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Abstract—As a significant research direction in remote sensing
fields, unmanned aerial vehicles (UAVs) tracking has achieved
rapid development in recent years. However, due to limited power
and computation resources on aerial platforms, the tracking meth-
ods deployed on UAVs usually require high computational ef-
ficiency and performance. In addition, various challenges (i.e.,
similar object, background clutter, and occlusion) have inevitably
occurred during the UAV tracking phase. Therefore, considering
the above issues comprehensively, this article proposes a dynamic
aberrance-repressed temporal regularized correlation filter (CF) to
achieve stable tracking in UAV remote sensing videos. First, we have
introduced the aberrance-repressed temporal regularizations into
the discriminative CF framework. Second, a novel objective loss
function is constructed to adjust the strength of each regularization
for training the filter. Then, a new judgment mechanism based on
the response variation is exploited to reflect the response fluctu-
ation and applied to tune parameters of both regularizations. Fi-
nally, comprehensive experiments are done on three different UAV
benchmarks, i.e., UAV123@10fps, UAVDT, and VisDrone2018, to
verify the performance of our tracker and have demonstrated that
our tracker achieves superior performance against other total 25
state-of-the-art trackers while reaching ∼35 FPS on a single CPU.

Index Terms—Discriminative correlation filter (DCF), dynamic
aberrance-repressed temporal regularizations, unmanned aerial
vehicles (UAV) tracking.

I. INTRODUCTION

V ISUAL tracking based on unmanned aerial vehicle (UAV)
remote sensing videos is an important research direction

of remote sensing [1], [2], [3]. Generally, UAV remote sensing
videos are shot by onboard cameras at a higher flight altitude,
which contain a variety of ground-based observation objects.
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With the given target information from the first frame, trackers
deployed on UAV platforms can realize specific target tracking in
subsequent remote sensing videos. Simultaneously, UAVs with
tracking capabilities also provide a new research idea for Earth
observation and have been applied to the following fields, such
as glacier observation [4], vehicle recognition [5], forest fire
analysis [6], and object detection [7], [8], [9], etc. Discriminative
correlation filter (DCF)-based trackers [10], [11], [12], [13]
intend to learn a filter online that can distinguish the object in
the foreground from the entire environment. Due to the circular
correlation method and training samples generated by cyclic
shift, DCF-based trackers can convert complex computation in
the spatial domain into dot-product operation in the frequency
domain by using fast Fourier transforms (FFTs). Compared with
deep learning-based trackers, DCF-based trackers do not rely
on high-performance GPUs and are suitable for UAV platforms
that are usually equipped with CPUs. Nevertheless, UAV track-
ing generally encounters some challenges, including similar
object, background clutter, and occlusion, which often cause
DCF-based trackers to drift or lose targets.

Several DCF-based trackers have been proposed for
the above challenging scenarios, mainly including response
regularization-based and temporal regularization-based meth-
ods. In the response regularization-based methods, Mueller
et al. [14] utilized contextual information to establish a back-
ground penalty term, which can oppress the response of back-
ground patches around the target. Zhang et al. [15] constructed
a sparse response regularized term by using l2-norm constraint,
which attempts to remove unexpected response peaks. Huang
et al. [16] exploited a special aberrance-repressed regulariza-
tion aiming to suppress background distractors by constraining
responses in adjacent frames.

Although these above methods can alleviate the abnormal
response variation caused by distractors in the background, the
quality of response generated by the filter will still decline
due to occlusion. In the temporal regularization-based methods,
Li et al. [17] proposed a spatial-temporal regularized correla-
tion filter (STRCF) that can maintain the consistency between
adjacent filters. Hence, STRCF can prevent the sudden change
of the filter in occlusion scenarios. However, Li et al. [17] did
not consider the issue of distractors around the target, which
results in the peak value of distractors being higher than the
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Fig. 1. Flowchart of the proposed method. The aberrance-repressed and temporal regularizations are all combined into the training model. The dynamic parameters
(γ and μ) are tuned under the guidance of γ̃ and μ̃ that are developed by the judgment mechanism based on response variation. Furthermore, the target position
can be obtained with the target response generated by the learned filter in the upcoming frame.

target’s so that the target position mistakenly locates on one of
these distractors. Therefore, an effective DCF-based tracking
method that can simultaneously suppress distractors in complex
scenarios and deal with occlusion challenges is the research goal
of this article.

In our work, we propose a dynamic aberrance-repressed
temporal regularized correlation filter (DARTCF), as shown
in Fig. 1, which introduces aberrance-repressed and temporal
regularizations into the DCF framework. Then, we propose a
new judgment mechanism based on response variation, which
reflects the fluctuation degree of response and participates in
the automatic tuning process of regularization parameters. By
virtue of tuned parameters, we can control the respective strength
of each regularization during the filter training phase. Finally,
we employ the alternating direction method of multipliers
(ADMM) [18] to find the closed-form solution of our method.
Experimental results evaluated on three public UAV benchmarks
have proved that the proposed tracker can achieve excellent
tracking performance.

The main contributions of this article are as follows.
1) A novel DCF-based framework is constructed for dynam-

ically learning aberrance-repressed and temporal regular-
izations and adjusting the strengths of both regularizations
online for UAV tracking.

2) A novel judgment mechanism based on response variation
is proposed to reflect the fluctuation degree of response
and participates in the parameter tuning process of the
aberrance-repressed and temporal regularizations.

3) Extensive experiments have been undertaken on
three UAV benchmarks (i.e., UAV123@10fps [19],
UAVDT [20], and VisDrone2018 [21]), and have demon-
strated that the proposed DARTCF can achieve superior
tracking performance against other total 25 advanced
trackers while reaching 35.37 FPS on a single CPU.

II. RELATED WORKS

A. Tracking With DCF-Based Methods

The DCF-based method has attracted researchers’ attention in
the UAV field because of its high computational efficiency and

tracking accuracy. Bolme et al. [22] first proposed the correlation
filter (CF) method for visual object tracking, which derives the
minimum output sum of squared error between the ideal given
response and the correlation response. In [23], a kernelized
CF method is proposed to realize better performance, which
is equipped with the histogram of oriented gradient (HOG) [24]
feature. In addition, considering the unwanted boundary effect
existed in DCF-based methods, a novel spatial weight term
in [25] has been applied to the filter, which can diminish the
filter’s learning for background information and keep the filter
focusing on the target for alleviating the boundary effect. Ga-
loogahi et al. [26] proposed a background-aware CF (BACF),
which utilizes a binary matrix to crop real training samples
aiming to strengthen the filter’s discriminative ability and reduce
the boundary effect. Lukezic et al. [27] proposed a DCF-based
tracker with channel and spatial reliability (CSR-DCF), which
dynamically generates a spatial reliability map suitable for the
object to restrict the filter. Han et al. [11] proposed a state-aware
antidrift tracker (SAT), in which a novel color-based mask is
developed to segment the reliable target region and prevent the
filter from background interferences. Dai et al. [28] proposed an
adaptive spatially regularized CF, which can generate reliable
filter coefficients and combine shallow and deep features to ob-
tain the accurate object’s position. Furthermore, Xing et al. [29]
introduced a multipeak-redetection mechanism into the DCF-
based method to track the target stably. Han et al. [30] incorpo-
rated a robust feature representation into the DCF framework by
utilizing l1-norm to automatically select significant feature for
improving the tracking performance.

B. Tracking With Aberrance-Repressed Regularization

The tracking methods with aberrance-repressed
regularization aim to suppress response aberrance and maintain
the reliability of response under scenarios (i.e., similar object
and background clutter). In [14] and [15], an independent
response regularization is introduced into the DCF framework
to suppress background interferences and remove abnormal
peaks surrounded by the target. In [16], a novel regularized
term has been developed, which restricts adjacent response
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variations to achieve aberrance repression. Elayaperumal and
Joo [31] proposed an aberrance suppressed spatio-temporal
CF, which introduces the spatial-temporal regularization for
reducing the boundary effect and avoiding the filter’s mutation.
The aberrance-repressed regularization with a fixed control
coefficient in [31] is employed to alleviate abnormal responses.
Furthermore, the authors in [32], [33], [34], and [35] also
introduced the aberrance-repressed regularization into the
DCF-based model and use constant regularization parameters
to participate in model training.

C. Tracking With Temporal Regularization

To address the issue of filter degradation and mitigate sudden
changes of the filter, several methods are proposed by keeping
the filter similar to the historical filter. Li et al. [17] exploited a
temporal regularization by restricting two adjacent filters to be
consistent, which can prevent the learned filter from degrada-
tion and cope with occlusion better. Han et al. [36] integrated
the spatial-temporal constrain into the DCF framework, which
effectively deals with sudden appearance variations during the
tracking phase. In [37], an automatic spatio-temporal regularized
DCF (AutoTrack) is proposed, which uses local and global
response variations to adaptively tune hyperparameters of both
regularizations.

To sum up, the authors in [14], [15], and [16] usually em-
ployed an independent response regularization to address the
aberrance issue without considering the filter degradation. In
addition, the authors in [31], [32], [33], [34], and [35] have also
chosen the fixed-parameter aberrance-repressed regularization
to deal with response interferences for improving the tracking
performance. However, the authors in [31], [32], [33], [34], and
[35] could not automatically adjust the parameter that belongs
to the aberrance-repressed regularization based on response
variation. In [17], [36], and [37], although these methods have
utilized the temporal regularization to avoid filter degradation,
they did not consider the problem of response interferences
caused by similar object and background clutter, etc. Thus,
in this article, we propose a novel DCF-based method that is
not only a combination of aberrance-repressed and temporal
regularizations but also can automatically tune both regularized
parameters by utilizing the global response variation. Since the
strengths of both regularizations in the training model can be
adaptively changed, our method has a more advanced ability to
brace for different scenarios.

III. PROPOSED METHOD

A. Loss Function of DARTCF

The proposed tracker DARTCF is based on the aberrance-
repressed correlation filter (ARCF) [16] that has introduced an
aberrance-repressed regularization into the DCF-based frame-
work. The overall objective of ARCF can be constructed as
follows:

EARCF(wk) =
1

2
‖y −Xk(ID ⊗B�)wk‖22 +

λ

2
‖wk‖22

+
γ

2
‖Mk−1[ψp,q]−Xk(ID ⊗B�)wk‖22 (1)

where subscripts k and k − 1 indicate the kth and (k − 1)th
frame in the tracking sequence. SubscriptD denotes the number
of feature channels.Xk is the matrix form of thekth input feature
sample xdk ∈ RN (d = 1, 2, 3. . .D). ID signifies aD ×D iden-
tity matrix. The size ofXk isN ×DN .B ∈ RM×N is a binary
matrix that crops the central elements of xdk. Operator ⊗ and
� represent the Kronecker production and conjugate transpose.
wd

k ∈ RM is the CF to be trained in the kth frame. M � N .
wk is the matrix form of wd

k and its size is DM × 1. Mk−1

is the response map calculated by Xk−1(ID ⊗B�)wk−1 from
the previous frame. Mk−1 ∈ RN . p and q stand for the location
difference between two peaks of response maps in two adjacent
frames. Besides, [ψp,q] denotes the shifting operation that makes
these two peaks coincide with each other. λ indicates a common
regularization parameter. γ denotes the aberrance-repressed reg-
ularization parameter. y ∈ RN is a Gaussian label as the desired
response map. Based on the above, we construct the objective
loss function in our work as follows:

E(wk) = EARCF(wk) +
μ

2
‖gk − gk−1‖22

+
1

2
‖γ − γ̃‖22 +

1

2
‖μ− μ̃‖22 (2)

where gk = (ID ⊗B�)wk and gk−1 = (ID ⊗B�)wk−1. The
sizes of gk and gk−1 are DN × 1. μ represents the temporal
regularization parameter. Here, ‖gk − gk−1‖22 is the temporal
regularization term. γ̃ and μ̃ are two guiding values belonging
to γ andμ, respectively. Although the objective loss function can
be converted to matrix form as (2), it could still perform massive
correlation operations in the spatial domain [16]. Therefore, (2)
is transformed into frequency domain to speed up the computing
efficiency as follows:

Ê(wk, ĝk)=
1

2
‖ŷ−X̂kĝk‖22+

λ

2
‖wk‖22 +

γ

2
‖M̂s

k−1 − X̂kĝk‖22

+
μ

2
‖ĝk − ĝk−1‖22 +

1

2
‖γ − γ̃‖22 +

1

2
‖μ− μ̃‖22

s.t ĝk =
√
N(ID ⊗FB�)wk (3)

where subscriptˆ indicates the discrete Fourier transformation
(DFT), i.e., α̂ =

√
NFα, where F is an orthonormal N ×N

matrix. ĝk denotes an auxiliary variable that is used for subse-
quent optimization of (3). M̂s

k−1 is the form ofMk−1[ψp,q] after
the DFT. Besides, in order to simplify the calculation, M̂s

k−1 can
be considered as a constant in the current frame that has been
calculated in the previous frame.

B. Optimization

Considering the convexity of (3), it can be minimized by
the ADMM method and obtain the global optimal solution.
Therefore, we can convert it into the augmented Lagrangian
form as follows:

Ê(wk, ĝk, ζ̂) =
1

2
‖ŷ − X̂kĝk‖22 +

λ

2
‖wk‖22
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+
γ

2
‖M̂s

k−1 − X̂kĝk‖22

+
μ

2
‖ĝk−ĝk−1‖22+

1

2
‖γ − γ̃‖22 +

1

2
‖μ− μ̃‖22

+ ζ̂�(ĝk −
√
N(ID ⊗FB�)wk)

+
η

2
‖ĝk −

√
N(ID ⊗FB�)wk‖22 (4)

where η is a fixed penalty factor. ζ̂ = [ζ̂�1 , . . ., ζ̂
�
D] is an auxiliary

variable as the Lagrangian vector whose size is DN × 1. With
the ADMM method, the solution of (4) can be obtained by
alternatingly solving the following subproblems as follows:

w∗
k = arg min

wk

{
λ

2
‖wk‖22 + ζ̂�(ĝk −

√
N(ID ⊗FB�)wk)

+
η

2
‖ĝk −

√
N(ID ⊗FB�)wk‖22

}

ĝ∗k = arg min
gk

{
1

2
‖ŷ − X̂kĝk‖22 +

γ

2
‖M̂s

k−1 − X̂kĝk‖22

+
μ

2
‖ĝk − ĝk−1‖22 + ζ̂�(ĝk −

√
N(ID ⊗FB�)wk)

+
η

2
‖ĝk −

√
N
(
ID ⊗FB�)wk‖22

}

γ∗ = arg min
γ

{
γ

2
‖M̂s

k−1 − X̂kĝk‖22 +
1

2
‖γ − γ̃‖22

}

μ∗ = arg min
μ

{
μ

2
‖ĝk − ĝk−1‖22 +

1

2
‖μ− μ̃‖22

}
. (5)

Then, the closed-form solution of each subproblem has been
given in detail as follows.

Subproblem for w∗
k: With the simplification of w∗

k, we can
obtain the following:

w∗
k =

(
λ

N
+ η

)−1

(ζ + ηgk) . (6)

Here, by means of the inverse fast Fourier transform (IFFT), we
could obtain two equations that are gk = 1√

N
(ID ⊗BF�)ĝk

and ζ = 1√
N
(ID ⊗BF�)ζ̂k.

Subproblem for ĝ∗k: Since X̂kĝk is included in ĝ∗k, the compu-
tation for solving ĝ∗k consumes much time during the process
of every ADMM iteration. However, considering that X̂k is
sparse banded [26], each element of ŷ(ŷ(n), n = 1, 2, . . ., N) is
merely related to each x̂k(n)=[x̂1k(n), x̂

2
k(n), . . ., x̂

D
k (n)]� and

ĝk(n)=[conj(ĝ1k(n)), . . ., conj(ĝDk (n))]� [38]. Operator conj(.)
signifies the complex conjugate that is applied on complex
vector.

Therefore, solving subproblem ĝ∗k in (5) can be considered
to solve N smaller independent problems. Solving for ĝ∗k(n),
n = [1, 2, 3, . . ., N ] can be seen as follows:

ĝ∗k(n) = arg min
gk(n)

{
1

2
‖ŷ(n)− x̂�k ĝk(n)‖22 +

μ

2
‖ĝk − ĝk−1‖22

+
γ

2
‖M̂s

k−1 − x̂�k ĝk(n)‖22 + ζ̂� (ĝk(n)− ŵk(n))

+
η

2
‖ĝk(n)− ŵk(n)‖22

}
(7)

where ŵk(n) = [ŵ1
k(n), ŵ

2
k(n). . ., ŵ

D
k (n)] and ŵd

k(n) =√
DFB�wd

k, d = [1, 2, . . ., D]. Actually, ŵd
k can be obtained by

performing an FFT on wd
k. Solving for each ĝ∗k will appear the

inverse operation. Thus, we convert the inverse operation into
another form by introducing the Sherman–Morrison formula,
i.e., (A+ uv�)−1 = A−1 −A−1u(I + v�A−1u)−1v�A−1.
Furthermore, (7) can be rewritten as

ĝ∗k(n)

= α
(
Ŝxy(n) + γx̂k(n)M̂

s
k−1 − ζ̂(n) + ηŵk(n) + μĝk−1(n)

)

− α
x̂k
β

(
Ŝxkŷ(n) + γŜxkM̂

s
k−1 − Ŝζ + ηŜwk + μŜxg

)
(8)

where α = 1
η+μ , β = η+μ

1+γ + Ŝxk(n), Ŝxy(n) = x̂k(n)ŷ(n),

Ŝxk(n) = x̂�k (n)x̂k(n), Ŝζ(n) = x̂�k (n)ζ̂ , Ŝwk = x̂�k (n)ŵk

(n), and Ŝxg = x̂�k (n)ĝk−1(n).
Subproblem for γ∗: Given the variables, i.e., M̂s

k−1, X̂k, ĝk,
and γ̃, the derivation for optimal γ can be seen as follows:

γ∗ = γ̃ − ‖M̂s
k−1 − X̂kĝk‖22

2
. (9)

Subproblem for μ∗: Given the variables, i.e., ĝk, ĝk−1, and μ̃, we
can obtain the optimal solution of μ as follows:

μ∗ = μ̃− ‖ĝk − ĝk−1‖22
2

. (10)

Lagrangian Update: After solvingw∗
k and ĝ∗k in turn, we update

the Lagrangian parameter as follows:

ζ̂j+1
k = ζ̂jk + ηj+1

(
ĝ
∗(j+1)
k − ŵ

∗(j+1)
k

)
ηj+1 = min(ηmax, φη

j) (11)

where subscripts j and (j + 1) express the jth and (j + 1)th
iterations in the computation process of ADMM, respectively.
ĝ
∗(j+1)
k and ŵ∗(j+1)

k are the (j + 1)th solutions of above sub-

problems ĝ∗k and ŵ∗
k in iterations. Besides, ŵ∗(j+1)

k = (ID ⊗
FB�)w∗(j+1)

k . ηmax is the maximum of η. φ is a fixed scale
factor.

Appearance Model: The appearance model x̂model
k is con-

structed as follows:

x̂model
k = (1− δ) x̂model

k−1 + δx̂k (12)

where x̂model
k−1 represents the previous appearance model in the

(k − 1)th frame, x̂k is the extracted feature in the kth frame,
and δ denotes the fixed learning rate. Generally, δ ranges from 0
to 0.1 (i.e., 0 < δ ≤ 0.1), which can make x̂model

k maintain more
historical appearance information and keep the tracker free from
the severe appearance change in the kth frame.

Tracking Position: To locate the target’s position in the (k +
1)th frame, we need to obtain the response mapMk+1 generated
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by x̂dk+1 and ĝk

Mk+1 = F−1

(
D∑

d=1

x̂dk+1 
 ĝdk

)
(13)

where F−1 represents the inverse DFT transformation, 
 de-
notes elementwise operation. By searching the maximum value
ofMk+1, we can get the target’s position in the (k + 1)th frame.

C. Judgment Mechanism Based on Response Variation

In the tracking phase, the degree of response variation can
serve as a reflection of whether the tracking results are reliable.
When the target is tracked stably, there is less fluctuation in the
response map. However, when the target encounters occlusion,
etc., the response will fluctuate intensely. To identify abnormal
response fluctuation, we develop a novel judging mechanism
by optimizing the average peak-to-correlation energy (APCE)
criteria [39]. First, we calculate the fluctuation score Sk related
to the response in the kth frame as follows:

APCE =
|Rk

max −Rk
min|2

mean
(∑

w,h(R
k
w,h −Rk

min)
2
)

Sk =

∣∣Rk
max−Rref

Rk
max

∣∣
APCE

(14)

where k denotes the kth frame and | · |means to take the absolute
value.Rk

max,Rk
min, andRk

w,h represent the maximum, minimum,
and the w-row h-column element of the response in the kth
frame. Rref is the maximum of the response in the first frame.

In addition,
∣∣Rk

max−Rref

Rk
max

∣∣ in Sk can usually be simplified as
∣∣1−

Rref
Rk

max

∣∣.
For the response with sharp peak and few noise,Rk

max is close
to Rref and the value of APCE is large [39]. Accordingly,

∣∣1−
Rref
Rk

max

∣∣ becomes small, and then Sk gets small. For the response

with no sharp peak and more noise, the value of APCE andRk
max

all become small, and the gap between Rk
max and Rref becomes

large. Thus,
∣∣1− Rref

Rk
max

∣∣ correspondingly grows due to this large
gap, and then Sk becomes large.

In summary, whenSk becomes smaller, the tracking process is
more robust. Conversely, when Sk becomes larger, the tracking
result becomes unreliable. To utilize the continuous variation of
Sk in the tracking sequence, we formulate Lk based on Sk, to
represent the degree of response variation

Lk =
Sk

mean
(∑k−1

f=1 Sf

) (15)

where mean(·) represents the operation for finding the average
value. Compared with the value of APCE, the varying range of
Lk is effectively narrowed, which reflects the trend of response
variation, as shown in Fig. 2.

To dynamically adjust γ and μ, we take advantage of the
variation of Lk. That is, when the target is tracked steadily, Lk

remains around a small value. At this time, γ and μ can maintain
appropriate values close to γ̃ and μ̃ for keeping the response and

Fig. 2. Visualization of the degree of response variation L and the variation of
APCE. The first row in the upper right box lists response maps of given frames.
The second row in the upper right box shows the target tracking state in the
corresponding image frame.

Fig. 3. Visualization of the aberrance-repressed regularization parameter γ̃
and the temporal regularization parameter μ̃.

the filter in the current frame consistent with their states in the
previous frame. On the contrary, when the target encounters
occlusion scenarios, γ and μ can be decreased and increased,
respectively, to enhance the strength of temporal regularization,
which assists in restraining the sudden change of the filter. Thus,
we exploit γ̃ and μ̃ as the guiding value of γ and μ. Here, γ̃ and
μ̃ are defined as follows:

γ̃ = min(γref, exp(ν ∗ Lk) ∗ γ0)

μ̃ = max

(
μref,

1

(exp(ν ∗ Lk) + μ0)

)
(16)

where γref and μref denote fixed reference parameters, which
control the variation magnitude of γ̃ and μ̃. γref limits the
maximum range of γ̃. μref limits the minimum range of μ̃. exp(.)
represents the exponential function with a natural constant e. In
addition, ν, γ0, and μ0 are fixed parameters. Generally, the trend
of exp(ν ∗ Lk) is opposite to Lk. To avoid exp(ν ∗ Lk) being
too small, we use γ0 as an amplified factor. Contrary to γ0,
μ0 is a bias factor that avoids 1

exp(ν∗Lk)
being too large. The

details of the above parameters can be found in Section IV-B.
min(A,B) means obtaining the minimum value betweenA and
B. max(A,B) means obtaining the maximum value between A
and B.
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Figs. 2 and 3 illustrate the variations of L, γ̃, and μ̃ during
the tracking phase. When the target encounters occlusion from
the #145 frame to the #176 frame, the value of L deviates
from the normal change level in the nonocclusion period and
varies due to the response fluctuation. Simultaneously, μ̃ and γ̃
are dynamically enlarging and reducing, aiming to maintain the
continuity of the filter and diminish the constraints on the current
and previous responses. Instead, when the target is tracked stably
without occlusion, L varies in a relatively small range while γ̃
and μ̃ are mostly equal to the reference values, i.e., γref and μref,
respectively. Note that the values of γ̃ and μ̃ are zero by default
in the first frame, which can be seen in the plots of γ̃ and μ̃
in Fig. 3. In other words, the aberrance-repressed and temporal
regularizations do not work in the first frame.

D. Filter and Appearance Model Updating

Since the target inevitably encounters several situations (e.g.,
severe appearance change or occlusion) during the tracking
phase, selecting an appropriate time to update the filter and
appearance model is essential. Considering that the above situa-
tions generally cause abnormal response fluctuation, Lk is also
regarded as a judgment standard for the filter and appearance
model updating. Here, we introduce a threshold θ to determine
when to update. When Lk ≤ θ is satisfied, we allow to update.
On the contrary, we stop updating when the following formula-
tion is met:

Lk > θ (17)

where θ is a fixed parameter. It is worth noting that although we
can determine when to update the filter and appearance model
by setting the threshold θ, we should also consider when to
exit from the nonupdating situation and start updating again.
Here, a simple method is adopted. That is, if the values of
Lk(k, k − 1, . . ., k − 10) are less than θL, we deem that the
abnormal response fluctuation has disappeared. At this time,
the proposed DARTCF exits from the nonupdating situation,
and the filter and appearance model can be allowed to update.
(k, k − 1, . . ., k − 10) represents the frame number in a contin-
uous image sequence. Lk(k, k − 1, . . ., k − 10) denotes the L
value from the kth frame to the (k − 1)th frame. θL is a fixed
threshold selected empirically.

Note that the optimization process for solving the filter ĝk in
(4) and the appearance model x̂model

k in (12) are not performed
during Lk > θ.

In this work, the tracking pipeline of the proposed DARTCF
is illustrated in Algorithm 1.

IV. EXPERIMENTS

In this work, we have evaluated the proposed DARTCF on
UAV123@10fps [19], UAVDT [20], and VisDrone2018 [21]
benchmarks. In addition, we have compared experimental re-
sults of DARTCF with other total 25 state-of-the-art trackers pro-
posed in recent years, i.e., 13 handcrafted features-based trackers
(DR2Track [40], AutoTrack [37], AMCF [41], ARCF [16],
STRCF [17], KCC [42], ECO _ HC [43], CSR _ DCF [27],
STAPLE _ CA [14], BACF [26], fDSST [44], KCF [23], and

Algorithm 1: Proposed tracker (DARTCF).
Input: Image sequences captured by onboard cameras
and initial state information about the target in the first
frame.

Output: Predict the target location in the k > 1 frame.
1: for frame k = 1 to end do
2: if frame k > 1 then
3: Extract the feature x̂k from the searching region.
4: Calculate Mk with x̂k and ĝk−1 in (13).
5: Find the position of peak value in Mk and Set it as

the target’s position.
6: Calculate parameters Sk, Lk, γ̃, and μ̃.
7: if Lk > θ and Uflag == 1 then
8: Set Uflag = 0.
9: end if

10: if Uflag == 0 then
11: if Lk(k, k − 1, . . ., k − 10) < θL then
12: Set Uflag = 1.
13: end if
14: end if
15: if Uflag == 0 then
16: Remain the correlation filter ĝk and appearance

model x̂model
k .

17: else
18: Update the appearance model x̂model

k in (12).
19: Learn the correlation filter ĝk in (8).
20: end if
21: else
22: Extract the feature x̂k of the searching region in

the first frame.
23: Set the appearance model x̂model

k equal to x̂k and
Set the update flag Uflag = 1.

24: Learn the correlation filter ĝk.
25: end if
26: end for

SAMF [45]) and 12 deep features-based trackers (LUDT [46],
LUDT+ [46], fECO [47], fDeepSTRCF [47], KAOT [48], AS-
RCF [28], UDT [49], UDT+ [49], TRACA [50], IBCCF [51],
DSiam [52] and SiamFC [53]).

A. Evaluation Metrics

In this work, the one-pass evaluation protocol [19] is em-
ployed to evaluate the tracking performance of all trackers on
three UAV benchmarks. Simultaneously, we use two metrics,
i.e., precision rate and success rate, as the evaluation criteria.
The precision rate is obtained by measuring the center location
error (CLE) pixels between the predicted object box and the
ground truth box. The precision rate plot illustrates the ratio of
frames, in which the CLE is below a given threshold varied from
0 to 50 pixels, on the whole sequence frames. The success rate
is measured by calculating the intersection over union (IOU)
between the predicted object box and the ground truth box. The
success rate plot illustrates the ratio of frames, in which the IOU
is larger than a given threshold varied from 0 to 1, on the whole
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sequence frames. To visually express the tracking results, the
default ranking protocols are adopted. That is, the ratio of frames
whose CLE is within 20 pixels ranks trackers in the perspective
of precision rate evaluation and the area under the curve (AUC)
with the condition of IOU≥ 0.5 ranks trackers in the perspective
of success rate evaluation.

B. Implementation Details

The proposed tracker DARTCF adopts handcrafted features
[31-channel HOG, 10-channel color names (CN), and single-
channel GrayScale]. All experiments are implemented on MAT-
LAB R2019a with an Intel i7-10875H CPU (2.3 GHz), 16 G
RAM, and a single Nvidia RTX2060 GPU. As for the pa-
rameters, we set λ = 0.01, γref = 1.97, and μref = 1.91. The
parameter ν is set to -0.39. The amplified factor γ0 and bias
factor μ0 are 21 and 0.21, respectively. The fixed learning rate δ
is 0.0229. The number of ADMM iterations is set to 3. Following
the settings of AutoTrack [37], the initial penalty factor η is
1, the maximum penalty factor ηmax, and the scale factor φ
are 10 000 and 10, respectively. The threshold θ and θL are
set to 20 and 1.5, respectively. The source code is available at
https://github.com/YanLiVision/DARTCF.

The operation exp(ν ∗ L) with an empirical parameter ν aims
to map L to the interval (0,1). Also, exp(ν ∗ L) has a tendency
opposite to the change ofL. Then, by setting the amplified factor
γ0 = 21, we can obtain 0 < exp(ν ∗ L) ∗ γ0 < 21. With the
function min(γref, .), the value of γ̃ varies from (exp(ν ∗ L) ∗ γ0)
toγref during the severe response fluctuation. Theγref is the upper
limit of γ̃. In addition, by setting the bias factorμ0=0.21, we can
obtain 0.8 < 1

(exp(ν∗Lk)+μ0)
< 5. With the function max(μref, .),

the value of μ̃ varies from μref to ( 1
(exp(ν∗Lk)+μ0)

) during the
severe response fluctuation. The μref is the lower limit of μ̃.
Note that when the target is tracked stably without the severe
response fluctuation, L is usually small, and the values of γ̃ and
μ̃ are usually γref and μref, respectively.

C. Evaluation Datasets

The experiments utilize three challenging UAV benchmarks
to evaluate the tracking performance of the proposed DARTCF.

UAV123@10fps: The UAV dataset in [19] includes 123 video
sequences and over 110-K image frames captured at 30 FPS,
which is then downsampled to a 10-FPS (UAV123@10fps)
benchmark. Since the camera platform is located on the UAV,
UAV123@10fps contains several attributes (e.g., aspect ratio
change, camera motion, similar object, background clutter,
partial/full occlusion, and viewpoint change) that increase the
difficulty for target tracking.

UAVDT: A public UAV detection and tracking (UAVDT) [20]
benchmark contains 50 video sequences captured by a UAV
in different flying altitude for single object tracking, in which
there are in total eight main attributes, including background
clutter, large occlusion, illumination variation, object blur, scale
variation, camera rotation, small object, and object rotation.
Compared with [19] and [21], the interest targets of UAVDT
are vehicles.

TABLE I
OVERALL PERFORMANCE OF DARTCF AND OTHER 13 STATE-OF-THE-ART

HANDCRAFTED-BASED TRACKERS, WHICH ARE EVALUATED BY AVERAGE

SUCCESS AND PRECISION RATES, AS WELL AS AVERAGE FPS (FRAMES PER

SECOND) ON ALL UAV BENCHMARKS

VisDrone2018: The vision meets drone single-object-tracking
(VisDrone2018) [21] testing set consists of 35 sequences with
29 367 frames under different weather and lighting conditions.
In addition, VisDrone2018 contains a total of 12 attributes, e.g.,
background clutter, occlusion, fast motion, viewpoint change,
and similar object, etc. The tracking objects in VisDrone2018
include pedestrians, vehicles, and animals.

D. Comparison With Handcrafted-Based Trackers

We have compared the proposed DARTCF with other
13 handcrafted-based trackers, i.e., DR2Track [40], Auto-
Track [37], AMCF [41], ARCF [16], STRCF [17], KCC [42],
ECO _ HC [43], CSR _ DCF [27], STAPLE _ CA [14],
BACF [26], fDSST [44], KCF [23], and SAMF [45].

1) Overall Analysis: We have completed the overall analysis
of the proposed DARTCF on all UAV benchmarks.

UAV123@10fps: In Fig. 4, our tracker DARTCF has attained
the top precision and success rates that are 68.0% and 48.0%,
respectively, and exceeds other 13 advanced handcrafted-based
trackers.

UAVDT: As shown in Fig. 4, the tracking results of DARTCF is
superior to other compared trackers. The precision and success
rates of DARTCF exceed ARCF ranked second by 2.0% and
0.8%, respectively. Simultaneously, AutoTrack ranked third is
2.2% and 1.7% lower than DARTCF in precision and success
rates.

VisDrone2018: In Fig. 4, DARTCF has surpassed other total
13 advanced trackers. Besides, DARTCF has 2.8% and 3.7%
advantages over the tracker ARCF (0.797) and the tracker Au-
toTrack (0.788) in the precision rate, as well as advantages of
1.1% and 2.1% over them in the success rate.

Table I intuitively expresses the performance of DARTCF
with the average success and precision rates. Besides, DARTCF
attains the highest scores against other competitive trackers and
also exceeds ARCF and AutoTrack by 0.8% and 1.4% in the
success rate, 2.1% and 2.4% in the precision rate, respectively.

https://github.com/YanLiVision/DARTCF
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Fig. 4. Precision and success plots of DARTCF and other 13 state-of-the-art handcrafted-based trackers on UAV123@10fps, UAVDT, and VisDrone2018
benchmarks.

Fig. 5. Attribute analysis of DARTCF and other 13 handcrafted-based trackers in scenarios with similar object and background clutter.

2) Attribute Analysis: We have completed the attribute anal-
ysis of DARTCF and other 13 excellent trackers in scenarios,
i.e., similar object, background clutter, and occlusion.

Fig. 5 shows the comparison results when all trackers work
in scenarios that possess attributes of similar object and back-
ground clutter. Our tracker DARTCF has achieved the highest
scores in the attribute of similar object on UAV123@10fps and
VisDrone2018 benchmarks. Simultaneously, we have validated
the performance of all trackers on the attribute with background
clutter and DARTCF has improved the success rate by 2.0% and
the precision rate by 5.0% compared with ARCF on UAVDT
benchmark. Moreover, DARTCF ranks first on VisDrone2018
benchmark and outperforms ARCF by 2.8% in the success rate

and 5.3% in the precision rate under the background clutter
attribute.

In Fig. 6, we have also conducted the attribute analysis of all
trackers in scenarios with occlusion. It shows that DARTCF has
achieved the best performance compared with other trackers on
all UAV benchmarks. Moreover, DARTCF has 1.5% (success
rate) and 3.3% (precision rate) advantages over ARCF under
the attribute of partial occlusion on UAV123@10fps bench-
mark. DARTCF exceeds ARCF by 2.9% and 7.7% in success
and precision rates on UAVDT benchmark. On VisDrone2018
benchmark, DARTCF outperforms ARCF by 3.1% and 5.0%
in success and precision rates under the attribute of partial oc-
clusion. In summary, when encountering occlusion challenges,
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Fig. 6. Attribute analysis of our tracker DARTCF and other 13 handcrafted-based trackers in scenarios with occlusion.

Fig. 7. Visualization of qualitative comparisons between DARTCF and other four advanced trackers. From first to six rows, the image sequences are group2_2_1
and truck4_2_1 in UAV123@10fps [19], S0103 and S1606 in UAVDT [20], uav0000093_00000_s _1 and uav0000294_00000_ s_1 in VisDrone2018 [21].

DARTCF can achieve more stable tracking than other compared
trackers.

3) Qualitative Evaluation: For the sake of qualitative evalu-
ation, we have compared our tracker DARTCF with other four
advanced trackers, including AutoTrack [37], ARCF [16], ECO
_ HC [43], and BACF [26], on six tracking sequences.

In Fig. 7, our tracker is marked with a red bounding box, which
has an excellent performance in scenarios with similar object,
background clutter, and occlusion attributes. For example, in
the group2_2_1 (first row) sequence, the target is vulnerable
to similar distractors and it is partially occluded by plants in
the #169 frame. But, in #181 and #289 frames, compared
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with ARCF, ECO _ HC, and BACF, the target is still captured
by our tracker. In the truck4_2_1 (second row) sequence, the
target with small size is partially occluded by a tree in the
#39 frame. But, in the following frames, our tracker can re-
main steadily tracking. In the S0103 (third row) sequence, our
tracker and other trackers have accurately located the target in
the #1 frame under the scenario with background clutter and
occlusion. However, in the #14 frame, only our tracker has
tracked the target stably instead of other compared trackers.
Besides, despite the viewpoint change occurring in #130 and
#307 frames, our tracker also captures the target stably. In the
S1606 (fourth row) and uav0000294_00000_s _1 (sixth row)
sequences, both targets are partially occluded in #155 and
#39 frames, respectively, and surrounded by distractors, our
tracker keeps accurate tracking until targets completely return
to the UAV’s view. In the uav0000093_00000_ s_1 (fifth row)
sequence, the small target is in a scenario containing many
similar targets. At the beginning, the target is distinguished by
all five trackers in the #176 frame. However, when the tracked
target is clustered with other similar targets, it is difficult to
acquire the real target’s position. In #556, #829, and #1460
frames, ECO _ HC, AutoTrack, and BACF have gradually lost
the target. Until the #1609 frame, only DARTCF and ARCF
can locate the target. In total, it has demonstrated that DARTCF
can attain more advanced performance in scenarios with similar
object, background clutter, and occlusion attributes.

4) Tracking Speed Analysis: Real-time tracking based on
UAV platforms requires the tracker’s speed to exceed 30 FPS. As
shown in Table I, the proposed DARTCF has achieved an average
speed of 35.37 FPS on all UAV benchmarks, which satisfies the
real-time requirement of UAV tracking. Moreover, compared
with the top three fast trackers (i.e., KCF [23], fDSST [44],
and ECO _ HC [43]), the proposed DARTCF has significant
advantages in precision and success rates. Furthermore, in ac-
tual UAV applications, tracking methods are typically deployed
in embedded devices, e.g., multiprocessing system-on-chips.
Thus, by rebuilding tracking codes and utilizing multithreading
technology, the proposed DARTCF can achieve acceleration in
embedded devices and make real-time UAV tracking tasks to be
possible.

E. Comparison With Deep-Based Trackers

In this section, we have compared our tracker with other 12
deep-features-based trackers, i.e., LUDT [46], LUDT+ [46],
fECO [47], fDeepSTRCF [47], KAOT [48], ASRCF [28],
UDT [49], UDT+ [49], TRACA [50], IBCCF [51], DSiam [52],
and SiamFC [53]. As shown in Table II, the proposed DARTCF
reaches the best tracking performance and outperforms ASRCF
by 1.0% and 1.4% in success and precision rates, respectively.
As for the tracking speed, although DARTCF is not superior to
several deep trackers, including TRACA, LUDT, UDT, SiamFC,
and LUDT, which rely on a single GPU, DARTCF has still
reached 35.37 FPS with a CPU and met the real-time require-
ment of UAV tracking.

TABLE II
OVERALL PERFORMANCE OF DARTCF AND OTHER 12 ADVANCED

DEEP-BASED TRACKERS (I.E., LUDT [46], LUDT+ [46], FECO [47],
FDEEPSTRCF [47], KAOT [48], ASRCF [28], UDT [49], UDT+ [49],

TRACA [50], IBCCF [51], DSIAM [52], AND SIAMFC [53]), WHICH ARE

EVALUATED BY AVERAGE SUCCESS AND PRECISION RATES ON ALL UAV
BECHMARKS

TABLE III
ABLATION STUDY OF THE PROPOSED TRACKER ON VISDRONE2018 [21]

BENCHMARK

F. Ablation Study

In this section, aiming to complete the ablation analysis, we
have constructed seven trackers, i.e., Baseline, Baseline+AR,
Baseline+AR+U, Baseline+AR+TE, Baseline+FAR+FTE,
Baseline+FAR+FTE+U, and Baseline+AR+TE+U, which are
evaluated on the VisDrone2018 [21] benchmark. The Baseline
tracker is DARTCF without the dynamic aberrance-repressed
and temporal regularizations. In other words, the Baseline
tracker is only equipped with HOG, CN, and GrayScales
features and utilizes the scale pyramid with 33 scales based
on BACF. The tracker named Baseline+AR integrates the
dynamic aberrance-repressed regularization based on the
Baseline tracker. The tracker named Baseline+AR+TE
introduces the dynamic temproal regularization into the
tracker (Baseline+AR). The trackers (i.e., Baseline+AR+U
and Baseline+AR+TE+U) add the update mechanism in Sec-
tion III-D on the basis of Baseline+AR and Baseline+AR+TE
trackers, respectively. In addition, the Baseline+FAR+FTE
tracker integrates fixed parameters-based aberrance-repressed
and temporal regularizations into the Baseline tracker, which is
different from the dynamic parameters-based Baseline+AR+TE
tracker. The Baseline+FAR+FTE+U tracker equips with the
update mechanism based on the Baseline+FAR+FTE tracker.

In Table III, the Baseline tracker achieves 77.7% precision
rate and 56.6% success rate. Compared with the Baseline tracker,
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Fig. 8. Analysis of parameter γref on UAV123@10fps benchmark.

the Baseline+AR tracker improves 1.6% and 1.2% in precision
and success rates, respectively. Compared with Baseline+AR,
the Baseline+AR+TE tracker increases the precision and suc-
cess rates by 2.4% and 1.1%, respectively. As for the update
mechanism in Section III-D, the Baseline+AR+U and Base-
line+AR+TE+U trackers have been improved slightly com-
pared with Baseline+AR and Baseline+AR+TE. The reason
is that the setting of threshold θ makes the proposed tracker
unable to update the filter and appearance model easily and
frequently, which aims to track stably. Furthermore, compared
with fixed parameters-based trackers (i.e., Baseline+FAR+FTE
and Baseline+FAR+FTE+U), the Baseline+AR+TE tracker sur-
passes Baseline+FAR+FTE by 1% and 0.5% in precision and
success rates, respectively. The Baseline+AR+TE+U tracker
outperforms Baseline+FAR+FTE+U by 1.7% and 1.0% in pre-
cision and success rates, respectively. That is, the trackers
equipped with dynamic-parameters regularizations (i.e., Base-
line+AR+TE and Baseline+AR+TE+U) have achieved a supe-
rior tracking performance against fixed parameters-based track-
ers. To sum up, the results of this ablation study indicates that dy-
namic aberrance-repressed and temporal regularizations based
on response variation can improve the tracking performance.

G. Parametric Sensitivity

γref and μref are two significant reference parameters in this
work. These parameters mainly affect the tracking performance
of DARTCF in the situation without severe response fluctua-
tions. As shown in Fig. 3, when DARTCF does not encounter
occlusion, parameters γ̃ and μ̃ are usually equal to γref and μref,
respectively. In addition, γref andμref also serve as the upper limit
of γ̃ and the lower limit of μ̃ when DARTCF is in a situation
with severe response fluctuations. Here, to analyze the impact
of γref and μref on the tracking performance, we evaluate one of
them on UAV123@10fps benchmark while fixing the other one.

1) Analysis of γref: The reference parameter γref aims to
constrain the maximum range of γ̃. That is, the value of γ̃ does
not exceed γref. To obtain the optimal value of γref, we change
γref from 1.6 to 2.5 while ensuring that the value of μ is set to 0,
which corresponds to the Baseline+AR+U tracker. As shown in
Fig. 8, when γref reaches 1.97, the Baseline+AR+U tracker has
achieved the best success rate (0.474) and precision rate (0.66).

2) Analysis of μref: The reference parameter μref restricts the
minimum value of μ̃. In other words, the value of μ̃ is not lower
thanμref. Here, considering that the Baseline+AR+U tracker has

Fig. 9. Analysis of parameter μref on UAV123@10fps benchmark.

Fig. 10. Failure cases of the proposed DARTCF. The visualized sequences
(from first to four rows) are car14 and group2_1_1 in UAV123@10fps [19], as
well as S1605 and S1501 in UAVDT [20]. The red and green boxes show the
tracking status of DARTCF and the ground truth, respectively.

achieved the best performance by setting γref = 1.97, we vary
μref from 1.5 to 2.5 for selecting the optimal value of μref based
on the Baseline+AR+TE+U tracker by fixing γref = 1.97. As
shown in Fig. 9, the Baseline+AR+TE+U tracker obtains the
best performance by setting μref = 1.91 and the precision and
success rates reach 0.68 and 0.48, respectively.

H. Failure Cases and Limitation

1) Failure Cases: As shown in Fig. 10, there are four image
sequences (car14 and group2_1_1 in UAV123@10fps [19], as
well as S1605 and S1501 in UAVDT [20]) from first to four rows,
which visualizes four situations where the proposed DARTCF
fails to track the target.

In the car14 sequence, the target is not within the UAV’s view
and its tracking box has drifted in the # 291 frame. When the
target reappears in the UAV’s view in the#301 frame, DARTCF
cannot recapture it. In the group2_1_1 sequence, there is a situa-
tion where the target is about to be obstructed in the #33 frame.
Then, when the target reappears in the #55 frame, DARTCF
fails to locate the target accurately. Thus, the tracking results that
exist in car14 and group2_1_1 sequences show that the proposed
DARTCF cannot handle the challenge, i.e., out of view, and
does not possess the ability of recapturing target. Furthermore,
in the S1605 sequence, the target encounters serious camera
motion in the #2 frame, which causes the tracking box drifting
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Fig. 11. Limitation of the proposed DARTCF. The visualized sequences (from
first to second rows) are S0103 in UAVDT [20], and uav0000294_00000_s in
VisDrone2018 [21].

rapidly. In the S1501 sequence, partial occlusion has occurred
in the initial tracking phase, as shown in the #3 frame. Thus, the
discrimination ability of the initial filter declines and the target
is inaccurately tracked in the following frames.

2) Limitation: Through extensive experimental evaluation in
Section IV-D, the proposed DARTCF has achieved an excellent
tracking performance. However, compared with the obvious
improvement in precision rate, the success rate of the proposed
DARTCF is not significantly higher than that of ARCF. After
analyzing the tracking state of DARTCF, we deem that this sit-
uation is caused by the limitation of our method, i.e., inaccurate
estimation of target scale.

As shown in Fig. 11, we select two sequences (S0103 from
UAVDT and uav0000294_00000_s from VisDrone2018) to val-
idate this limitation. In S0103 sequence, the IOU between
DARTCF and ground truth is greater than 0.5 in the initial frame,
but in the subsequent image frames, such as #374 and #572
frames, the IOU between DARTCF and ground truth markedly
decreases and is less than 0.5, which makes the success rate
value of DARTCF unable to increase effectively. As for the
precision rate, since the CLE between DARTCF and ground
truth generally remains within 20 pixels, and the ARCF cannot
track the target stably, the tracking accuracy of DARTCF has
got a notable promotion compared with ARCF. Similarly, in
uav0000294_00000_s sequence, the IOU between DARTCF
and ground truth has not achieved a satisfactory performance
from the #203 frame to the #233 frame, which leads to a slow
growth in success rate compared with ARCF that has failed to
track the target. To sum up, although the proposed DARTCF
can significantly improve the tracking accuracy (i.e., precision
rate), its performance on estimating the target scale still has the
limitation, which causes a lack of obvious improvement in the
success rate.

V. CONCLUSION

In this article, a novel aberrance-repressed temporal CF
method is developed, which can dynamically adjust the strengths
of both regularizations. In addition, a novel response variation-
based judgment mechanism is exploited, which participates in
the parameter tuning process of regularizations and determines
when to update the filter and appearance model. Furthermore,
the proposed DARTCF and other total 25 excellent trackers have
undergone validation experiments on three UAV benchmarks.

Experimental results have proved that the proposed DARTCF
has the competitive performance compared with other 25 track-
ers. Moreover, the running speed of DARTCF can reach 35.37
FPS on a single CPU, which satisfies the real-time tracking
standard.

Nevertheless, the proposed DARTCF still has shortcomings.
When encountering the scenarios (i.e., out of view, serious cam-
era motion, and polluted appearance model in initial frames), the
proposed DARTCF cannot capture the target accurately in the
follow-up tracking process. In addition, the proposed DARTCF
has the limitation in the aspect of accurately estimating target
scale. Thus, in the future, a real-time tracker with a robust
redetection mechanism, a strong appearance expression ability,
and an effective target scale estimation will be the research focus
of our work.
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