds from 13:30 to 14:00 KST; however, after
14:00 KST, they classified it as ocean–fog or unknown classes,

respectively. Finally, at 15:00 KST, a mist with 60% Ci clouds
was observed at the station. Because Ci clouds only covered 60%
of the sky, IRO_XGB and VIS_XGB classified this region as a
mixture of ocean–fog and clear skies with Ci clouds. However,
even though there was ocean–fog-like radiation, the texture of
the region in the satellite images was rough owing to shallow
ocean-fog (mist) and covering cirrus clouds, causing this region
to appear as a mixture of unknown clear skies and clouds without
ocean–fog.

From 16:30 to 18:30 KST, no ocean–fog was reported in this
region; however, as of 18:30 KST, mist without cloud cover
was reported at the station. The period around 17:00 KST was
a day-to-night transition; the reflectances of Ch02 and Ch07
decreased to zero at night, and machine-learning models us-
ing the data may have produced unstable classification results.
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Fig. 11. Temporal reporting of weather, visibility, and cloud amount from the Baenyeongdo ASOS station, with the proportion of detection in the area of 100 km2

(25 pixels) based on the extreme gradient boosting with the infrared only scheme (IRO_XGB), extreme gradient boosting with a visible channel scheme (VIS_XGB),
and product of NMSC from July 10, 2021, 13:00 KST to July 11, 2021, 00:50 KST with a 10-min interval. V means visibility.
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The NMSC results exhibited an abnormal increase in the high
proportion of unknown classes in this region between 18:10 and
19:50 KST since the ocean–fog detection model was converted
from a daytime model to a dawn/dusk model. BN reported mist
without cloud cover at 20:00 KST and ocean–fog at 21:00 KST,
resulting in a progressive increase in the ocean—fog fraction on
IRO_XGB and NMSC from 19:50 KST, whereas VIS_XGB did
not provide output at night. Ocean–fog, not mist, was detected at
approximately 21:00 KST, and IRO_XGB and NMSC correctly
identified it.

D. Novelty and Limitations

This article proposes a novel approach for ocean–fog detec-
tion using geostationary satellite data. This article had four major
findings. First, the semiautomated sampling method proposed
in this article generated many samples with high confidence. In
contrast, previous articles collected all nearby pixels without QC
or collocated them with human-inspected ocean–fog patches.
Second, the model proposed in this article classifies three types
of phenomena (ocean–fog, clear skies, and clouds) regardless of
the time of day or night. Third, most previous articles, including
NMSC, have focused on ocean–fog discrimination [13], [16].
Because the criteria distinguishing ocean–fog, clear sky, and
cloud pixels vary with time and input variables, it is difficult
for a model to classify ocean–fog and nonfog without causing
confusion between ocean–fog and clear skies or clouds. How-
ever, this article modeled three marine atmospheric conditions
as target classes, resulting in increased performance regardless
of diurnal variation.

Third, this article attempted to interpret the results of a com-
plex machine-learning model. Although some previous articles
have conducted model interpretation, only a few well-known
input variables or simple structured models (i.e., decision trees)
have been used for simple interpretation, limiting the scien-
tific findings [16], [18]. However, this article used the SHAP
approach to interpret the results in detail, specifically how the
change in input variables (i.e., BTD1107 and BTD1407) influ-
enced the three-class classification, focusing on their temporal
variation and how the use of Ch15 versus Ch14 was effective in
detecting ocean–fog.

Fourth, the proposed model successfully detects ocean–fog
using spectral rather than textural information. Previous ocean–
fog detection models were built using simple thresholding or em-
pirical modeling, incorporating spectral and texture information
as input variables. However, texture information is only effective
under ideal conditions (i.e., the interior of large ocean–fog
without cloud contamination), resulting in misclassification over
small or ocean–fog edge regions. In this article, a more advanced
empirical modeling technique (i.e., XGB) was combined with
spectral information to construct a model that can be used for
ocean–fog detection under a variety of ocean–fog sizes and
occurrences, resulting in reliable ocean–fog detection and even
ocean–fog pixels in gaps between clouds or small sizes.

Nevertheless, this article has several limitations. First, ASOS
and CALIPSO-derived ocean–fog cases were used as reference

data, which were collected at specific locations (i.e., BN, HS,
IC, and MP stations) or specific periods (i.e., around 5:00 or
17:00 KST for CALIPSO), thereby limiting the comprehensive
spatiotemporal evaluation of the proposed model for ocean–
fog. Second, even with spatial oversampling through K-means
clustering to broaden the spatial coverage, it was impossible
to cover the entire Yellow Sea every time, resulting in insuffi-
cient modeling generalization. Third, the main characteristics
of ocean–fog are its high transparency and warm temperatures.
However, the edges of stratus clouds generally have properties
similar to ocean–fog, confusing the suggested model. Fourth,
machine-learning models perform well in detecting ocean–fog
cases similar to the training data; however, they can lead to
misclassifications of ocean–fog cases with distinct spectral in-
formation. Although this article proposes a novel model for
detecting ocean–fog, the reliability of ocean–fog detection re-
sults is compromised during the transition between day and
night owing to the discontinuous spectral property of Ch07
in that period. Although SHAP provides insights into model
interpretation through a statistical approach, it does not offer a
complete understanding of the model structure and is, therefore,
subject to potential errors.

V. CONCLUSION

While continuous and stable ocean–fog monitoring is nec-
essary, previous articles have developed models capable of
detecting ocean–fog during specific diurnal periods (e.g., day,
night, and dawn/dusk). Therefore, this article proposes a model
(IRO_XGB) for ocean–fog detection via the Himawari-8 satel-
lite using machine-learning and an objective procedure, re-
gardless of whether it is day or night. This model was eval-
uated by comparing it with NMSC, an operational product,
and VIS_XGB, designed for daytime ocean–fog detection with
visible and IR channels. IRO_XGB quantitatively classified
all classes (i.e., ocean–fog, clear sky, and clouds) perfectly
during the daytime, whereas VIS_XGB misclassified 4.76%
of the cloud cases as ocean–fog, and NMSC omitted 10% of
the ocean–fog cases. During the nighttime, IRO_XGB perfectly
corrected ocean–fog, and only 5.56% of clear-sky cases were
misclassified as ocean–fog, whereas NMSC omitted 14% of
ocean–fog cases.

Consequently, in a whole-day view, IRO_XGB perfectly cor-
rected ocean—fog with 4.05% false alarms from clear skies,
while NMSC omitted 12.86% of the ocean–fog; this was also
demonstrated in a spatial evaluation; for instance, IRO_XGB and
NMSC classified convective clouds well, but NMSC classified
mixed regions of ocean–fog and nonfog (i.e., clear sky and
cloud) as clouds, whereas IRO_XGB classified these regions as
mixtures referred to by the CALIPSO reference. In the temporal
evaluation, IRO_XGB and NMSC stably detected persistent
ocean–fog, but IRO_XGB produced more secure classification
results over mists and clouds than NMSC. This article revealed,
as a result of SHAP analysis, that the change in the BTD between
channels 14 and 7 (BTD1407) was the most contributing variable
and capability of Ch15. In contrast, the classical atmospheric
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window channel, Ch14, was affected by the diurnal temperature
cycle under marine atmospheric conditions. Although the sug-
gested model utilized limited reference data, it exhibited high
quantitative and qualitative performances. In the future, when
diverse spatial and temporal references are gathered, a more
general and high-performance model can be developed.
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