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Edge-Guided Parallel Network for VHR Remote
Sensing Image Change Detection

Ye Zhu ¥, Kaikai Lv

Abstract—Change detection (CD) is an important research topic
in the remote sensing field, and it has a wide range of applica-
tions, including resource monitoring, disaster assessment, urban
planning, etc. Recently, deep learning (DL) has shown its advan-
tages in CD. However, most existing DL-based methods cannot
capture the complementary information between bitemporal and
difference features. This article proposes an edge-guided parallel
network (EGPNet) to solve this problem. First, our EGPNet ex-
tracts bitemporal and difference features simultaneously through a
parallel encoding framework. During parallel encoding, we design
a supplementary mechanism to enrich the difference features with
bitemporal features. Second, we fuse bitemporal and difference
features at each feature level to sufficiently exploit their com-
plementarity. Finally, the edge-aware module and edge-guidance
feature module are introduced to enhance the edge representation
for improving blurred edges of detection results. Benefiting from
the rich change-related information in difference features and
detailed information in bitemporal features, our EGPNet can detect
change regions entirely and accurately. Experimental results on the
LEVIR-CD, SYSU-CD, and CDD datasets demonstrate that the
proposed method outperforms several state-of-the-art approaches.
Especially, our EGPNet can detect more precise and sharper edges
than other methods.

Index Terms—Change detection (CD), convolutional neural
networks (CNNs), difference features, edge-guided network,
remote sensing, two-stream architecture.

1. INTRODUCTION

IVEN a pair of coregistered images of the same region
Gin different time phases, change detection (CD) is to
identify where the changes have occurred. The change regions
are assigned positive labels, whereas the unchanged regions
are assigned negative labels. It is essentially a binary semantic
segmentation task. Remote sensing satellite imaging technol-
ogy advances by leaps and bounds, many remote sensing plat-
forms, such as QuickBird, GeoEye, Worldview, and unmanned
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aerial vehicles (UAVs), can provide very high resolution (VHR)
images [1]. These VHR images can capture detailed ground
information, making it possible to observe our Earth from a
closer perspective. CD, as one of the most important applications
of remote sensing image interpretation, can be used in many
fields, such as resource monitoring [2], disaster assessment [3],
and urban planning [4]. According to the image analysis unit,
traditional CD methods can be divided into two categories. The
pixel-based CD (PBCD) method takes an image pixel as the
fundamental unit of analysis [5], [6], [7]. The object-based CD
(OBCD) method takes an image object as the fundamental unit
of analysis to explore spatial context, texture, and shape informa-
tion [8], [9], [10]. Although these methods need fewer samples
for training and have strong interpretability, their accuracy is not
very satisfactory due to the complexity of CD.

Recently, deep learning (DL) has dominated CD methods.
Among them, some methods utilizing both bitemporal and dif-
ference features achieve better performance. Lei et al. [11] take
difference features as input of the channel attention module to
obtain attention weight for bitemporal features. Peng et al. [12]
introduce a DE module to combine difference features in input
space with the final features after decoding. Zhang et al. [13]
fuse difference and bitemporal features based on the attention
mechanism in a difference discrimination network. These works
indicate the complementarity between bitemporal and difference
features. Difference features can reflect changes explicitly, but
they lack details. Even if bitemporal features contain detailed in-
formation, they cannot reflect change explicitly. Both bitemporal
and difference features are equally crucial to CD. Capturing the
complementary information between bitemporal and difference
features is essential for CD. However, the difference features
used by these methods are generated from the construction,
not extraction. In other words, these methods lack an explicit
extraction process of difference features. Following the spirit of
the two-stream architecture [14], we propose a parallel encoding
framework in our edge-guided parallel network (EGPNet) to
extract these two kinds of features simultaneously and explicitly.
To sufficiently leverage their complementarity, we fuse these
two kinds of features at each feature level generating the fused
features. Benefiting from the rich change-related information
in difference features and detailed information in bitemporal
features, our EGPNet can detect change regions entirely and
accurately.

Besides, many state-of-the-art (SOTA) CD methods still suf-
fer from blurred edges. As shown in Fig. 1, error detections
are mainly focused on the edges. To solve this problem, we
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Fig. 1. Examples of edge blur. (a) T1 image. (b) T2 image. (c) Ground truth.
(d) Detection results by BIT [15]. (e) Detection results by our EGPNet.

introduce an edge-aware module (EAM) and an edge-guidance
feature module (EFM) [16]. EAM integrates the low-level local
detailed information and high-level global location information
to explore edge semantics under direct edge supervision. EFM
can guide representation learning, enhancing edge representa-
tion. The contribution of our work can be summarized as follows.

1) A parallel encoding framework that can effectively extract
bitemporal and difference features is proposed to explore
feature complementarity.

2) We design a supplementary mechanism (SM), which can
bridge the bitemporal encoder and difference encoder
enriching the difference features with bitemporal features.

3) We introduce EAM and EFM to solve the edge blur
problem of VHR remote sensing image CD.

The rest of this article is organized as follows. Section II
reviews the related works. Section III gives the details of our pro-
posed method. Experimental results and analysis are presented
in Section IV, and finally, Section VI concludes this article.

II. RELATED WORK
A. DL-Based CD

CD research has been largely driven by advances in semantic
segmentation technology, which were often adapted to cope
with the CD. A large family of CD methods is based on
bitemporal features [17], [18], [19], [20], [21], [22]. They
extract bitemporal features via the Siamese network, and the
concatenation of bitemporal features is fed into the decoder to
identify the changes. Daudt et al. [17] propose an FC-Siam-conc
that adapts Unet [23] with Siamese architecture [24] for CD.
Chen et al. [18] embed a nonlocal attention module into
Siamese Unet to increase the detection capability of the
model as well as the noise suppression capability. Fang
et al. [19] adapt Unet++ [25] with Siamese architecture to
retain shallow-layer information. Chen et al. [20] use two
types of modality-independent structural relationships to solve
the modal heterogeneity problem in unsupervised multimodal
CD. Liu et al. [21] propose a multitask Siamese convolutional
network combining the semantic information of the single
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bitemporal image. Chen et al. [22] use the semantic information
of the single bitemporal image in a self-supervised learning
framework to learn more discriminative features.

Other methods pay attention to difference features [15], [26],
[27], [28], [29]. First, they extract bitemporal features through
the Siamese network. Then, difference features are constructed
by bitemporal features using recurrent neural network (RNN)
or subtraction operation. Finally, difference features are used to
recognize the changes. Chen et al. [26] integrate the merits of
both CNN and RNN, CNN is used to extract bitemporal features,
and RNNis used to generate difference features. Zhang et al. [27]
design a differential pyramid to extract multilevel difference
features explicitly, and then, the difference features are fed into
Unet++ for further representation learning. Chen et al. [15]
use a transformer to model space—time context in the token-
based space to reduce pseudochange. Bandara et al. [28] adapt
SegFormer [30] with Siamese architecture achieving higher
performance than many models employing very large ConvNets.
Chen et al. [29] design a structural relationship analysis frame-
work in the Fourier domain to solve the modal heterogeneity
problem of unsupervised multimodal CD. Some methods use the
channel concatenation image as the initial input to extract differ-
ence features, Liuetal. [31] use depthwise separable convolution
to extract difference features efficiently. Peng et al. [32] feed
the channel concatenation of bitemporal images into Unet++ to
extract difference feature for CD. In addition, metric-learning-
based CD methods calculate the Euclidean distance pixelwise
to generate the distance map [33], [34], [35]. They are also
based on difference features. This article focuses on exploring
the complementarity between bitemporal features and difference
features.

B. Two-Stream Architecture

For a specific task, there is more than one type of information,
which is usually heterogeneous and complementary. Thus, two-
stream architecture is a natural choice for neural network design.
For video action recognition, Simonyan et al. [14] propose
a two-stream network composed of a spatial and a temporal
network to integrate appearance and motion information. Zhou
et al. [36] adopt faster R-CNN within a two-stream network
for image manipulation detection. The RGB stream is to find
tampering artifacts like substantial contrast differences and
unnatural tampered boundaries. The noise stream detects the
noise inconsistency between authentic and tampered regions.
Zhang et al. [37] propose asymmetric two-stream architecture
combining RGB information and depth information for saliency
detection. Following the two-stream spirits, we design a novel
parallel encoding framework to combine bitemporal and differ-
ence information for CD.

C. Edge-Guided Network

Edge cues are instrumental in many computer vision tasks,
such as salient object detection [38], [39], [40], medical image
segmentation [41], [42], etc. Usually, there is a subnetwork for
edge detection. Edges generated through a Sobel operator or
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Fig. 2.

Overall architecture of the proposed EGPNet, which is an encoder—decoder structure based on Unet. The encoder employs a parallel encoding framework,

where BConv-i is the ith convolution block of the bitemporal encoder and DConv-i is the ith convolution block of the difference encoder. SM is used to enrich the
difference feature flow with bitemporal feature flow. EAM integrates features at level 2 and level 5 to generate the edge map, which is injected into multilevel fused
features through EFM for guiding their representation learning. The decoder employs FFM to combine low-level and high-level features progressively. In addition,
we use 1 x 1 convolutions to produce change results at different feature levels and upsample them to 256 x 256 providing direct supervision for intermediate

layers.

Canny operator will be involved in the calculation of edge loss.
Then, the edge and no-edge features are integrated for the final
detection. Thus, the network will be guided to pay more attention
to edges making the edges more precise and sharper. However,
research on edge cues is limited in the CD research community.
Cheng et al. [43] adopt deformable convolution to achieve
margin maximization clarifying the gap between changed and
unchanged semantics. Bai et al. [44] propose an EGRCNN
that incorporates both discriminative features and edge features
to improve the edge quantity of CD results. Chen et al. [45]
design an edge-guided transformer block for long-range context
modeling and edge feature refinement. Xia et al. [46] propose an
extra edge detection branch to guide change features with edge
information. Different from EGRCNN [44] and EGDE-Net [45],
which simply capture and fuse edge information at the end of
the network, we introduce an EAM to explore edge semantics
using selected features after encoding and design an EFM to
inject edges into multilevel change features for guiding their
representation learning.

III. PROPOSED METHOD

A. Overall Architecture

In Fig. 2, we illustrate the overall framework of our proposed
EGPNet, encoder—decoder architecture. Different from conven-
tional encoders, we propose a parallel encoder that is made up

of a bitemporal encoder and a difference encoder. In the parallel
encoder, we design an SM to enrich the difference feature
flow using bitemporal feature flow. Next, the concatenation of
bitemporal and difference features is fed into two convolution
layers for sufficient semantic fusion to obtain the fused fea-
tures. Then, we use EAM to generate edges that are injected
into the fused features at each feature level through EFM for
edge representation enhancement. During feature decoding, we
progressively fuse different levels of feature maps and employ
1 x 1 convolution to map feature vectors to the desired number
of classes. Five change results are produced at corresponding
feature levels, and feature level 1 gives the best result.

B. Parallel Encoding Framework

1) Bitemporal Encoder: The bitemporal encoder adopts the
Siamese network architecture as in [17] to obtain multilevel
bitemporal features containing many details. Like the vanilla
Unet [23], the bitemporal encoder includes five convolution
stages. Each stage comprises one convolution block and one
pooling layer. As shown in Fig. 3, the convolution block consists
of 3 x 3 convolution, batch normalization, and Relu activa-
tion function. The first convolution layer is used to double
the number of channels and the 2 x 2 max pooling layer to
reduce the size of feature maps. These convolution blocks can
be abbreviated as BConv — i, where ¢ € {1,2,3,4,5}. In this
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Fig. 3. Illustration of the convolution block.

TABLE I
DETAILS OF EACH CONVOLUTION BLOCK

| BConv-i/DConv-i | kernel size | stride | padding | channel |

fo1

B+

fra

B

Fig. 4.

| © substraction @ Addition

Ilustration of the SM. Where fé represents the output of the difference

1 3x3 1x1 1 32
3x3 1x1 1 32
5 3x3 1x1 1 64
3x3 1x1 1 64
3 3 x3 1x1 1 128
3x3 1x1 1 128
4 3x3 1x1 1 256
3x3 1x1 1 256
5 3x3 1x1 1 512
3x3 1x1 1 512

article, the initial channel number is set to 32; Table I gives
details of these convolution blocks. Given bitemporal images
I, € REHW [, ¢ REXHXW "hassing through the five con-
volution stages, respectively, we obtain the multilevel bitempo-
ral features at the corresponding stages. We denote the five stages
of bitemporal feature maps as f7,, fi,, wherei € {1,2,3,4,5}.
The numerical superscript indicates the feature level, and the
subscript represents the time phase.

2) Difference Encoder: Difference information is essential
for CD because we can identify the changes directly from
the difference information. Our idea is that difference features
from extraction are superior to difference features from con-
struction. Instead of using RNN or subtraction, we design an
independent difference encoder for the representation learning
of difference information. The difference encoder also includes
five convolution stages consistent with the bitemporal encoder.
We abbreviate these convolution blocks as DConv — 7, where i €
{1,2,3, 4,5}, details are given in Table I. There is no direct input
for the difference encoder. We stack /; and I5 in the channel
dimension producing Ip € R> ©*H*W "which can implicitly
represent the difference information of input space. Then, we
feed Ip into the difference encoder to extract multilevel differ-
ence features. These multilevel difference features are denoted as
f é, wherei € {1,2,3,4,5}. The numerical superscript indicates
the feature level, and the subscript means the difference.

C. Supplementary Mechanism

It is considered that the semantic information contained in /p
is limited. It may be insufficient to consider only /p. To extract
semantic-rich difference features, we aim to enrich the flow
of difference features with the flow of bitemporal features. As
shown in Fig. 4, we design an SM that can construct difference
features by bitemporal image features. Then, the constructed

encoder at the ith stage. f;l and fzﬁz are the output of the bitemporal encoder at
the ith stage. DI**! represents the input of the difference encoder at the i + 1th

stage. BI”i+1 and BI;Jrl are the input of the bitemporal encoder at the ¢ 4 1th
stage.

difference features are used to supplement the flow of difference
features at each stage. This process can be formulated as

DIi+1:f§+‘f§1—f;2’ (1)

where DI' ™! represents the input of the difference encoder at the
i + lth stage. f7 is the output of the difference encoder at the ith
stage. f, and f}, are the output of the bitemporal encoder at the
ith stage. || is absolute value operator. We construct difference
features through subtraction and supplement original difference
features using addition.

D. Bitemporal Difference Feature Fusion

To utilize change-related information in difference features
and detailed information in bitemporal features. First, we di-
rectly concatenate bitemporal features and difference features in
the channel dimension. Then, the concatenation of bitemporal
and difference features is fed into two convolution layers for
sufficient semantic fusion producing more powerful features.
The fused features can locate the changes, especially their de-
tails, accurately. The fused features are denoted as f}, where
i€{1,2,3,4,5}

f} = I:'convﬁl (Fconv3 (Concat(fljl ) flj2a f:i))) (2)

where Fgonys denotes the 3 x 3 convolution layer and concat
represents feature channel concatenation.

E. Edge-Aware Module

The lack of using prior edge structure information leads to
inaccurate detection results in the areas of building edges [44].
As shown in Fig. 5, we introduce an EAM to explore edge
semantics under direct edge supervision. Low-level features
contain rich edges but many nonchange-related edges. Thus,
high-level features are needed to help locate change-related
edges. fJ% and f ;’ are selected to explore edge semantics. First,
1 x 1 convolution reduces the proportion of high-level features
and upsampling to align spatial resolution. Then, the concate-
nation of f? and f]? are passed through two 3 x 3 convolution
layers to integrate semantic information further. Finally, 1 x 1
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Fig. 6. Illustration of the EFM.

convolution followed by the Sigmoid function is used to produce
the edge map denoted as feqge.

F. Edge-Guidance Feature Module

EFM injects the edge map feqoe produced by EAM into the
fused features f}, which can guide the representation learning
enhancing edge representation. As shown in Fig. 6, given the
fused features f}, where ¢ € {1,2,3,4,5} and the edge map
fedge- First, we perform the elementwise multiplication between
the downsampled edge map and the fused features at corre-
sponding feature levels. Then, residual connection and 3 x 3
convolution layer are used for feature fusion. In this way, we can
obtain the updated fused features fjp whose edges are enhanced

fép = Feonvs (f]lf © D(fedge) @ f}) 3

where D denotes downsampling. ® is elementwise multiplica-
tion and @ is addition. Finally, we apply an efficient channel
attention (ECA) module [47] to achieve further feature repre-
sentation enhancement. ECA can capture local cross-channel
interaction using 1D convolution. The enhanced features f can
be denoted as

fein =0 (FlkD (GAP (flfp))) © flfp @

where GAP represents global average pooling. F, is 1-D con-
volution whose kernel size is k. o is the Sigmoid function. As
described in [47], the kernel size k can be selected adaptively.

G. Progressive Feature Decoding

As shown in Fig. 7, in the top-down feature fusion module
(FFM), we fuse deep-layer features with shallow-layer features
progressively producing the final features f;, at different feature
levels. Transposed convolution is used to align the channel
number and the spatial resolution of feature maps. FFM can
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be formulated as

5;1 - Fconv3 (Fconv3 (concat (feil;lvFLrans (fée)))) (5)
where Fi,ns refer to 3 x 3 transposed convolution layer. Concat
denotes feature channel concatenation.

H. Loss Function

1) Change Supervision: For the CD task, the distribution of
difficult and easy samples is unbalanced due to the influence of
shadows, light, and seasonal changes [27]. Thus, the focal loss
(FL) [48] that can focus on hard examples is adopted for change
supervision.

y=1

o (©)

—(1 —=p)71
FL — (v pt) 0g Pt
—p¢ log(1 —pr),

where p; denotes the change probability. When ~ > 0, the
relative loss for easy examples will be reduced by paying more
attention to hard examples. In this article, ~y is set to 1. Besides,
we adopt the deep supervision strategy to deal with the gradient
vanishing problem, learning more discriminative features. As
shown in Fig. 2, we upsample the intermediate features to
256 x 256 and employ 1 x 1 convolutions to produce CD results
pi, wherei € {1, 2,3, 4,5} ateach feature level. The change loss
Lichange can be defined as

5
1
Lerange = FL(p1, 9) + § Z; FL(pi, g) ()

where FL denotes focal loss. g is the change ground truth and
p; 1s the detection result at feature level 7.

2) Change Edge Supervision: EAM produces an edge map
fedge- We employ the dice loss [49], which can solve the strong
class imbalance problem for its supervision.

2%, (1 * oli)
@\, (@)
Zz,y ( ( edgey ) + (gédgg )2>
where geqge represents the ground truth of the edge, itis extracted
from the change ground truth g through the Canny operator [50].

(x,y) indexes different pixels in fege OF Gedge-
3) Overall Loss: Finally, the overall 10ss Ly, 1s denoted as

®)

Ledge =

Lot = )\Ledge + Lchange (9)
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where Legge is the edge loss and Lchange 18 the change loss. A
control the contribution of Legge in total loss. A is set to 0.1 in
this article.

IV. EXPERIMENT AND ANALYSIS

In this section, first, we will give the experimental setup,
including the dataset, evaluation metrics, and implementation
details. Next, we conduct comparative experiments to validate
the performance of the proposed method on the LEVIR-CD [33],
SYSU-CD, and CDD [34] datasets. Then, we design ablation
experiments to validate the effectiveness of each part in our EGP-
Net. Finally, the network visualization is presented to understand
our EGPNet intuitively.

A. Dataset

1) LEVIR-CD Dataset: LEVIR-CD [33] is a public CD
dataset released by the Beijing University of Aeronautics
and Astronautics. The changes are mainly about construction
growth. It contains 637 VHR image pairs collected from Google
Earth (GE). Its spatial resolution is 0.5 m per pixel, and the image
size is 1024 x 1024. Due to the GPU memory limitation, these
images are cropped into smaller image patches whose size is
256 x 256 following its original dataset split. Consequently, we
can obtain 7120 pairs of image patches for training, 1024 for
validation, and 2048 for testing, respectively.

2) SYSU-CD Dataset: SYSU-CD [34] is a challenging CD
dataset released by Sun Yat-sen University. It covers many
change types (e.g., suburban dilation, road expansion, and sea
construction). It contains 20 000 pairs of labeled remote sensing
images collected between 2007 and 2014 in Hong Kong. The
size of each image is 256 x 256, and the spatial resolution is
0.5 m per pixel. There are 12 000 pairs of images for training,
4000 for validation, and 4000 for testing.

3) CDD Dataset: CDD [51] is a public CD dataset whose
images are collected from GE. It contains 16 000 pairs of remote
sensing images obtained from the same region in different sea-
sons. It covers change objects of different sizes (e.g., cars, single
trees, big constructions, and forest areas). The resolution of CDD
is from 3 to 1 m per pixel, and the image size is 256 x 256. There
are 10 000 pairs of images for training, 3000 for validation, and
3000 for testing.

B. Evaluation Metrics

To evaluate the performance of the proposed method, Preci-
sion, Recall, F1 score, intersection-of-union (IOU), and overall
accuracy (OA), which are often used in binary classification
tasks, are introduced. They are defined as follows:

TP
Precision = 1
recision TP<ED (10)
TP
Recall = 11
T TPyEN an
2TP
Fl= ——«——— (12)
2TP 4+ FP + FN
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TP
(0] 0 — 13
TP + FP + FN (13)
TP + TN
OA = + (14)
TP + TN + FP + FN

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, and FN is
the number of false negatives.

C. Implementation Details

We implement our EGPNet using the PyTorch DL library.
We conduct all the experiments on a single NVIDIA GeForce
RTX 3060 GPU. We initialize our EGPNet by KaiMing nor-
malization [52]. During model training, we employ the Adam
optimizer [53] for faster convergence. The initial learning rate
is set to le~#, and the linear decay strategy is adopted to adjust
the learning rate. Due to GPU memory limitation, the batch size
is set to 8, and the total epoch is set to 100 for both LEVIR-CD
and SYSU-CD datasets. For the CDD dataset, the total epoch is
set to 140.

D. Comparative Experiments

1) Comparative Methods: Several SOTA methods are se-
lected for comparison, all implemented using code published
by the original authors. These include FC-Siam-conc [17], FC-
Siam-diff [17], IFNet [13], SNUNet [19], BIT [15], ISNet [43],
ChangeFormer [28], EGRCNN [44], and EGCTNet [46]. FC-
Siam-conc [17] is based on Unet [23] and concatenates the
bitemporal features for skip connection at each layer. FC-Siam-
diff [17] is also based on Unet and uses subtraction to construct
difference features for skip connection. IFN [13] integrates
difference and bitemporal features through the attention mech-
anism in a difference discrimination network. SNUNet [19] can
retain fine low-level information through the dense connection
between the encoder and decoder. BIT [15] uses a transformer to
model the space—time context in a token-based space. ISNet [43]
employs deformable convolution to achieve margin maximiza-
tion. ChangeFormer [28] adapts SegFormer [30] with Siamese
architecture to extract multilevel features with long-range de-
pendency. EGRCNN [44] introduces a DAM to produce more
discriminative features and a multilevel edge detection header
to capture edge semantic information. EGCTNet [46] proposes
an additional edge detection branch to improve edge accuracy.

2) Experiments on the LEVIR-CD Dataset: Table II reports
the quantitative comparison results on the LEVIR-CD dataset.
Our EGPNet outperforms other methods in terms of F1, IOU,
and OA. The F1 score improves by 0.56% compared to the
suboptimal method (ChangeFormer). The Flegg score is not
optimal because our edge guidance strategy focuses on how
to use edges to guide the fused features, not on the edges
themselves.

The results of the visual comparison are shown in Fig. 8.
First, by combing the detailed information in the bitemporal
features, our EGPNet can detect relatively intact change regions
[e.g., Fig. 8 (1)] and small objects missed by other methods
[e.g., Fig. 8 (3)]. Second, the difference encoder can explicitly
capture difference information, which is useful for identifying
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Visual comparison with seven CD methods on the LEVIR-CD dataset. (a) T1 image. (b) T2 image. (c) GT. (d) IFN [34]. (e) SNUNet [19]. (f) BIT [15].

(g) ISNet [43]. (h) ChangeFormer [28]. (i) EGRCNN [44]. (j) EGCTNet [46]. (k) Ours (1) edges generated by EAM. (m) GT of edges. Colors: white for true
positive, black for true negative, red for false positive, and green for false negative.

TABLE II
QUANTITATIVE COMPARISON RESULTS ON THE LEVIR-CD DATASET

TABLE IV
QUANTITATIVE COMPARISON RESULTS ON THE CDD DATASET

Method Precision Recall Fl1 Fleage 10U OA Method Precision Recall Fl Flegge 10U OA
FC-Siam-conc 69.92 94.70 80.45 - 6729 97.65 FC-Siam-conc 89.66 56.10 69.02 - 52.69  93.89
FC-Siam-diff 71.57 92.80 80.81 - 67.80 97.76 FC-Siam-diff 88.44 54.25 67.25 - 50.66  93.59
IFNet 93.16 87.45 90.22 - 82.18  99.03 IFNet 97.60 88.75 92.97 - 86.86  98.37
SNUNet 91.03 89.45 90.23 - 82.20  99.01 SNUNet 96.56 95.79 96.17 - 92.63  99.08
BIT* 89.24 89.37 89.31 - 80.68  98.92 BIT 95.51 94.88 95.19 - 90.83  98.84
ISNet* 92.46 88.27 90.32 - 8235  99.04 ISNet 95.15 93.48 94.31 - 89.23  98.63
ChangeFormer™ 92.05 88.80 90.40 - 8248  99.04 ChangeFormer 95.45 95.40 95.42 - 91.25 98.89
EGRCNN 87.76 92.06 89.86 41.80 81.59 98.94 EGRCNN 85.05 97.52 90.86 22.60 83.25 97.62
EGCTNet 90.57 88.88 89.72 40.10 81.36  98.96 EGCTNet 94.11 91.95 93.02 20.11 86.95 98.33
EGPNet (ours) 92.03 89.93 90.96 40.66 8343 99.09 EGPNet(ours) 97.10 96.37 96.73 25.35 93.67 99.21

* presents the results reported in the original article.
The bold values mean the best performance.

TABLE III
QUANTITATIVE COMPARISON RESULTS ON THE SYSU-CD DATASET

Method Precision Recall F1 Flegge 10U OA
FC-Siam-conc 81.15 70.74 75.59 - 60.76  89.22
FC-Siam-diff 91.59 49.79 64.51 - 47.61  87.08
IFNet 79.39 79.30 79.35 - 65.76  90.26
SNUNet 79.63 75.19 77.34 - 63.06 89.61
BIT 76.02 78.13 77.06 - 62.68  89.03
ISNet* 80.27 76.41 78.29 - 64.44  90.01
ChangeFormer 77.15 73.74 75.41 - 60.52  88.66
EGRCNN 77.46 81.39 79.37 9.93 65.80  90.03
EGCTNet 81.71 74.58 77.98 8.88 63.91  90.07
EGPNet (ours) 83.97 79.15 81.49 9.04 68.76  91.52

* presents the results reported in the original article.
The bold values mean the best performance.

pseudochanges caused by confounding factors [e.g., Fig. 8 (2)].
Finally, Fig. 8 (4) shows the great advantages of our model in
detecting accurate edges. Other methods identify the new build-
ings as a whole change region, failing to detect the small gaps.
Our EGPNet can detect the edges of each building, providing
more detail about the change regions. The EGCTNet can also
detect small gaps, but they are not as accurate as ours. This is
because the edges generated by EAM are accurate enough and
can guide the representation learning of the fused features. To
display more types of changes, visual results of 1024 x 1024
images are given in Fig. 9.

3) Experiments on the SYSU-CD Dataset: Table III reports
the quantitative comparison results on the SYSU-CD dataset.

* presents the results reported in the original article.
The bold values mean the best performance.

Our EGPNet outperforms other methods in terms of F1, IOU,
and OA. In particular, the F1 score improves by 2.12% compared
to the suboptimal method (EGRCNN) on this more challenging
dataset, which indicates the robustness of our model. Our model
can also perform well even when applied to complex change
scenes.

Fig. 10 shows the visual comparison results on the SYSU-
CD dataset. It can be seen that the proposed method achieves
satisfactory performance. First, our proposed method can de-
tect accurate and sharp edges. The results detected by our
EPGNet have few error detections around the edges [e.g., Fig. 10
(1) and (2)]. Second, our EPGNet is better at avoiding false
detections [e.g., Fig. 10 (3) and (4)]. Taking Fig. 10 (4) as
an example, other methods misidentify the motorway as a
change region due to illumination interference. Our proposed
method achieves better discrimination results because the dif-
ference encoder can efficiently extract the difference features
associated with the changes of interest, eliminating interfering
factors.

4) Experiments on the CDD Dataset: Table IV reports the
quantitative comparison results on the CDD dataset. Our EGP-
Net outperforms other methods in terms of F1, IOU, OA, and
Flegge. The F1 score improves by 0.56% compared to the subop-
timal method (SNUNet). Fig. 11 shows the visual comparison
results on the CDD dataset. Our EGPNet can detect intricate
change scenarios completely and accurately [e.g., Fig. 11 (1)
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Fig. 9.
of edges.
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Visual results of 1024 x 1024 images on the LEVIR-CD dataset. (a) T1 image. (b) T2 image. (c) EGPNet. (d) GT. (e) Edges generated by EAM. (f) GT
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Visual comparison with seven CD methods on the SYSU-CD dataset. (a) T1 image. (b) T2 image. (c) GT. (d) IFN [34]. (e) SNUNet [19]. (f) BIT [15].

(g) ISNet [43]. (h) ChangeFormer [28]. (i) EGRCNN [44]. (j) EGCTNet [46]. (k) Ours. (1) Edges generated by EAM. (m) GT of edges. Colors: White for true
positive, black for true negative, red for false positive, and green for false negative.

and (4)] because the encoder can extract semantic-rich features
with a parallel encoding framework. For change objects with
regular shapes [e.g., Fig. 11 (2)], our method can restore the real
shape of the objects accurately with the help of the edge guidance
strategy. In particular, Fig. 11 (3) shows the great advantages of
the proposed method in capturing small details.

E. Model Efficiency Analysis

For a comprehensive comparison with other SOTA methods,
we implement our EGPNet with different model capacities
(the initial number of channels is set to 8/16/24/32/40). We
test all methods on a server equipped with an E5-1650 CPU
and RTX 3060 GPU and report the number of parameters

(Params), floating point operations per second (FLOPs), F1
score, and IOU score of different methods on the LEVIR-CD
and SYSU-CD datasets. As shown in Table V, the F1 score of
EGPNet-8 reaches 77.53% on the SYSU dataset, outperforming
other methods that also use a light backbone (e.g., FC-Siam-
conc, FC-Siam-diff, and BIT). EGPNet-16 has fewer parame-
ters and lower computational complexity but achieves a higher
F1 score (78.77%) on the SYSU dataset compared to (ISNet,
SNUNet, ChangeFormer), demonstrating the efficiency of our
proposed method. As the initial number of channels increases,
EGPNet-32 achieves the optimal and best performance on both
the LEVIR-CD and SYSU-CD datasets. The EGPNet-40 may
suffer from the overfitting problem leading to a decrease in
accuracy.
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Visual comparison with seven CD methods on the CDD dataset. (a) T1 image. (b) T2 image. (c) GT. (d) IFN [34]. (e) SNUNet [19]. (f) BIT [15]. (g)

ISNet [43]. (h) ChangeFormer [28]. (i) EGRCNN [44]. (j) EGCTNet [46]. (k) Ours. (1) Edges generated by EAM. (m) GT of edges. Colors: White for true positive,
black for true negative, red for false positive, and green for false negative.

TABLE V

MODEL EFFICIENCY COMPARISON RESULTS ON THE SYSU-CD DATASET AND

THE LEVIR-CD DATASET

LEVIR-CD SYSU-CD
Method Params (M) FLOPS (G)

Fl 10U Fl 10U
FC-Siam-conc 1.55 533 80.45 6729 7559  60.76
FC-Siam-diff 1.35 4.73 80.81  67.80 6451 47.61
IFNet 35.73 82.26 9022 82.18 7935 65.76
SNUNet 12.03 54.83 90.23 8220 77.34 63.06
BIT 3.04 8.75 89.31  80.68 77.06  62.68
ISNet 34.55 21.61 90.32 8235 7829 64.44
ChangeFormer 41.03 202.79 9040 8248 7541 60.52
EGRCNN 9.63 17.64 89.86  81.59 79.37  65.80
EGCTNet 106.13 38.47 89.72  81.63 77.98 6391
EGPNet-8 2.78 4.92 88.27 79.00 77.53  63.30
EGPNet-16 11.09 19.45 89.82  81.52 7877 64.98
EGPNet-24 24.93 43.59 89.84 81.55 7876  64.97
EGPNet-32 44.32 77.33 90.96 8343 8149 68.76
EGPNet-40 69.24 120.69 90.63 8286 8121 6837

The bold values mean the best performance.

F. Ablation Experiments

In this part, we perform extensive ablation studies on the
LEVIR-CD and SYSU-CD datasets to validate the effectiveness
of the parallel encoding framework, SM, and the edge guidance
strategy. The following models are set for comparison.

1y
2)

3)

4)

5)

0)

7)
1)

BNet: Our base model using single bitemporal features.
DNet-di: Our base model using single difference features.
It takes the differential image of the T1 and T2 images as
input to the difference encoder.

DNet-ci: Our base model using single difference features.
It takes the channel concatenation of the T1 and T2 images
as input to the difference encoder.

DNet-dici: The combination of DNet-di and DNet-ci.
ParalNet-di: Our parallel model with an SM (the combi-
nation of BNet and DNet-di).

ParalNet-ci: Our parallel model with an SM (the combi-
nation of BNet and DNet-ci).

EGPNet: ParalNet-ci + edge guidance strategy.

Effect of Different Input for Difference Encoder: In order

to find the optimal input to the difference encoder, we try differ-
ent input forms. These are difference input (DI), concatenation
input (CI), and “DICI.” DI is generated by subtraction between

TABLE VI
EFFECT OF DIFFERENT INPUT FOR DIFFERENCE ENCODER

LEVIR-CD SYSU-CD
Method FI IOU Fl  IOU
DNet-dici 8893 80.07 77.62 63.43
DNet-di 7412 5889 7144 5557
DNet-ci  89.00 80.19 78.01 63.94

The bold values mean the best performance.

bitemporal images. We stack bitemporal images in the channel
dimension to generate CI. “DICI” is the concatenation of DI and
CI in the channel dimension. Three models, DNet-di, DNet-ci,
and DNet-dici, are set for comparison. As shown in Table VI, the
experiments show that CI is the best choice for the input of the
difference encoder. Images in the input space have much noise,
and subtraction will pass the noise of the bitemporal images to
differential image amplifying noise. Therefore, the differential
image is inappropriate for the input of the difference encoder.

2) Effect of Different Strategies for SM: In order to find the
optimal strategy for SM, using ParalNet-ci as the base model,
we consider four different strategies, namely, none supplement
(NS), concatenation supplement (CS), multiplication supple-
ment (MS), and addition supplement (AS). As shown in Fig. 12,
there is no interaction between the two feature flows in NS. In
CS, we use concatenation to supplement the difference feature
flow wherea 1 x 1 convolution layer is used to adjust the number
of channels to fit DI**!. In MS, we use elementwise multipli-
cation to supplement the difference feature flow. In AS, we use
addition to supplement the difference feature flow. As shown in
Table VII, the experimental results show that AS strategy gives
the best result.

3) Ablation on Parallel Encoding Framework: As shown in
Table VIII, the parallel encoding framework brings consistent
improvements in the F1 score when combing different difference
encoder input forms on the two datasets. On the SYSU-CD
dataset, improvement for the F1 score is significant. The combi-
nation of BNet and DNet-ci improves the F1 score by 1.8% com-
pared to DNet-ci. On the LEVIR-CD dataset, the combination of
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Tllustration of different strategies for SM where fcil represents the output of the difference encoder at the ith stage. fgl and ng are the output of the

bitemporal encoder at the ith stage. DI**! represents the input of the difference encoder at the 7 + 1th stage. Bli+1 and BI%Jrl are the input of the bitemporal

encoder at the ¢ + 1th stage.

TABLE VII
EFFECT OF DIFFERENT STRATEGIES FOR SM

LEVIR-CD SYSU-CD

Method "™ 160~ F1 10U
NS 90.17 8210 7975 6632
MS 9028 8228 7945 6591
CS 9028 8228 7928 6567
AS 9034 8237 7981 6640

The bold values mean the best performance.

TABLE VIII
ABLATION ON PARALLEL ENCODING FRAMEWORK
LEVIR-CD SYSU-CD

Method  ™“p™"16U ~ F1 10U
BNet 9024 8222 7732 6303
DNetci 8900 8019 7801 6394
DNet-di 7412 5889 7144 5557
ParalNet-ci 9034 8237 79.81  66.40
ParalNet-di 9042 8251 7885 6508

The bold values mean the best performance.

TABLE IX
ABLATION ON EDGE GUIDANCE

LEVIR-CD SYSU-CD
Method FI IOU Fl 10U
ParalNet-ci 9034 8237 7981  66.40

EGPNet  90.96 8343 8149 68.76

The bold values mean the best performance.

BNet and DNet-di improves the F1 score by 0.18% compared to
BNet. These results indicate the vital importance of the parallel
encoding strategy, which can explore the complementary infor-
mation between bitemporal and difference features. As shown in
Fig. 13, models using single features have many false positives
and false negatives [e.g., Fig. 13(c) and (d)]. Benefiting from the
feature complementarity, ParalNet-ci can detect change regions
entirely and accurately [e.g., Fig. 13(e)].

4) Ablation on Edge Guidance: Table IX shows consistent
and significant improvements in F1 score on the LEVIR-CD and
SYSU-CD datasets when EAM and EFM are added to ParalNet-
ci. The F1 score improves by 0.62% and 1.68% on the two

‘

‘A “

8

i ( —
'§A

(a) (b) ©

Fig. 13.  Visual comparison for parallel encoding ablation on the SYSU-CD

dataset. (a) T1 image. (b) T2 image. (c) BNet. (d) DNet-ci. (e) ParalNet-ci.

(f) GT. Colors: White for true positive, black for true negative, red for false

positive, and green for false negative.

®

(d)

(a) (©
Fig. 14.  Visual comparison for edge guidance ablation on the SYSU-CD
dataset. (a) T1 image. (b) T2 image. (c) ParalNet-ci. (d) EGPNet. (e) Edges
generated by EAM. (f) GT. Colors: White for true positive, black for true
negative, red for false positive, and green for false negative.

datasets, respectively. This indicates that the introduced edge
guidance strategy can guide the representation learning of the
fused features, leading to accurate edge detection results with
low computational costs. As shown in Fig. 14, the edge guidance
strategy can help correct the edge errors (see the first row). On
the other hand, the edge guidance strategy can help locate the
internal change regions, leading to more intact results (see the
second and third rows). Besides, we embed EAM and EFM into
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TABLE X
ABLATION ON EDGE GUIDANCE

LEVIR-CD SYSU-CD
Method FI 10U Fl 10U
FC-Siam-diff 8045 6729 6451 47.61
FC-Siam-diff+edge 8427 72.82 7442 59.26

The bold values mean the best performance.

(d) © 0

(a) (b) (©)

Fig. 15. Example of network visualization on the SYSU-CD dataset. (a) T1
image, T2 image, and the change ground truth. (b) T1 features. (c) T2 features.
(d) Difference features. (e) Fused features. (f) Features after EFM.

the commonly used model FC-Siam-diff. As shown in Table X,
the F1 score improves significantly, demonstrating the generality
of the introduced edge guidance strategy.

G. Network Visualization

To understand our EGPNet intuitively, we visualize the ac-
tivation maps at feature level 2. Given the bitemporal images,
the bitemporal encoder produces bitemporal features [, f2,
and the difference encoder produces difference features f2
at feature level 2. Then, we integrate [, f%, 7 to produce
the fused features f7. Finally, f7 is passed through EFM for
edge representation enhancement, producing f2. Three repre-
sentative activation maps are selected for visualization from
T2, [, 3, and f2, respectively. Fig. 15(b) and (c) shows
bitemporal features. They can reflect details in bitemporal im-
ages but cannot explicitly reflect the changes. Fig. 15(d) shows
difference features. They can reflect the main difference between
bitemporal images but lack many details, which will cause the
missed detection problem. Fig. 15(e) shows the fused features.
A relatively complete and accurate picture of the difference
can be obtained by combining the merits of bitemporal and
difference features. This demonstrates the effectiveness of the
parallel encoding framework. Fig. 15(f) shows features after
EFM. From Fig. 15(e) and (f), we can see that the features
after EFM have stronger and sharper edges. The edge guidance
strategy improves the edge representation significantly.

V. DISCUSSION

In this section, we perform extensive experiments on the
LEVIR-CD dataset to find the optimal value for A and discuss the
effect of different A values. A that controls the proportion of edge
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Fig. 16.  Influence of the values of A on the F1 score.
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Fig. 17.  Influence of the values of A on the Flegge score.

loss in total loss has a great influence on the performance of the
proposed method. As shown in Figs. 16 and 17, smaller edge
loss causes the network to pay too much attention to internal
regions resulting in lower Flegge and F1 scores. Larger edge loss
causes the network to pay too much attention to edges, which is
also detrimental to the performance of the proposed method. 0.1
achieves the optimal balance. Under this circumstance, the gen-
erated edges are accurate and can well guide the representation
learning of the fused features.

Benefiting from the proposed parallel encoding framework
and edge guidance strategy, our EGPNet achieves higher ac-
curacy than several SOTA methods. However, our work is
based on the commonly used Unet [17] network, which is not
the latest semantic segmentation model. Recently, VIT (Vision
Transformer) [54] has shown advantages in CD [15], [28]. Our
future work is to apply VIT models to extract bitemporal and
difference features effectively.

VI. CONCLUSION

In this article, we propose an EGPNet for VHR remote sensing
image CD. To utilize detailed information in bitemporal features
and change-related information in difference features, we pro-
pose a parallel encoding framework in which we design an SM to
enrich the difference feature flow with bitemporal feature flow.
Benefiting from the feature complementarity, the EGPNet can
detect the change regions completely, especially their details,
more accurately. To enhance the edge representation, we intro-
duce an edge guidance strategy composed of EAM and EFM.
Our proposed network outperforms many SOTA methods on
the LEVIR-CD, SYSU-CD, and CDD datasets, and the results
detected by our EGPNet have more precise and sharper edges.
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