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A Distinctive Binary Descriptor and Two-Point
RANSACWC for Point Cloud Registration

Wuyong Tao , Shaoping Xu , Wei Huang , Shufan Hu , and Meng Pang

Abstract—Point cloud registration is a fundamental problem in
many applications. The point cloud registration based on local
shape descriptor has been widely researched. In order to fur-
ther improve the performance of registration, a novel registration
method is proposed in this article. First, a binary descriptor is
designed to establish correspondences between two point clouds.
The descriptor has high descriptiveness. Thus, more correct corre-
spondences are established. Then, a 3-D transformation estimation
technique is developed, in which multiple constraints are used to
accelerate the computation. When the randomly selected corre-
spondences do not satisfy the constraints, the iteration is skipped.
Finally, the experiments are performed to analyze the descriptor
and 3-D transformation estimation technique. The comparison
with the existing descriptors is implemented on three datasets.
The results demonstrate that our descriptor has better matching
performance. As for the 3-D transformation estimation technique,
the combinations of the constraints are first analyzed. The perfor-
mance of different constraints is presented and the best combina-
tion is chose. The comparative results with the existing techniques
demonstrate that the proposed 3-D transformation estimation tech-
nique can obtain better registration accuracy and computation
efficiency.

Index Terms—Constraint, local shape descriptor (LSD), point
cloud registration, 3-D transformation estimation technique.

I. INTRODUCTION

W ITH the development of the 3-D acquisition techniques,
such as laser scanner and space-time cameras, point

cloud data are becoming more and more popular, and are the
main data source of many applications, including 3-D model or
scene reconstruction [1], [2], 3-D object recognition [3], [4],
and place recognition [5]. In these applications, point cloud
registration is the fundamental problem that needs to be solved.
The iterative closest point (ICP) algorithm [6] and its variants
[7], [8] are usually applied to perform the fine registration, but
all of them need a good initial pose to avoid getting trapped into
the local minimum. For the reason, this article focuses on the
coarse registration, which can provide a good initial pose for the
fine registration.
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The local shape descriptor (LSD) has been widely used to
establish correspondences for point cloud registration, and many
scholars have paid much attention to it for a long time. A
good LSD should have high descriptiveness, strong robustness,
and good computation efficiency. Descriptiveness indicates that
the LSD should contain more local surface information, while
robustness denotes that the LSD should be less influenced by
different nuisances (e.g., noise, point density variation, and
partial overlap). The existing LSDs can be classified into bi-
nary and float descriptors. Examples of the float descriptors
contain the spin images (SI) [9], divisional local feature statistics
(DLFS) [10], histogram of distances (HoD) [11], signatures of
histograms of orientations (SHOT) [12], spatial and geometric
histogram (SGH) [13], kernel density descriptor (KDD) [14],
weighted height image (WHI) [15], to name a few. Among these
descriptors, the SI, DLFS, and HoD are the descriptors without
local reference frame (LRF). They only encode the geometric
information, but ignore the spatial information. Therefore, these
descriptors generally suffer from limited descriptiveness. The
SHOT, SGH, KDD, and WHI are the descriptors with LRF. They
first construct an LRF on the local surface around a keypoint.
Both of the spatial and geometric information are encoded.
Because of the LRF, the descriptors are rotation-invariant. In
addition, the LRF provides a manner to fully encode the spatial
information. Therefore, these descriptors are highly descriptive
in general. As for the binary descriptors, the binary SHOT
(B-SHOT) [16], binary HoD (B-HoD) [17], binary shape context
(BSC) [18], local voxelized structure (LoVS) [19], and rota-
tional silhouette maps (RSMs) [20] are the widely mentioned
descriptors. The B-SHOT, B-HoD, and BSC are obtained by
binarizing the corresponding float descriptors. During the pro-
cess of the binarization, the information is inevitable to be lost.
Thus, they have low descriptiveness. The LoVS and RSM are
naturally binary descriptors because they are obtained without
binarization. Also, the two descriptors have high descriptiveness.
In comparison with the float descriptors, the binary descriptors
are computationally cheap, and consume less footprint memory.
In addition, the binary descriptors are compared using an XOR
operation, so descriptor matching will consume less time. The
binary descriptor has the significant advantages in the context
of robotics and mobile phones.

The correspondences can be established by descriptor match-
ing. A good descriptor can establish more correct correspon-
dences, but the incorrect correspondences inevitably exist as
well. How to estimate the accurate rigid transformation under
the condition that many incorrect correspondences exist is the
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key problem. A large number of 3-D transformation estimation
techniques have been proposed. The random sample consen-
sus (RANSAC) algorithm [21] has been applied to randomly
select correspondences for point cloud registration. Numer-
ous improved RANSAC algorithms are also proposed, e.g.,
one-point RANSAC [22], two-point based sample consensus
with global constrain (2SAC-GC) [23], compatibility-guided
sampling consensus (CG-SAC) [24], and graph enhanced sam-
ple consensus (GESAC) [25]. These algorithms improve the
computation efficiency using different methods, but they are
still very time-consuming. Another kind of methods attempt to
remove the false correspondences and cluster the correct ones.
Then, the correct correspondences are used to calculate the rigid
transformation. Examples contain the geometric consistency
(GC) [26], consistency voting (CV) [27], 3-D Hough voting [28],
and game theory matching (GTM) [29]. The drawback of these
methods is that the incorrect correspondences cannot be fully
removed. Some incorrect correspondences are still remained.

Based on the above discussion, a new method is proposed to
perform the point cloud registration. First, a binary descriptor is
designed to establish the correspondences. The descriptor is a
naturally binary one and has high descriptiveness. It encodes
the local surface information by comparing the local occu-
pied voxels, so we term it as local occupied voxel comparison
(LOVC). In the LoVS, the local occupied voxels are simply
encoded. Our descriptor encodes the relationship of the occupied
voxels, thus making the descriptor include more local surface
information. Then, a novel 3-D transformation estimation tech-
nique is proposed. We consider that the one-point RANSAC
algorithm selects one correspondence at each iteration. Thus, the
constraints cannot be used to skip the incorrect correspondences
because the constraints are usually the relationship of at least
two correspondences. If one more correspondence is selected,
the constraints can be inserted into the computation at each
iteration. Therefore, we randomly select two correspondences to
estimate the rigid transformation at each iteration. The algorithm
is termed as two-point RANSAC with constraints (two-point
RANSACWC). “Two-point” means two correspondences. Be-
cause the constraints are used to skip the computation when
the selected two correspondences are judged as incorrect, the
computation efficiency is enhanced. In addition, the transfor-
mation calculated by using two correct correspondences is nor-
mally more accurate. In summary, the main contributions are
as follows:

1) A distinctive binary LSD is designed. It has high descrip-
tiveness and consumes less storage.

2) A novel 3-D transformation estimation technique is pro-
posed. The algorithm is computationally efficient and can
achieve more accurate transformation.

3) Based on the binary LSD and 3-D transformation estima-
tion technique, a registration method is presented. Because
of the advantages of the binary LSD and 3-D transfor-
mation estimation technique, the registration method also
has good computation efficiency and high registration
accuracy.

The rest of the article is organized as follows. Section II
gives the review of the LSD and 3-D transformation estimation

technique. The proposed LSD is presented in Section III in
detail. In Section IV, the pipeline of point cloud registration
is given and two-point RANSACWC algorithm is described in
detail. Section V presents the experiments and analysis. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Local Shape Descriptor

The float descriptors are first reviewed. The SI [9] is an early
proposed descriptor. In the descriptor, two parameters are cal-
culated for each neighboring point. The 2-D grids are generated
according to the two parameters. The number of the points falling
in a grid is the value of the grid. The DLFS [10] divides the local
neighborhood into several subspaces along the radial direction.
For each subspace, three angle features and local height are
used to generate four histograms. The four weighted histograms
are concatenated to form the final histogram. Although the
descriptor does not construct the LRF, it encodes part of the
spatial information. The HoD [11] chooses one border point as
a reference point. The distance between the reference point and
each neighboring point is calculated, which is then normalized.
The normalized distances are used to form a histogram. The
descriptor even does not calculate a local reference axis (LRA).
The main drawback of the above three descriptors is that they
do not fully encode the spatial information. In the SHOT [12]
descriptor, an LRF method is first proposed. This is the first
method that removes the ambiguity of all axes. The descrip-
tor partitions the local neighborhood into subspaces along the
radial, azimuth, and elevation directions. For each subspace, a
histogram is generated according to the consine values of the
deviation angle between the normal vectors of the neighbors in
the subspace and the z-axis of the LRF. The descriptor only has
32 subspaces, which results in low distinctiveness. Tombari et al.
[30] inserted a unique LRF into the 3-D shape context descriptor
[31]; the unique shape context (USC) descriptor was proposed.
The USC descriptor evenly divides the local neighborhood
along the azimuth and elevation dimensions and logarithmically
divides the local neighborhood along the radial dimension. The
irregular division makes the descriptor sensitive to point density
variation. The rotational projection statistics (RoPS) [32] applies
multiview mechanism so as to encode more information. The
multiple views are obtained by rotating the local point cloud.
Each of the rotated point clouds is projected on the three planes
of the LRF. Then, three distribution matrices are generated.
The statistics of all the distribution matrices form the feature
vector. The triple orthogonal local depth images (TOLDI) [33]
projects the local point cloud on three planes and calculates three
local depth images. The pixel values of the local depth images
constitute the feature vector. The triple local coordinate images
(TriLCI) [3] projects the local point cloud on the three planes and
calculates three local coordinate images. Due to the 3-D-to-2-D
projection, the RoPS, TOLDI, and TriLCI descriptors lost some
of the local surface information [34]. In the SGH descriptor [13],
the local neighborhood is evenly divided into subspaces along
radial, azimuth, and elevation dimensions. For each subspace,
two deviation angles are calculated for each neighboring point.
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Two histograms are accordingly generated. The computation
complexity of the descriptor is high. In the KDD descriptor [14],
a local cubic volume is used to enclose the local point cloud. The
local cubic volume is divided into voxels with the same size. A
kernel density is calculated for each voxel. In the WHI descriptor
[15], a simplified LRF is first constructed. The local points are
projected on the xy plane and an image is generated. The pixel
value of the image is the mean weighted heights. The dual SI [35]
is an improvement to the SI descriptor. It calculates two SIs for
the keypoint and one of its neighbors, which are concatenated to
form the whole feature descriptor. Furthermore, the multiscale
strategy is used to alleviate effect of occlusion. The multiview
depth and contour signatures [36] apply multiple attributions
for better encoding the local surface information. The multiview
strategy is also applied to make the descriptor include more in-
formation. Yang et al. [4] proposed the voxelization in invariant
distance space (VOID) descriptor. It projected the neighboring
points into the 3-D space defined by one point-to-point distance
and two point-to-plane distances. Because the three distances are
invariant to normal-sign-ambiguity (NSA), the descriptor is also
invariant to the NSA. The NSA is an unsolved problem in the
existing LSDs. The VOID descriptor was obtained by voxelizing
the defined 3-D space and concatenating all the voxel values.

Then, the binary descriptors are reviewed. The B-SHOT [16]
is the first 3-D binary descriptor, which is the binary version
of the SHOT descriptor. It successively takes four values from
the SHOT feature vector. For each quaternion, five cases are
designed to transform them into bit string. The B-HoD [17]
is an extension of the HoD descriptor. It transforms the float
values into binary values via the binary-coded decimal scheme.
The BSC [18] projects the local neighboring points on the three
planes of the LRF. For each plane, the 2-D grids are generated,
and the weighted projection density and distance are used to
calculate the grid values. Then, some pairs of the grid values are
randomly selected and keep unchanged in subsequent selections.
The difference test is performed to obtain the bit string. Zou
et al. [37] proposed the binary rotational projection histogram
descriptor, which used point density and depth to encode the
local surface information. The center-symmetric local binary
patterns was applied to transform the float values into binary
values. These binary descriptors are obtained by performing
binarization on the corresponding float descriptors. During the
process of the binarization, some information is inevitably lost.
Therefore, these binary descriptors have relatively low descrip-
tiveness. Different from these descriptors, the LoVS [19] and
RSM [20] descriptors are straightforward. The two descriptors
obtain the binary feature without binarization. The LoVS en-
closes the local point cloud with a cubical volume. Then, the
cubical volume is divided into uniform voxels. If some points
fall in a voxel, the value of the voxel is 1, otherwise 0. The
values of all voxels are concatenated to form the binary feature
vector. The RSM rotates the local point cloud for multiple times.
Each rotated point cloud is projected on the xy plane of the
LRF. Then, a silhouette image is generated by judging whether
some points fall in a grid. A binary string is calculated from the
silhouette image. The binary strings of all the silhouette images
are concatenated to get the binary feature vector.

B. 3-D Transformation Estimation Technique

In [38], the state-of-the-art 3-D transformation estimation
techniques are categorized into two classifications: maximum-
consistency-based and confidence-verify-based methods. The
maximum-consistency-based methods struggle to cluster the
correct correspondences and remove false correspondences from
the initial correspondence set. Then, these correct correspon-
dences are used to calculate the rigid transformation. The GC
[26] leverages the geometric distance constraint to cluster correct
correspondences. If two correspondences are correct, they will
satisfy the constraint with each other. With the constraint, each
correspondence finds the others that are compatible with it, and
thus form a cluster. The maximum cluster is treated as the one
that is composed of correct correspondences. However, due to
inherent ambiguity, many incorrect correspondences are still
remained. The CV [27] first selects the top-k correspondences
according to the nearest neighbor similarity ratio (NNSR) scores.
The compatibility measure between two correspondences is cal-
culated using the rigidity and LRF affinity constraints. The com-
patibility score of a correspondence is defined as the summary
of the compatibility measures between the correspondence and
others. The method is sensitive to the parameter setting. It has
high precision performance but pretty poor recall performance.
In [3], a clustering method is proposed to find out the correct
correspondences. The method uses the LRFs to compute an
auxiliary point for each correspondence. The auxiliary points
computed by correct correspondences will cluster together. In
the method, the errors of the LRFs largely affect the performance
of the clustering. The GTM [29] constructs a payoff matrix.
An element of the payoff matrix is the degree of compatibility
between two correspondences. In [39], a variant of the GTM is
developed. The geometric constraint with an exponential form is
applied to calculate the payoff matrix. However, these methods
cannot find out all the correct correspondences and some false
correspondences are still remained. The GTM is sensitive to
symmetric and similar patch. By contrast, the confidence-verify-
based methods usually calculate some plausible transformations
and verify the confidence levels of the transformations. The
RANSAC [21] has been widely used to calculate the rigid
transformation for 3-D rigid data matching. Three correspon-
dences are randomly selected to compute a transformation and
the number of inliers is counted at each iteration. The trans-
formation corresponding to the maximum number of inliers
is the optimal one. The consistent correspondence verification
[32] first calculates a transformation for each correspondence
by the LRFs of the keypoints. Then, these transformations are
clustered to generate a consistent set for each correspondence.
Afterward, the transformation for each correspondence is calcu-
lated again by all correspondences of the consistent set. Finally,
these transformations are verified by the number of inliers. The
one-point RANSAC [22] leverages the LRFs of two keypoints
in a correspondence to compute the rotation matrix, so only one
correspondence is enough to estimate the transformation. For the
method, the errors of the LRFs negatively influence the accuracy
of the estimated transformation. In the 2SAC-GC [23], the LRAs
of the keypoints are applied to compute the transformation, so
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Fig. 1. Overflow of computing the LOVC descriptor. (a) Point cloud and local surface around keypoint. (b) Local point cloud is cropped from point cloud.
(c) Local point cloud is transformed with respect to LRF. (d) Transformed local point cloud is voxelized. (e) Bit strings are generated. (f) Bit strings are concatenated
to form binary feature vector. (a) ‘Chef’ model, (b) cropped local point cloud, (c) transformed local point cloud, (d) voxelization, (e) bit strings, (f) binary feature
vector.

two correspondences are selected at each iteration. In addition,
two constraints are used to facilitate the computation process.
If the two correspondences do not satisfy the two constraints,
the iteration will be skipped. The CG-SAC [24] calculates a
compatibility score for each pair of correspondences using the
rigidity and distance between salient points constraints. Then,
the all pairs of correspondences are sorted according to the
compatibility scores. The top-ranked correspondence pairs are
selected to calculate the transformation. The GESAC [25] ran-
domly selects a large subset (32 correspondences) from the
initial correspondences at each iteration. A graph is used to
express the subset and the false correspondences are removed
by a graph matching algorithm. In [40], the reliability of a triplet
of correspondences is calculated using the projection distances
of the reference point to the normal vectors of the three source
keypoints. All the correspondence triplets are ranked according
to the reliability. The top-ranked triplets are selected to compute
the transformations.

III. PROPOSED LOCAL SHAPE DESCRIPTOR

The proposed descriptor (i.e., the LOVC descriptor) is pre-
sented in detail in this section. The keypoints are extracted from a
point cloud. For a keypoint, the local point cloud is cropped from
the point cloud with a sphere of radius r centered at the keypoint.
The LRF method in [3] is applied to calculate the LRF for the
local point cloud. The method first uses a few of neighboring

points to calculate the normal vector. The z-axis is determined
by disambiguating the normal vector. Then, the vectors from the
keypoint to all neighboring points are projected on the tangent
plane. The x-axis is calculated by integrating all the projection
vectors. The y-axis is calculated as the cross-product of the
x-axis and z-axis. Then, the local point cloud is transformed
with respect to the LRF. This makes the descriptor invariant
to rotation and translation. The entire computation process is
shown in Fig. 1.

A cubical volume is used to enclose the transformed local
point cloud. Because the radius of the neighborhood is r, the
length of the sizes of the cubical volume is 2r. The cubical
volume is divided into voxels with same size. As shown in Fig. 2,
each layer of voxels is used to calculate a bit string. The LoVS
only encodes the local surface information by judging whether
a voxel is occupied or not. In our descriptor, the relationship
between the occupied voxels is taken into consideration. Thus,
more local surface information can be included. For two sym-
metric voxels (e.g., the two black voxels in Fig. 2), the feature
value is calculated as

f(vij , vji) =⎧⎪⎨
⎪⎩
0 if(

∣∣Qvij

∣∣ > 0 and
∣∣Qvji

∣∣ > 0)

or (
∣∣Qvij

∣∣ = 0and
∣∣Qvji

∣∣ = 0)

1 otherwise

(1)
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Fig. 2. Computation of bit string for one layer of voxels.

where | · | denotes the cardinality of a point set, vij and vji are
the symmetric voxels, andQvij

denotes the point set in the voxel.
The voxels on the main diagonal are ignored because they do
not have symmetric voxels. The feature values of all pairs of
the symmetric voxels are concatenated to form the bit string
(see example in Fig. 2). Then, the bit strings of all layers are
concatenated to get the binary feature vector, i.e., the LOVC
descriptor.

If the cubical volume is divided into w × w × w voxels,
the length of a bit string is w × (w − 1)/2. Hence, the length
of the binary feature vector is w × w × (w − 1)/2, i.e., the
dimensionality of the descriptor. The storage of the descriptor is
w × w × (w − 1)/2bit. We set the value of w as an odd number
in order to resist point-level perturbations [18]. The value will
be determined by experiments later.

IV. POINT CLOUD REGISTRATION BASED ON THE LOVC
DESCRIPTOR AND TWO-POINT RANSACWC

In this section, the LOVC descriptor is used to perform the
point cloud registration. The computation process of point cloud
registration is shown in Fig. 3. In the registration method,
the LOVC descriptor and two-point RANSACWC algorithm
are two main contributions. This article focuses on the coarse
registration of point clouds. The ICP fine registration is out of
the scope of this article, so it is enclosed in a dash box. In our
experiments, the step is not performed.

A. Correspondence Establishment

Giving two point clouds (source and target point clouds),
the keypoints are first extracted by the 3-D Harris detector
[41] because it is easy to implement and is computationally
efficient. The LOVC descriptor is calculated for each keypoint.
The two calculated descriptor sets for the source and target
keypoints are, respectively, denoted as {fs

1 fs
2 . . . fs

n}
and {f t

1 f t
2 . . . f t

m}. The correspondences are established
by the NNSR [2]. For each descriptor fs

i , the nearest descriptor
f t
i and the second nearest descriptor f t

j are searched. If the

distance ratio ∥∥fs
i − f t

i

∥∥ /∥∥fs
i − f t

j

∥∥ < λ (2)

the two keypoints associated to fs
i and f t

i are considered as a
correspondence. ‖ · ‖ denotes the Hamming distance and the
threshold λ is usually set as 0.9 [3]. Because the calculated
descriptors are influenced by the noise, point density variation,
partial overlap, and so on, the correspondences established by
descriptor matching are not all right. We need to search for the
correct correspondences and compute the rigid transformation.

B. Transformation Estimation via Two-Point RANSACWC

The one-point RANSAC [22] only applies one correspon-
dence to calculate the transformation, so the constraints cannot
be inserted into the method. This is because the constraints
are the relationship of at least two correspondences. However,
many constraints have been developed and proven to be useful
to accelerate the searching process of correct correspondences.
Now, we have obtained the initial correspondence set. The
two-point RANSACWC randomly selects two correspondences
to estimate the transformation at each iteration. Thus, the con-
straints can be inserted. Different constraints are researched in
this article. The considered constraints are as follows:

1) Geometric distance constraint (GC) [26]. Giving two cor-
respondences ci = (pi, qi) and cj = (pj , qj), the GC is
defined as

abs(d(pi,pj)− d(qi, qj)) < δgc (3)

where abs(·) denotes absolute value, pi,pj are the two source
keypoints, qi, qj are the two target keypoints, and d denotes
the distance between two keypoints. δgc is a threshold and is
generally set as 2pr (pr denotes point cloud resolution, i.e.,
the average value of the distances between all points and their
nearest points). If the two correspondences are correct, they will
satisfy the constraint.

2) Angular constraint based on local reference axes (ACLRA)
[23]. The constraint is defined as

abs(arccos(LRA(pi) · LRA(pj))
180

π

− arccos
(
LRA(qi) · LRA(qj)

) 180
π

) < δaca (4)

where LRA denotes LRA of a keypoint, and arccos(·) denotes
inverse cosine function. δaca is a threshold and is generally set
as 10°. When computing the LOVC descriptor, the LRFs have
been calculated. The LRA is the z-axis of the LRF. Readers can
refer to [3] for the computation of the LRA. Therefore, we just
need to reuse the LRAs when using the constraint.

3) Angular constraint based on local reference frame
(ACLRF). Similar to LRA, the LRF can also be used to
construct an angular constraint. Therefore, a new angular
constraint based on LRF is proposed, which is defined as

abs

(
arccos

(
trace(V pi

V −1
pj
)− 1

2

)
180

π
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Fig. 3. Workflow of point cloud registration.

Fig. 4. Schematic diagram of PDKN.

− arccos

(
trace(V qi

V −1
qj
)− 1

2

)
180

π

)
< δacf

(5)

where trace(·) is the trace of a matrix and V denotes the LRF
of a keypoint. δacf is a threshold and is set as 10°. Because the
LRFs have been calculated, we just need to reuse them.

4) Projection distance of keypoint to normal vector (PDKN).
Based on the PDKN, we propose another new constraint.

As shown in Fig. 4, pi,pj are the two source keypoints and
qi, qj are the two target keypoints. npi

,npj
are the normal

vectors of the two source keypoints and nqi
,nqj

are the normal
vectors of the two target keypoints. The projection distances are
calculated as

d1 = abs(npi
(pj − pi))

d2 = abs(npj
(pi − pj))

d3 = abs(nqi(qj − qi))

d4 = abs(nqj (qi − qj)). (6)

In principle, the projection distances are invariant to rotation
and translation. Hence, the constraint is defined as

abs(d1 − d3) < δpd, abs(d2 − d4) < δpd. (7)

The threshold δpd is set as 2pr.
These constraints are grouped into several combinations. We

compare the performance of different combinations. Taking
the ACLRA, ACLRF, or PDKN as a single constraint into a
combination gets rather poor performance, so we did not do
this. All considered combinations are listed in Table I.

TABLE I
COMBINATIONS OF CONSTRAINTS

Algorithm 1: Two-Point RANSACWC Algorithm.
Input: The initial correspondence set
C = {c1 c2 . . . cn}

Output: The optimal transformation
L is the maximum iteration number
Set the initial number of inliers m0 as zero
For i = 1 to L do

Two correspondences are randomly selected.
If the two correspondences satisfy one combination

Calculate the transformation
The source point cloud is transformed according to
the calculated transformation

Count the number of the points in the overlapped
area between the transformed source point cloud
and target point cloud, which is treated as the inlier
number m.

If m > m0

The current transformation is the optimal one
m0 = m

End if
End if

End for

The detailed computation steps of the proposed two-point
RANSACWC algorithm are presented in Algorithm 1:

In Algorithm 1, when calculating the transformation,
the keypoints pi,pj , qi, qj and their normal vectors
npi

,npj
,nqi

,nqj
are applied. First, we calculate the following

four points:

p′
i = pi + npi

p′
j = pj + npj

q′
i = qi + nqi

q′
j = qj + nqj

. (8)
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Then, the singular value decomposition (SVD) [42] is applied
to compute the transformation. The following matrices are con-
structed:

A4×3 =

⎡
⎢⎢⎢⎣
pi

pj

p′
i

p′
j

⎤
⎥⎥⎥⎦ , Y 4×3 =

⎡
⎢⎢⎢⎣
qi

qj

q′
i

q′
j

⎤
⎥⎥⎥⎦ . (9)

Then, the covariance matrix is calculated as

H3×3 =
[
A4×3 − [1 1 1 1]

T
Ā1×3

]T
×;
[
Y − [1 1 1 1]

T
Ȳ 1×3

]
(10)

where Ā1×3 is the mean value of A4×3 and Ȳ 1×3 is the mean
value of Y 4×3. Performing SVD on matrix H3×3

USV T = svd(H3×3). (11)

Thus, the rotation matrix is

R = V DUT (12)

where D = diag(1, 1, det(UV T )), diag(·) denotes a diagonal
matrix, and det(·) denotes the determinant of a matrix. The
translation vector is

t = q̄ − p̄RT (13)

where q̄ is the mean value of qi and qj , and p̄ is the mean value
of pi and pj . The points p′

i, p
′
j , q′

i, and q′
j are calculated

using the normal vectors, so they are inevitably contaminated
by the errors of the normal vectors. In order not to propagate the
errors of the normal vectors to the translation vector, p′

i, p
′
j ,

q′
i, and q′

j are not applied for (13).
When counting the inlier number, we can also use the simpli-

fied point clouds to calculate the inlier number for decreasing
the computation time. This is a generally applied strategy. This
article mainly studies these combinations, so we do not use the
strategy.

V. EXPERIMENTS AND ANALYSIS

The experiments are performed to evaluate the LOVC descrip-
tor and two-point RANSACWC algorithm. The performance
of the LOVC descriptor is first assessed. Then, the two-point
RANSACWC algorithm is analyzed.

A. Datasets

The BR [43], space time [43], UWA3M [44], and UWAOR
[44] datasets are used to evaluate the performance of the LOVC
descriptor. The BR dataset contains six model point clouds
without noise from the Sanford 3-D Scanning Repository. The
model point clouds are transformed to simulate six scene point
clouds by setting a true transformation. The Gaussian noise
with standard deviation of 0.3pr is injected into the scene point
clouds and the downsampling is performed on the scene point
clouds with the sampling rate of 7/10. The aim is to simulate
the scene point cloud influenced by Gaussian noise and point
density variation. The space time dataset is composed of eight

Fig. 5. Examples of point clouds of four datasets. (a) BR. (b) Space Time. (c)
UWA3M. (d) UWAOR.

model point clouds and fifteen real scene point clouds, which are
obtained by the Space Time Stereo technology. The dataset is
mainly influenced by clutter, occlusion, noise, and outliers. The
UWA3M and UWAOR datasets are acquired by a Minolta Vivid
910 scanner. The two datasets are high-quality. The UWA3M
dataset is mainly affected by partial overlap, while the UWAOR
dataset is mainly affected by clutter and occlusion. The UWA3M
dataset contains 496 pairs of point clouds and the UWAOR
dataset contains five model point clouds and fifty scene point
clouds. The true transformations of the space time, UWA3M,
and UWAOR datasets are provided by the publishers. Fig. 5
exhibits the examples of the point clouds of the four datasets.

An indoor dataset [45] and an outdoor dataset are applied
to analyze the two-point RANSACWC algorithm. The indoor
dataset is obtained by an FARO Focus 3-D X330 HDR scanner.
It includes the point clouds of five scenes (apartment, bedroom,
boardroom, lobby, and loft). We choose two pairs of point
clouds from the apartment and boardroom scenes to perform
the experiments. The outdoor dataset contains the point clouds
of the two city scenes (City 1 and City 2). The point clouds of
the City 1 scene [46] are obtained by a Leica C10 laser scanner.
The point clouds of the City 2 scene are from the Robotic 3-D
Scan Repository,1 which are obtained by a Riegl VZ-400 laser
scanner. We also choose two pairs of point clouds from the
two scenes, respectively. The true transformations of the two
datasets are obtained by manually coarse registration and ICP
fine registration. The example can be found in Figs. 9 and 10.

B. Performance of the LOVC Descriptor

1) Parameter Setting: There are two parameters that need
to be determined, which are, respectively, the neighborhood
radius rand voxel resolution w. The neighborhood radius r is
generally set as 15pr. Therefore, we only need to determine the

1http://kos.informatik.uni-osnabrueck.de/3Dscans/

http://kos.informatik.uni-osnabrueck.de/3Dscans/
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Fig. 6. RP curve under different values of w.

value of w. If the value of w is too small, the descriptor will be
sensitive to noise and point density variation. By contrast, if the
value of w is too large, many details will be lost. This makes
the descriptor include less local surface information, decreasing
the descriptiveness of the descriptor. The descriptor matching
performance is assessed by the recall versus 1-precision (RP)
curve. By varying the threshold λ of the NNSR from 0.1 to 1,
the recall and one-precision are calculated at each threshold

Recall =
Number of correct correspondences

Total number of true correspondences
(14)

1− Precision

=
Number of incorrect correspondences

Total number of established correspondences
. (15)

If distance between the transformed source keypoint by the
true transformation and its corresponding target keypoint is
smaller than 0.5r, the correspondence is considered as correct.
If the descriptor has both the high recall and the high precision,
the RP curve will fall in the left-top of the plot.

The RP curve under different values of w is shown in Fig. 6.
The experiments are performed on the BR dataset. As we can
see, when the value of w increases from 9 to 15, the descriptor
matching performance also increases. As the value of w contin-
ues to increase, the performance begins to decline. Therefore,
we set the value of w as 15.

2) Comparison With Existing Descriptors: The LOVC de-
scriptor is compared with the SI, USC, RoPS, TOLDI, and LoVS
descriptors. In these descriptors, the SI, USC, RoPS, and TOLDI
are the float-valued descriptors, while the LoVS and LOVC are
the binary descriptors. As suggested by [34], all the LRF-based
descriptors apply the same LRF method (i.e., the LRF method
in [3]) for only comparing the encoding method of local surface
information. The information of the descriptors are listed in
Table II.

The space time, UWA3M, and UWAOR datasets are used
to perform the comparative experiments. We extract 1000 key-
points from the source point cloud, and transform these key-
points to the target point cloud by the true transformation. Then,

TABLE II
PARAMETER SETTING OF SIX DESCRIPTORS

Fig. 7. RP curve of six descriptors on three datasets. (a) Space Time.
(b) UWA3M. (c) UWAOR.

the closest point of each transformed keypoint is searched from
the target point cloud. These closest points are treated as the
corresponding keypoints in the target point cloud, obtaining the
true correspondences. For the incomplete point clouds, the de-
scriptors are only calculated on the keypoints in the overlapped
area. The average RP curve of all point cloud pairs in a dataset
is shown in Fig. 7. We can see that on the space time dataset,
the TOLDI descriptor gets the best matching performance. The
LOVC is the second best descriptor, followed by the LoVS. The
RoPS, USC, and SI achieve relative poor matching performance.
On the UWA3M dataset, the LOVC gets significantly better
matching performance than others. The second best descriptor
is TOLDI. The RoPS and LoVS obtain moderate matching per-
formance. On the UWAOR dataset, our descriptor is still better
than the others by a large margin. The TOLDI gets the second
best matching performance, followed by LoVS and RoPS.

The SI is an LRA-based descriptor. It only encodes the
geometric information, but ignores the spatial information.
Therefore, the descriptor has poor descriptiveness. The USC
irregularly divides the local neighborhood, which increases its
sensitivity to noise and point density variation. The RoPS applies
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Fig. 8. Time efficiency of six descriptors. The y-axis is logarithmic axis for
the best view.

the 2-D point distribution to encode the local surface informa-
tion, while the TOLDI applies the local depth. The local depth is
better to preserve the information than the 2-D point distribution,
so the TOLDI achieves better matching performance than the
RoPS. The LoVS applies a straightforward manner to encode
the local surface information. Although the encoding manner is
simple, it has good descriptiveness and thus gets relatively good
matching performance. However, the descriptor does not take the
relationship of the voxels into consideration. In order to better
preserve the local surface information, the LOVC considers
the relationship of the voxels and therefore achieves the best
matching performance.

The time efficiency of the six descriptors is presented in Fig. 8.
The neighborhood radius is varied from 5pr to 25pr. The time
of computing the descriptors for 1000 keypoints is recorded. It
can be seen that the USC has the poorest computation efficiency.
This is because the descriptor has high dimensionality. The SI
has the best computation efficiency, but note that it has very poor
descriptor matching performance. All of the RoPS, TOLDI, and
LoVS have good computation efficiency. The LOVC is inferior
to the RoPS, TOLDI, and LoVS. Because the LOVC needs
to compare the voxels and calculate more feature values, its
computation time is more than that of the LoVS. However, the
increase of computation time is not very much.

C. Analysis of Two-Point RANSACWC Algorithm

The performance of different combinations is discussed in the
section. The indoor and outdoor datasets are used to perform the
experiments. The performance is discussed from two aspects:
registration accuracy and computation efficiency. The registra-
tion accuracy is measured by rotation error and translation error,
which are, respectively, defined as

errorR = arccos

(
trace(RtrueR

−1)− 1

2

)
180

π
(16)

errort = ‖ttrue − t‖ (17)

where Rtrue is the true rotation, R is the estimated rotation, ttrue

is the true translation, and t is the estimated translation.
The proposed registration method is employed to align each

pair of point clouds. Owing to the randomness of the two-
point RANSACWC algorithm, we run the algorithm for 100
times. The mean rotation error, mean translation error, and
mean computation time are recorded. The computation time
does not include the time spent on the descriptor calculation.
The iteration number of the two-point RANSACWC algorithm
is set as 2000. Different combinations of the constraints are
used in the two-point RANSACWC algorithm. The registration
results are similar, so we only exhibit the registration result
of one combination for each scene in Figs. 9 and 10. As we
can see, the four pairs of point clouds have been successfully
registered together. All the combinations can get enough good
registration results, which can provide a good initial pose for the
fine registration.

The mean rotation error, mean translation error, and mean
computation time are listed in Table III. We can see that all of
the combinations get the relatively low rotation errors and trans-
lation errors. It is observed that the rotation error and translation
error of C1 are the same to those of C4. This phenomenon also
happens on combination pairs (C2, C6), (C3, C7), and (C5, C8).
Compared with C1, C4 has an extra ACLRA. This means that the
ACLRA is not easy to reject correct correspondences. However,
the ACLRA can reject incorrect correspondences because the
computation time of C4 is less than C1. The computation time
of C2 and C3 is smaller than that of C4. This is because some
correct correspondences are also rejected by the PDKN and
ACLRF. More correspondences are rejected, so the computation
time is less. The rotation error and translation error of C2
and C3 are different from C1. This also indicates that some
correct correspondences are rejected by the PDKN and ACLRF
in comparison with the GC. Therefore, we can conclude that
the ACLRA can reject incorrect correspondences but better pre-
serve the correct correspondences. The PDKN and ACLRF can
reduce more computation time but at expense of rejecting correct
correspondences.

As more and more constraints are applied to reject correspon-
dences, the computation time is generally reduced. However,
the effect is decreasing when more constraints are added. Maybe
four constraints are already enough. It is unnecessary to add more
constraints. Therefore, we think that C8 is the best combination.
Furthermore, C8 can also get enough good coarse registration
results, which provide good initial pose for fine registration.
Thus, the proposed 2-point RANSACWC algorithm employs
the combination C8. We observe that C5 and C8 have similar
computation time. This indicates that the effect of the ACLRA
is slight. This is because most of false correspondences have
been rejected by the PDKN and ACLRF. An exception happens
on the City 2 scene. On this scene, C3 spends more time than
C1, and C5 spends more time than C2. Therefore, the ACLRF is
useless to reduce computation time. On the contrary, because of
the calculation of the ACLRF, more computation time is spent.
This also explains why the C8 spends more time than C6 on
City 2 scene. In addition, on the City 1 scene, the computation
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Fig. 9. Registration results of the point clouds of the indoor dataset. In each subfigure, the initial point clouds are on the left and the registered point clouds are
on the right. (a) Apartment. (b) Boardroom.

TABLE III
MEAN ROTATION ERROR ERROrR, MEAN TRANSLATION ERROR ERROrt, AND MEAN COMPUTATION TIME t FOR ALL THE COMBINATIONS
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Fig. 10. Registration results of the point clouds of the outdoor dataset. In each subfigure, the initial point clouds are on the left and the registered point clouds
are on the right. (a) City 1. (b) City 2.

time is pretty few. This is because the correct correspondences
established by the LSD are very few on this scene. Therefore,
most of iterations are not performed. A better LRF (LRA) con-
struction method may improve the performance of the ACLRF
(ACLRA).

D. Comparison With the Existing 3-D Transformation
Estimation Techniques

The two-point RANSACWC algorithm is compared with
the one-point RANSAC [22] and optimized sample consen-
sus (OSAC) [47] algorithms. Considering the advantage of
the one-point RANSAC algorithm is that it requires fewer
iterations, its iteration number is set as 500. The itera-
tion number of the OSAC algorithm is set as 2000. The
iteration number of the two-point RANSACWC algorithm
is still set as 2000. The computation results are listed in
Table IV.

From Table IV, in aspect of registration accuracy, the OSAC
algorithm has the best performance beside the apartment scene.
The algorithm uses three correspondences to calculate the trans-
formation, so the main error source is the point noise. Therefore,
it gets better registration accuracy. On the apartment scene, the
algorithm usually fails to register the two point clouds. The
OSAC algorithm requires three correct correspondences to get
correct transformation, while the one-point RANSAC requires

one correct correspondence and the two-point RANSACWC
requires two correct correspondences. Hence, the OSAC algo-
rithm needs more iterations. This is the reason why it usually
fails on the apartment scene. The one-point RANSAC algorithm
uses the LRFs of the keypoints to calculate the transformation.
However, the LRFs often have large errors. This leads to the poor
registration accuracy. The main error source of the two-point
RANSACWC is the LRA error. The LRA error is generally
smaller than the LRF error because the LRA is calculated by
using a small number of neighboring points. Therefore, the
two-point RANSACWC is better than the one-point RANSAC.
In aspect of computation time, the two-point RANSACWC
algorithm has the best time efficiency. The algorithm uses
the constraints to skip the iterations when the selected cor-
respondences do not comply with the constraints. Although
the one-point RANSAC algorithm requires fewer iterations, its
computation time is much more than that of our algorithm.
In the algorithm, all the iterations are performed, so it is still
computationally expensive. The algorithm only uses one cor-
respondence to calculate the transformation, so the constraints
cannot be inserted into the iteration process. The OASC algo-
rithm is the most time-consuming, though it first eliminates some
incorrect correspondences. It is worth noting that the 2SAC-GC
[23] algorithm also applies the GC and ACLRA constraints, so
the two-point RANSACWC algorithm based on C4 is equiva-
lent to the 2SAC-GC algorithm. Thus, we also prove that our



7540 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE IV
MEAN ROTATION ERROR, MEAN TRANSLATION ERROR, AND MEAN

COMPUTATION TIME OF THE THREE ALGORITHMS

two-point RANSACWC algorithm is better than the 2SAC-GC
algorithm.

VI. CONCLUSION

In this article, an LSD is first proposed. The LSD (i.e., LOVC
descriptor) is a naturally binary descriptor, so it consumes fewer
storage. The descriptor takes the relationship between voxels
into consideration, so more local surface information is encoded.
Then, a registration method is presented, in which the proposed
LSD is used to establish the correspondences. In addition, in
order to find correct correspondences and calculate accurate
transformation, a 3-D transformation estimation technique (i.e.,
two-point RANSACWC algorithm) is developed. In this algo-
rithm, multiple constraints are applied to facilitate the search-
ing process of correct correspondences. The LOVC descriptor
and two-point RANSACWC algorithm make the registration
method have high registration accuracy and good computation
efficiency.

The experiments have been performed to analyze the LOVC
descriptor and two-point RANSACWC algorithm. By compar-
ing with the existing descriptors, the experimental results well
demonstrate that the LOVC descriptor has high descriptiveness.
Thus, more correct correspondences can be established. Then,
the two-point RANSACWC algorithm is analyzed. The combi-
nations of different constraints are studied and the merit of the
constraints is given. The performance of different constraints
is analyzed. These constraints are very useful to decrease com-
putation time. Finally, the combination C8 is employed in our

two-point RANSACWC algorithm. By comparison with the ex-
isting 3-D transformation estimation techniques, the two-point
RANSACWC algorithm has obviously better time efficiency and
relative good registration accuracy.

DISCUSSION

This article focuses on LSD-based point cloud registration.
Many scholars from the fields of remote sensing and computer
vision are dedicating to point cloud data processing. The reg-
istration method can be used for reconstruction of building or
urban scene, so this article is in the scope of JSTARS.

ACKNOWLEDGMENT

The authors would like to thank the Stanford 3-D Scanning
Repository, University of Western Australia, and Robotic 3-D
Scan Repository for publishing their datasets on the internet.

REFERENCES

[1] Z. Dong, B. Yang, F. Liang, R. Huang, and S. Scherer, “Hierarchical
registration of unordered TLS point clouds based on binary shape context
descriptor,” ISPRS J. Photogrammetry Remote Sens., vol. 144, pp. 61–79,
Oct. 2018.

[2] J. Yang, Y. Xiao, and Z. Cao, “Aligning 2.5D scene fragments with
distinctive local geometric features and voting-based correspondences,”
IEEE Trans. Circuits Syst. Video Technol., vol. 29, no. 3, pp. 714–729,
Mar. 2019.

[3] W. Tao, X. Hua, K. Yu, X. Chen, and B. Zhao, “A pipeline for 3-D object
recognition based on local shape description in cluttered scenes,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 1, pp. 801–816, Jan. 2021.

[4] J. Yang, S. Fan, Z. Huang, S. Quan, W. Wang, and Y. Zhang,
“VOID: 3D object recognition based on voxelization in invariant
distance space,” Vis. Comput., vol. 39, pp. 3073–3089, Jun. 2022,
doi: 10.1007/s00371-022-02514-1.

[5] D. Xu, J. Liu, Y. Liang, X. Lv, and J. Hyyppä, “A LiDAR-based single-shot
global localization solution using a cross-section shape context descriptor,”
ISPRS J. Photogrammetry Remote Sens., vol. 189, pp. 272–288, Jul. 2022.

[6] P. J. Besl and N. D. McKay, “A method for registration of 3-D shapes,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp. 239–256,
Feb. 1992.

[7] J. Servos and S. L. Waslander, “Multi-channel generalized-ICP: A ro-
bust framework for multi-channel scan registration,” Robot. Auton. Syst.,
vol. 87, pp. 247–257, Jan. 2017.

[8] W. Tao, X. Hua, K. Yu, X. He, and X. Chen, “An improved point-to-plane
registration method for terrestrial laser scanning data,” IEEE Access, vol. 6,
pp. 48062–48073, 2018.

[9] A. E. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3D scenes,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 21, no. 5, pp. 433–449, May 1999.

[10] B. Zhao and J. Xi, “Efficient and accurate 3D modeling based on a novel
local feature descriptor,” Inf. Sci., vol. 512, pp. 295–314, Feb. 2020.

[11] O. Kechagias-Stamatis and N. Aouf, “Histogram of distances for local
surface description,” in Proc. IEEE Int. Conf. Robot. Automat., 2016,
pp. 16–21.

[12] F. Tombari, S. Salti, and L. Di Stefano, “Unique signatures of histograms
for local surface description,” in Proc. Eur. Conf. Comput. Vis., 2010,
pp. 356–369.

[13] S. Ao, Y. Guo, S. Gu, J. Tian, and D. Li, “SGHs for 3D local surface
description,” IET Comput. Vis., vol. 14, no. 4, pp. 154–161, Jun. 2020.

[14] Y. Zhang, C. Li, B. Guo, C. Guo, and S. Zhang, “KDD: A kernel den-
sity based descriptor for 3D point clouds,” Pattern Recognit., vol. 111,
pp. 107691, Mar. 2021.

[15] T. Sun, G. Liu, S. Liu, F. Meng, L. Zeng, and R. Li, “An efficient and
compact 3D local descriptor based on the weighted height image,” Inf.
Sci., vol. 520, pp. 209–231, May 2020.

[16] S. M. Prakhya, B. Liu, W. Lin, V. Jakhetiya, and S. C. Guntuku, “B-SHOT:
A binary 3D feature descriptor for fast keypoint matching on 3D point
clouds,” Auton. Robots, vol. 41, pp. 1501–1520, Oct. 2017.

https://dx.doi.org/10.1007/s00371-022-02514-1


TAO et al.: DISTINCTIVE BINARY DESCRIPTOR AND TWO-POINT RANSACWC 7541

[17] O. Kechagias-Stamatis, N. Aouf, and L. Chermak, “B-HoD: A lightweight
and fast binary descriptor for 3D object recognition and registration,” in
Proc. IEEE 14th Int. Conf. Netw., Sens. Control, 2017, pp. 37–42.

[18] Z. Dong, B. Yang, Y. Liu, F. Liang, B. Li, and Y. Zang, “A novel binary
shape context for 3D local surface description,” ISPRS J. Photogrammetry
Remote Sens., vol. 130, pp. 431–452, Aug. 2017.

[19] S. Quan, J. Ma, F. Hu, B. Fang, and T. Ma, “Local voxelized structure for
3D binary feature representation and robust registration of point clouds
from low-cost sensors,” Inf. Sci., vol. 444, pp. 153–171, May 2018.

[20] S. Quan, J. Ma, T. Ma, F. Hu, and B. Fang, “Representing local shape
geometry from multi-view silhouette perspective: A distinctive and robust
binary 3D feature,” Signal Process.: Image Commun., vol. 65, pp. 67–80,
Jul. 2018.

[21] M. A. Fischler and R. C. Bolles, “Random sample consensus: A paradigm
for model fitting with applications to image analysis and automated car-
tography,” Commun. ACM, vol. 24, no. 6, pp. 381–395, 1981.

[22] Y. Guo, B. Mohammed, S. Ferdous, M. Lu, and J. Wan, “An integrated
framework for 3-D modeling, object detection, and pose estimation from
point-clouds,” IEEE Trans. Instrum. Meas., vol. 60, no. 3, pp. 683–693,
Mar. 2015.

[23] J. Yang, Q. Zhang, and Z. Cao, “Multi-attribute statistics histograms for ac-
curate and robust pairwise registration of range images,” Neurocomputing,
vol. 251, pp. 54–67, Aug. 2017.

[24] S. Quan and J. Yang, “Compatibility-guided sampling consensus for 3-
D point cloud registration,” IEEE Trans. Geosci. Remote Sens., vol. 58,
no. 10, pp. 7380–7392, Oct. 2020.

[25] J. Li, Q. Hu, and M. Ai, “GESAC: Robust graph enhanced sample consen-
sus for point cloud registration,” ISPRS J. Photogrammetry Remote Sens.,
vol. 167, pp. 363–374, Sep. 2020.

[26] H. Chen and B. Bhanu, “3D free-form object recognition in range images
using local surface patches,” Pattern Recognit. Lett., vol. 28, no. 10,
pp. 1252–1262, Jul. 2007.

[27] J. Yang, Y. Xiao, Z. Cao, and W. Yang, “Ranking 3D feature correspon-
dences via consistency voting,” Pattern Recognit. Lett., vol. 117, pp. 1–8,
Jan. 2017.

[28] F. Tombari and L. Di Stefano, “Object recognition in 3D scenes with
occlusions and clutter by Hough voting,” in Proc. Pacific-Rim Symp. Image
Video Technol., 2010, pp. 349–355.

[29] E. Rodola, A. Albarelli, F. Bergamasco, and A. Torsello, “A scale inde-
pendent selection process for 3d object recognition in cluttered scenes,”
Int. J. Comput. Vis., vol. 102, no. 1–3, pp. 129–145, Mar. 2013.

[30] F. Tombari, S. Salti, and L. Di Stefano, “Unique shape context for 3d data
description,” in Proc. Universal Cross-Domain 3D Model Retrieval, 2010,
pp. 57–62.

[31] A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik, “Recognizing
objects in range data using regional point descriptors,” in Proc. 8th Eur.
Conf. Comput. Vis., 2004, pp. 224–237.

[32] Y. Guo, F. Sohel, M. Bennamoun, M. Lu, and J. Wan, “Rotational projec-
tion statistics for 3D local surface description and object recognition,” Int.
J. Comput. Vis., vol. 105, no. 1, pp. 63–86, Oct. 2013.

[33] J. Yang, Q. Zhang, Y. Xiao, and Z. Cao, “TOLDI: An effective and
robust approach for 3D local shape description,” Pattern Recognit., vol. 65,
pp. 175–187, May 2017.

[34] J. Yang, S. Quan, P. Wang, and Y. Zhang, “Evaluating local geometric
feature representations for 3D rigid data matching,” IEEE Trans. Image
Process., vol. 29, pp. 2522–2535, 2020.

[35] D. L. Bibissi, J. Yang, S. Quan, and Y. Zhang, “Dual spin-image: A bi-
directional spin-image variant using multi-scale radii for 3D local shape
description,” Comput. Graph., vol. 103, pp. 180–191, Apr. 2022.

[36] Z. Du et al., “MDCS with fully encoding the information of local shape
description for 3D Rigid Data matching,” Image Vis. Comput., vol. 121,
May 2022, Art. no. 104421.

[37] Y. Zou, X. Wang, T. Zhang, B. Liang, J. Song, and H. Liu, “BRoPH:
An efficient and compact binary descriptor for 3D point clouds,” Pattern
Recognit., vol. 76, pp. 522–536, Apr. 2018.

[38] J. Yang, K. Xian, P. Wang, and Y. Zhang, “A performance evalua-
tion of correspondence grouping methods for 3D rigid data matching,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 43, no. 6, pp. 1859–1874,
Jun. 2021.

[39] D. Zai et al., “Pairwise registration of TLS point clouds using covariance
descriptors and a non-cooperative game,” ISPRS J. Photogrammetry Re-
mote Sens., vol. 134, pp. 15–29, Dec. 2017.

[40] R. Lu, F. Zhu, Q. Wu, and X. Fu, “Search inliers based on redundant
geometric constraints,” Vis. Comput., vol. 36, pp. 253–266, Feb. 2020.

[41] R. Rusu and S. Cousins, “3D is here: Point cloud library (PCL),” in Proc.
IEEE Int. Conf. Robot. Automat., 2011, pp. 1–4.

[42] Y. A. Felus and R. C. Burtch, “On symmetrical three-dimensional datum
conversion,” GPS Solution, vol. 13, pp. 65–74, Jan. 2009.

[43] F. Tombari, S. Salti, and L. Di Stefano, “Performance evaluation of 3D
keypoint detectors,” Int. J. Comput. Vis., vol. 102, pp. 98–220, Mar. 2013.

[44] A. S. Mian, M. Bennamoun, and R. Owens, “Three-dimensional model-
based object recognition and segmentation in cluttered scenes,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 10, pp. 1584–1601,
Oct. 2006.

[45] J. Park, Q. Zhou, and V. Koltun, “Colored point cloud registration revis-
ited,” in Proc. IEEE Int. Conf. Comput. Vis., 2017, pp. 143–152.

[46] B. Zeisl, K. Koeser, and M. Pollefeys, “Automatic registration of RGB-D
scans via salient directions,” in Proc. IEEE Int. Conf. Comput. Vis., 2013,
pp. 2805–2815.

[47] J. Yang, Z. Cao, and Q. Zhang, “A fast and robust local descriptor for 3D
point cloud registration,” Inf. Sci., vol. 346–347, pp. 163–179, Jun. 2016.

Wuyong Tao received the master’s degree in sur-
veying and mapping from the East China University
of Technology, Nanchang, China, in 2015, and the
Ph.D. degree in geodesy from the Wuhan University,
Wuhan, China, in 2020.

He was a Visiting Ph.D. Student with the University
of Calgary, Calgary, AB, Canada, from 2019 to 2020.
He is currently a Lecturer with the Nanchang Univer-
sity, Nanchang, China. He has authored/coauthored
more than 30 research papers. He has been a Reviewer
for the Measurement and Control, photonics, Journal

of Intelligent & Fuzzy Systems, Forests, Sensors, and Remote Sensing. His
research interests include point cloud registration, 3-D object recognition, and
deep learning.

Shaoping Xu received the M.S. degree in com-
puter application from the China University of Geo-
sciences, Wuhan, China, in 2004, and the Ph.D. de-
gree in mechatronics engineering from the University
of Nanchang, Nanchang, China, in 2010.

He is currently a Full Professor with the De-
partment of Computer Science and Technology,
School of Mathematics and Computer Sciences, Nan-
chang University, Nanchang, China. He has au-
thored/coauthored more than 50 articles in journals
and conference proceedings. His research interests

include digital image processing and analysis, computer graphics, virtual
reality, etc.

Wei Huang received the B.Eng. and M.Eng. degrees
in information engineering from the Harbin Institute
of Technology, Harbin, China, and the Ph.D. degree
in information engineering from the Nanyang Tech-
nological University, Singapore.

He was with the University of California San
Diego, San Diego, CA, USA, and the Agency for
Science Technology and Research, Singapore, as a
Postdoctoral Research Fellow. He is currently a Full
Professor with the Department of Computer Science
and acts as the Dean of the School of Mathematics and

Computer Sciences, Nanchang University, Nanchang, China. He has authored
or coauthored more than 100 academic journal or conference papers, including
the IEEE TRANSACTIONS ON MEDICAL IMAGING, IEEE TRANSACTIONS ON

MULTIMEDIA, MICCAI, CVPR, and ACM Multimedia. His research interests
include machine learning, pattern recognition, computer vision, and multimedia.

Dr. Huang is a Principal Investigator in studies supported by more than 20
national or provincial grants, including multiple NSF-China projects and NSF
key projects in Jiangxi Province, China. He was the recipient of the Jiangxi
Provincial Natural Science Award, the Best Paper Award of MICCAI-MLMI,
the most interesting Paper Award of ICME-ASMMC, the Best Paper Award of
ICITBE, the Best Paper Award of ICCEAI, etc. He was also designated as the
Academic Leader of Jiangxi Province, China.



7542 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Shufan Hu received the bachelor’s degree in geo-
physics from the East China University of Technol-
ogy, Nanchang, China, in 2014, and the master’s
and Ph.D. degrees in geophysics from the Tongji
University, Shanghai, China, in 2017 and 2021, re-
spectively.

He used to be a Visiting Ph.D. Student with the
Politecnico di Torino, Torino, Italy, from 2018 to
2019. He is currently a Lecturer with the Department
of Computer Science and Technology, Nanchang
University, Nanchang, China. His research interests

include signal processing, inverse problem, and machine learning.
Dr. Hu has been a Reviewer for the IEEE TGRS, Geophysics, Solid Earth,

Journal of Geophysical Research: Solid Earth, Journal of Applied Geophysics,
and Exploration Geophysics.

Meng Pang received the B.Sc. and M.Sc. degrees in
software engineering from the Dalian University of
Technology, Dalian, China, in 2013 and 2016, respec-
tively, and the Ph.D. degree in computer science from
the Department of Computer Science, Hong Kong
Baptist University, Hong Kong, in 2019.

He was a Postdoctoral Research Fellow with the
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore, from
2020 to 2022. He is currently a Distinguished Pro-
fessor with the School of Mathematics and Computer

Sciences, Nanchang University, Nanchang, China. His research interests in-
clude image processing, artificial intelligence security, and artificial intelligence
medical.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


