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Unsupervised Dimensionality Reduction With
Multifeature Structure Joint Preserving
Embedding for Hyperspectral Imagery
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Abstract—Graph embedding is an effective method that has
shown superiority in dimensionality reduction (DR) for hyperspec-
tral imagery (HSI) due to its ability to characterize the intrinsic ge-
ometric structure of the data. However, it may ignore some feature
information, and the performance of the single model may result in
poor classification after DR. In this article, a novel unsupervised DR
method, termed multifeature structure joint preserving embedding
(MFS-PE), is proposed for hyperspectral image classification. At
first, a spatial–spectral model is designed based on the cooper-
ative representation theory, which exploits the potential spatial
and spectral features. Then, a neighborhood-constrained model is
constructed by implementing sample augmentation through super-
pixel segmentation, and superpixel labels are used in local enhance-
ment for the spatial–spectral model. Next, a k-nearest neighbor
selection method is devised in the local neighborhood-constrained
model to select the most suitable neighbors. Finally, both models
that can maximize the total scatter of the hyperspectral data to
exploit global features are combined to produce an optimal projec-
tion for DR. MFS-PE combining multiple feature information can
effectively reveal the intrinsic structure of HSIs, and experiments
on three publicly available HSI datasets demonstrate that it can
offer better classification results compared to the state-of-the-art
DR methods.

Index Terms—Dimensionality reduction (DR), graph embedding
(GE), hyperspectral image, multifeature.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is a type of high-
dimensional data, which is usually captured by satellites

and airborne sensors. Each of its pixels is related to solar re-
flectance in spectral bands, which includes rich spectral features
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[1], [2], [3], [4]. Accordingly, this characteristic makes it more
valuable in applications, such as land-cover species mapping,
mineral exploration, food engineering, precision agriculture,
and atmospheric research [5], [6], [7], [8]. However, HSI data
have high spectral dimensionality, and adjacent bands have high
spectral correlation, leading to problems, such as redundancy of
information, high computational effort, and difficulties in data
storage [9], [10], [11]. In addition, the Hughes phenomenon
further limits the accuracy in image classification [12], [13]. To
alleviate these problems, dimensionality reduction (DR) of HSI
data is an important process to exploit the potential of HSI in
real applications [14], [15], [16].

Hyperspectral DR approaches are usually divided into linear
and nonlinear methods. Nonlinear DR can uncover the hid-
den nonlinear data structure and, thus, extract features more
effectively than linear DR. Manifold learning as a nonlinear
DR method restores the structure of low-dimensional manifolds
from high-dimensional sampled data, and it can reveal the
essence in the observed phenomena, i.e., the inherent geometric
structure of the data [17], [18], [19], [20]. Algorithms, such
as Laplacian eigenmaps (LE) [21], isometric feature mapping
(ISOMAP) [22], and local linear embedding (LLE) [23], have
been widely used for DR. LE constructs an adjacency matrix
based on graph theory, which can reconstruct the local structural
features of the data manifold [24]. ISOMAP is designed to
preserve the essential geometry of the nonlinear data and to ap-
proximate the geodesic distance by measuring the shortest path
between data points [25]. LLE assumes that the data are linear in
small localities and uses the overall nonlinearly distributed data
to learn locally linear low-dimensional manifolds of arbitrary
dimension [26]. To overcome the out-of-sample problem caused
by the inability of the aforementioned algorithms to obtain an
explicit projection matrix, researchers have proposed a number
of linearized flow learning methods [27], [28], such as locality
preserving projections [29] and neighborhood preserving em-
bedding (NPE) [30]. However, the independence of these algo-
rithms limits the subsequent development of manifold learning,
so finding commonalities between algorithms becomes the focus
of future research.

A GE framework based on statistical or geometric theory
has been proposed to redefine many existing DR methods [31],
[32]. Based on this framework, representation learning has a
better scope in GE-based DR for HSI [33], [34], [35]. Ly et al.
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[36] applied the sparse representation to the GE framework and
proposed sparse graph discriminant analysis (SGDA), which
used the l1-norm as a constraint to query the low-dimensional
feature space. While the idea clarified the importance of sparsity
in the DR of GE, the geometric structure between the data may
not be well preserved. Cao et al. [37] proposed local and global
DR sparse representation, which calculated the distance between
training and testing samples through a unified metric matrix
to extract local and global features of the manifold, which can
effectively preserve the geometric structure of the data. Luo et al.
[38] proposed semisupervised sparse manifold discriminative
analysis using manifold sparse representations to construct intra-
and interclass graphs, as well as unsupervised graph, revealing
the advantages of sparse manifold properties of data. In addition,
Luo et al. [39] proposed multistructure unified discriminative
embedding using SR to construct intra- and interclass tangent
graphs with tangential information, and incorporate neighbor-
hood and statistical properties into the model to achieve comple-
mentarity of different features. However, solving the problem of
the l1-norm-based sparse representation was an iterative process,
which results in a significant amount of computational time and
operational costs [40], [41]. In [42], collaborative representa-
tion (CR) was shown to have better superiority compared to
sparse representation. Ly et al. [43] used l2-norm to construct a
collaborative graph based on SGDA and showed that the CR
is simple and effective. Liu et al. [44] added a competition
term to the CR model, and proposed collaboration-competition
preserving GE demonstrated the importance of local informa-
tion in feature extraction. Yang et al. [45] proposed CR-based
projections (CRPs) to fully extract the global features of the
data by maximizing the overall scattering matrix. Inspired by
the preceding approaches, Jiang et al. [46] proposed Laplacian
regularized CR projection (LRCRP) by further research, which
combined Laplacian local regular term with maximized total
scattering to fully utilize local–global features. However, all
the aforementioned studies are conducted in the spectral do-
main and ignore the spatial factor. Research is still needed to
fully exploit the manifold information in spatial and spectral
domains.

Spatial attention mechanism plays an increasingly significant
role in the field of hyperspectral DR [47], [48], [49]. Jiang et al.
[50] embedded spatial features into a CR model and constructed
a simple and effective classifier termed joint spatial-aware CR.
In fact, the classifier is constructed based on the GE framework,
so the model can be applied to DR to exploit spatial–spectral
features. Joint spatial-aware collaboration-competitive preserv-
ing GE with Tikhonov (JSaCCPGT) proposed by Shah and Du
[51] considered collaborative-competitive relationships where
multiple feature information was fully extracted to reveal the
inherent manifolds of the data. Zhang et al. [52] used homoge-
neous regions after superpixel segmentation to select suitable
nearest neighbors of each sample for local reconstruction, and
the proposed spectral–spatial and SuperPCA (S3-PCA) method
can effectively extract spatial and spectral, local and global in-
formation. Huang et al. [53] used weighted mean filters for noise
removal while a new spatial–spectral combination distance was
designed to explore in depth the spatial relationships between the

samples. The aforementioned studies demonstrate that the com-
bination of spatial and spectral features can effectively improve
the classification accuracy (CA) after DR. However, there may
be an upper performance limit on the single model itself, so that
even after combining multiple feature information, the accuracy
cannot be further improved. Therefore, it is necessary to take
into account the strengths and weaknesses of the models and to
investigate the models with different mechanisms in depth.

In this article, a new unsupervised GE-based DR model
termed multifeature structure joint preserving embedding (MFS-
PE) is proposed to make full use of multiple feature information
and to tackle the problem of underutilization of feature informa-
tion by a single model. MFS-PE improves the DR performance
by fusing two different GE models. Multiple feature information
is then combined in the new model to reveal the full essential
structure of the manifold. The main contributions of this article
include the following.

1) MFS-PE incorporates two GE models with different
mechanisms, which not only solves the performance up-
per limit of a single model, but also efficiently extracts
local and global features without adding regular terms. In
addition, the criterion of maximizing global scattering and
minimizing local scattering is applied to the new model to
enhance the local–global features.

2) In order to reduce the impact on the model when the num-
ber of samples is small, superpixel segmentation is added
to amplify the samples without labels, and use the labels
after superpixel segmentation for local enhancement to
further improve the model performance.

3) A new k-nearest neighbor (KNN) selection method is
devised to select more suitable neighbors. And three public
datasets are used to show the superiority of the proposed
method.

The rest of this article is organized as follows. Related work
is reviewed, including GE, CR, and superpixel segmentation, in
Section II. Section III illustrates in detail the principle of the
proposed MFS-PE method. The results of the experiment are
discussed in Section IV. Section V analyzes parameter selection.
Finally, Section VI concludes this article.

II. RELATED WORK

Let HSI data with M samples and N bands be denoted as
X = [x1,x2,x3, . . . ,xM ] ∈ RN×M . The objective of DR is
to mapX ∈ RN×M intoY = [y1,y2,y3, . . . ,yM ] ∈ Rd×M ,
where d � N is the low-dimensional feature space. When deal-
ing with linear DR methods, the low-dimensional embedding
feature matrix Y ∈ Rd×M is computed via explicit projection
Y = P T X , where P ∈ RN×d denotes the projection matrix.

A. GE Framework

The GE framework is a method for capturing the geomet-
ric properties of high-dimensional data for DR, which unifies
most classical feature extraction methods [31], [38], [54]. The
objective of GE is to describe statistical or geometric features
of the data by constructing an intrinsic graph G = {X,W }
and a penalty graph GP = {X,W P }, where X is the vertex
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set, and W ∈ RM×M and W P ∈ RM×M are the two weight
matrices [55], [56].

In GE, the similarity between samples in a high-dimensional
space can be represented by a graph in a low-dimensional space.
The optimal objective function of the GE framework can be
given by

min
tr (Y THY )= h

1

2

∑
i�=j

‖yi − yj‖2wij

= min
tr(Y THY )=h

tr
(
Y TLY

)
(1)

where h is a constant, L is the Laplacian matrix, and H denotes
the constraint matrix that prevents trivial solutions from occur-
ring. Typically, H can be set as a Laplace matrix of the penalty
graph GP , i.e., H = LP , then the Laplace matrices L and LP

are given by

L = D −W , Dii =

M∑
j �=i

wij , W = [wij ]
M
i,j=1 (2)

and

LP = DP −W P , DP
ii =

M∑
j �=i

wP
ij , W P =

[
wP

ij

]M
i,j=1

(3)

respectively, where D is a diagonal matrix, and the rest of the
position elements are zero.

B. Collaboration Graph Representation

The cooperative representation (CR) consisting of l2-norm
makes full use of the relationship between all training samples to
obtain a better weight graph [57]. For each training sample xi in
HSI, a typical corepresentation optimization objective function
is

min
wi

‖wi‖2 such that ‖xi −Xiwi‖22 ≤ ε (4)

whereXi ∈ RN×M−1 is the original training sample and serves
as the dictionary without the current reconstructed sample xi it-
self, ε > 0 is a tolerance, and wi = [wi,1,wi,1, . . . ,wi,M−1]

T

is the coefficient of CR for the ith sample with size of (M − 1).
By regularizing the constraints on the CR coefficients, the opti-
mal objective function can be reformulated as

argmin
wi

‖xi −Xiwi‖22 + λ‖wi‖22 (5)

in which λ is a hyperparameters to balance the contributions of
the regularization items.

By equating the first-order derivative to zero, the CR coeffi-
cient wi is calculated as

wi =
(
XT

i Xi + λI
)−1

XT
i xi (6)

where I represents an identity matrix of size (M − 1)×
(M − 1).

C. Superpixel Segmentation

Image segmentation is an important preprocessing process in
the field of computer vision and is widely used in many fields
due to its effectiveness and efficiency [57], [58], [59]. Superpixel
segmentation stands out in image segmentation for its lower
computational component and less data redundancy [60], [61].

The HSI, with its contiguous spectrum, provides a detailed
description of the richness of features but also presents problems
of data redundancy and high computational costs. Superpixels
form a homogeneous subgraph by aggregating a number of
pixels with similar characteristics in terms of texture, brightness,
etc., it can therefore be applied to HSI.

In [52], entropy rate superpixel segmentation provides supe-
rior performance in terms of both segmentation efficiency and
accuracy. It consists of two parts. The entropy rate of a random
walk on a graph contributes to the formation of homogeneous
and compact clusters, and the balance term drives the formation
of similarly sized subgraphs. An input image can be regarded
as a graph G = (V ,E), in which V and E denote the sets of
vertices and edges, respectively. Graphical construction can be
achieved by

max
A

ℋ (A) + λℬ (A) s.t. A ⊆ E (7)

where λ ≥ 0 is a scale parameter for adjusting the balancing
term, and A denotes the set of selected edges.

III. PROPOSED METHODS

In this article, MFS-PE method for unsupervised DR is pro-
posed, which can fully extract the various feature information
contained in the HSI and to overcome the problem of upper
limit on the performance of individual representation model.
MFS-PE first applies mean filtering to the original HSI data for
the purpose of removing random noise, and it designs a novel
spatial—spectral CR model. This model makes full utilization
of spatial–spectral and local–global feature information of sam-
ples to obtain better low-dimensional manifold collaboration
coefficients. Then, sample augmentation and local enhancement
for the model are achieved by superpixel segmentation of the
original HSI data, and the augmented samples are applied to a
local neighborhood model capable of extracting local geometric
structure, which can effectively exploit the neighborhood in-
formation. After that, the criteria of global scatter maximization
and local scatter minimization are applied to the aforementioned
two models to enhance the local–global features. Finally, the
spatial–spectral CR model and the local neighborhood model are
combined to learn an effective projection matrix. The flowchart
of the proposed MFS-PE method is shown in Fig. 1.

A. Spatial–Spectral CRP Model

Hyperspectral image sensors suffer from a lack of brightness,
uniformity of brightness, and interaction between components of
the circuit, which can lead to noise in the HSI data. In [62], joint
CR explains that mean filtering smooths HSI data and removes
random noise. Inspired by this, mean filtering is applied as a
preprocess to denoise the HSI data, which resulted in new marker
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Fig. 1. Flowchart of the proposed MFS-PE method.

symbols, such as x̃i and x̃, denoting the training samples and
all training data after preprocessing, respectively, as represented
by

argmin
wi

‖x̃i − x̃iwi‖22 + λ‖Γwi‖22 + β‖diag (s)wi‖22 (8)

where λ and β are two regularization hyperparameters used
to balance the contribution of minimization between the two
regularization terms and the residual component. Here, Γ is the
Tikhonov matrix that represents the spectral distance between
the reconstructed sample x̃i and the dictionary x̃ given by

Γ =

⎛
⎜⎝
Γ1 · · · 0
...

. . .
...

0 · · · Γ(M−1)

⎞
⎟⎠

=

⎛
⎜⎝
‖x̃i − x̃i1‖2 · · · 0

...
. . .

...
0 · · · ‖x̃i − x̃i(M−1)‖2

⎞
⎟⎠ (9)

in which x̃i1, . . . , x̃i(M−1) are the columns of matrix x̃i, and
s = [s1, s2, . . . , sM−1] is spatial distance between points x̃i1

and x̃ij(j = 1, 2, . . . ,M − 1) with pixel coordinates (ai, bi)
and (aij , bij) calculated as s = [dist((ai, bi), (aij , bij))]

t with
t being the parameter of smoothing.

However, the spatial–spectral CR model is globally scoped
to reconstruct the training sample x̃i, which allows samples far
away from x̃i to also play a significant role, which may lead
to decrease in model performance. To minimize the negative
impact from these samples, we introduce superpixel labels (men-
tioned later), which can reconstruct x̃i much better if other sam-
ples have the same superpixel label as the reconstructed sample

Fig. 2. Local enhancement.

(i.e., they are within the same superpixel block), and conversely,
if these sample has a different label from x̃i, then by setting its
distance to the maximum of the distance of all samples from x̃i

to perform local enhancement. Fig. 2 represents the principle of
local enhancement, where Γ7 and s3 denote the farthest spectral
and spatial distances from sample i, respectively. The new Γle

j

is defined as

Γle
j =

{‖x̃i − x̃ij‖2, if x̃i has the same label as x̃ij

max{‖x̃i − x̃i‖2}, otherwise
(10)

Γle =

⎡
⎢⎣
Γle
1 · · · 0
...

. . .
...

0 · · · Γle
M−1

⎤
⎥⎦ (11)

sle is also based on this principle: if x̃i has the same label
as x̃ij , then sle = [dist((ai, bi), (aij , bij))]

t ; otherwise, sle is
the maximum value of the distance between the reconstructed
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sample x̃i and all samples. Local enhancement based on super-
pixel labels shows strong performance when the KNNs are not
explicitly selected in the data of the Euclidean distance metric.

After local enhancement, by taking the derivative of the
coefficient vector wi by (8) and setting the inverse equation
to zero, we can obtain

−x̃T
i x̃i + x̃T

i x̃iwi + λΓle + βdiag
(
sle

)
= 0. (12)

The closed-form solution is

wi =
(
x̃T
i x̃i + λΓle + βdiag

(
sle

))−1
x̃T
i x̃i. (13)

Inspired by the work in [14], after deriving the CR graph
W = (w1, . . . ,wM ), the low-dimensional embedding pro-
jection can be obtained by simultaneously minimizing local
tightness given by

JL =
M∑
i=1

∥∥∥∥∥∥P T x̃i −
M∑
j=1

wijP
T x̃j

∥∥∥∥∥∥
2

= tr

⎛
⎝P T

⎛
⎝ M∑

i = 1

⎛
⎝x̃i −

M∑
j = 1

wijx̃j

⎞
⎠

×
⎛
⎝x̃i −

M∑
j = 1

wijx̃j

⎞
⎠

T
⎞
⎟⎠P

⎞
⎟⎠

= tr
(
P T

(
x̃ (I −W ) (I −W )T x̃T

)
P
)

= tr
(
P TSLP

)
(14)

where SL = x̃ (I −W −W T +WW T )x̃T denotes local
scattering matrix.

The total separability can be defined by

JT =

M∑
i=1

‖P T x̃i − P T x̃‖2

=

M∑
i=1

P T
(
x̃i − x̃

) (
x̃i − x̃

)T
P

= tr

(
P T

(
M∑

i = 1

(
x̃i − x̃

) (
x̃i − x̃

)T)
P

)

= tr
(
P TSTP

)
(15)

where ST =
∑M

i=1(x̃i − x̃)(x̃i − x̃)
T

, and x̃ is the mean of
training samples.

Similar to CRP, we minimize local tension and maximize
total differentiability for classification purposes, so the low-
dimensional embedding projection matrix P can be determined
as {

argmin
P

tr
(
P TSLP

)
argmax

P
tr
(
P TSTP

) . (16)

Fig. 3. Sample amplification.

B. Sample Augmented Neighborhood-Constrained Model

The susceptibility of the spectral profiles of HSI pixels to
the effects of instrumentation and external conditions resulting
in different spectral profiles for pixels of the same feature
will limit the subsequent application of HSI [63], [64], [65].
To overcome this problem, superpixel segmentation is used to
increase the number of training samples for constructing more
robust neighborhood-constrained graph and then designs a new
KNN selection method, which is able to select better neighbors.

1) Superpixel-Based Sample Amplification: As a prepro-
cessing step, the most informative first principal component was
obtained by principal component analysis (PCA) on the HSI data
to reduce segmentation costs. At first, the HSI data are split into
𝒦 superpixel subblocks by ERS. Then, the superpixel labels
resulted from image segmentation are used with local enhance-
ment of the spatial–spectral CR model, and calculate the mean
value of each subblock to represent the overall characteristics of
the block. After that, find the pixel with the smallest spectral
domain Euclidean distance between the mean point and all
points within each subblock. Finally, this pixel replaces the mean
value as the sample amplification point, which means that the
neighborhood-constrained graph has more robust stability. Since
the training samples are selected from the mean filtering process,
the index of the training samples is used to query the samples
corresponding to the original data, and the queried samples are
combined with the augmented samples to form the new training
samples. Therefore, the number of amplified samples becomes
M +𝒦, which resulted in new marker symbols, such as xsa

i

and Xsa, denoting the training samples and all training data,
respectively. The sample amplification process is illustrated in
Fig. 3.

2) Novel KNN Selection Method: Traditional KNN method
is generally based on spectral domain selection of neighbors.
To fully exploit the spatial features, a novel KNN selec-
tion method is proposed by using superpixels. First, for each
reconstructed sample i (i = 1, 2, . . . ,M +𝒦), calculate its
spatial Euclidean distance from other training samples Di =
[Dspa

1 , . . . , Dspa
M+𝒦]. Then, the spectral Euclidean distance be-

tween the block where the reconstructed sample i is situated and
other blocks is calculated based on the mean value of the su-
perpixel block defined as Si = [ Sspe

1 , . . . Sspe
i−1, 0, S

spe
i+1, S

spe
𝒦

].
Since the values of the HSI data after normalization are very
small, the spectral distance between each block will be much
smaller than the spatial distance between the training samples,
also the spectral distance between blocks indicates to some
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Fig. 4. KNN selection method.

extent the similarity between blocks. So, the spectral distance
between blocks is elegantly set as a scaling factor, which physical
meaning is that if the training sample in a superpixel block
is spatially distant from the reconstructed sample i, but the
Euclidean distance between that superpixel block and the su-
perpixel block in which the reconstructed sample is located is
close, then the spatial distance between the training sample and
the reconstruction sample is multiplied by the Euclidean distance
between the two superpixel blocks to obtain a scaled distance.
The significance of this method is that it improves the probability
that training samples, which are further away from the position
of the reconstructed sample, will be selected. It is worth noting
that if the number of training samples within the same superpixel
block as the reconstructed sample exceeds the value of k, then
the k neighbors are selected with high probability within that
block, to prevent the block from being unable to select nearest
neighbors. This is because the distances after multiplication
within the block are all zero, a very small value of 0.0001 is set as
the distance of the superpixel block to itself for query purposes,
soSi is redefined asSi = [ Sspe

1 , . . . Sspe
i−1, 0.0001, S

spe
i+1, S

spe
𝒦

].
Finally, the new spatial–spectral distances are sorted in ascend-
ing order to obtain a new order Oi = [Ospa∗spe

1 , . . . , Ospa∗spe
M+𝒦 ],

and select the k neighbors according to that order, which is
interpreted in Fig. 4.

3) Neighborhood-Constrained Graph: In the neighborhood-
constrained graph GN , the novel KNN selection method is ap-
plied to select the most suitable neighborhood for each training
sample. Then, the similarity weight wij between xsa

i and xsa
j

can be determined according to the following Gaussian kernel
function:

wij=

⎧⎨
⎩exp

(
−‖(xsa

i −xsa
j )‖2

2t2

)
, xsa

i and xsa
j are neighbors

0, otherwise
(17)

where 1
k

∑k
i = 1 ‖xsa

i − xsa
j ‖.

To fully capture the local feature information of the HSI,
the relationship between each point and its KNN in the

high-dimensional space should remain constant in the low-
dimensional space. The neighborhood optimization problem via
the similarity weight matrix can be formulated as

J (l) =

M+𝒦∑
i=1

k∑
j=1

‖ysa
i − ysa

j ‖2wij

=

M+𝒦∑
i=1

k∑
j=1

‖P Txsa
i − P Txsa

j ‖2wij

= tr

⎛
⎝P T

⎛
⎝M+𝒦∑

i = 1

k∑
j = 1

(
xsa
i −xsa

j

)
(xsa

i −xsa
j )Twij

⎞
⎠P

⎞
⎠

= tr
(
P TSP

)
(18)

where S =
∑M+𝒦

i=1

∑k
j=1(x

sa
i − xsa

j )(xsa
i − xsa

j )Twij , and
Y sa = [ysa

1 , . . . ,ysa
M+𝒦] is the local neighborhood scattering

matrix with a low-dimensional representation of Xsa after
sample augmentation.

In addition, total scattering matrix maximization is used to
improve separability using global features, which can be given
by

J (t) =
M+𝒦∑
i=1

‖P Txsa
i − P T x̄sa‖2ci

=

M+𝒦∑
i=1

P T (xsa
i − x̄sa) ci(x

sa
i − x̄sa)TP

= tr

(
P T

(
M+𝒦∑
i = 1

(xsa
i − x̄sa) ci(x

sa
i − x̄sa)T

)
P

)

= tr
(
P THP

)
(19)

where H =
∑M+𝒦

i=1 (xsa
i − x̄sa)ci(x

sa
i − x̄sa)T is the total

scatter matrix, x̄sa denotes the mean value of the amplified sam-
ple, and ci = exp(−‖xsa

i − x̄sa‖2/2tik) is the weight between
xsa
i and x̄sa.
By exploring the local neighborhood information in the low-

dimensional space and fully considering the global information,
the optimal projection matrix can be obtained as{

argmin
P

tr
(
P TSP

)
argmax

P
tr
(
P THP

) . (20)

The aforementioned two models can uncover the collabora-
tion and neighborhood structure relationships between pixels in
high-dimensional data, respectively. To solve the single model
performance upper limit problem, based on (16) and (20), a
MFS-PE method is proposed for HSI data DR. The method not
only extracts multiple feature information, but also combines the
collaborative model with the neighborhood-constrained model
to learn more efficient projections, and the optimal objective
function of MFS-PE can be designed as

J = min
P

tr
{
P T [αSL + (1− α)S]P

}
tr
{
P T [αST + (1− α)H]P

} (21)
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Algorithm 1: The Proposed MFS-PE.

Input: High-dimensional training samples X ∈ RN×M ,
training label t ⊂ RM , pre-set dimension of the
low-dimensional subspace d, the number of superpixel
blocks 𝒦, hyperparameters λ and β, trade-off
parameters α, testing samples X∗ ∈ RN×S , testing
label t∗ ⊂ RS .

Output: s = {Acc,P }
1. Pre-processing of all the training and testing samples

by average filtering;
2. Superpixel segmentation of the original HSI;
3. Calculation of the local scattering matrix and the

overall scattering matrix of the spatial-spectral CR
model by (14) and (15) and local enhancement;

4. Sample unlabeled amplification and selection of
spatial spectral k -nearest neighbours;

5. Calculation of the local scattering matrix and the
overall scattering matrix of the
neighbourhood-constrained model by (18) and (19);

6. Calculation of the projection matrix P by solving the
generalized eigenvalues (23);

7. Feature reduction for training and testing data by
Y = P T X and Y ∗ = P T X∗;

8. SVM-based classification in the resulting
low-dimensional feature space and return classification
accuracy Acc;

Return: s

where α ∈ [0, 1] is a tradeoff parameter that balances the con-
tributions of spatial–spectral CR model and sample augmented
neighborhood-constrained model. Then, the optimization prob-
lem of (21) can be transformed as{

min
P

P T [αSL + (1− α)S]P

s.t. P T [αST + (1− α)H]P = B
(22)

where B is a constant matrix.
The aforementioned problem can be solved by the Lagrange

multiplier method, and the solution can be obtained through the
following generalized eigenvalue problem:

[αSL + (1− α)S] pi = λi [αST + (1− α)H]pi (23)

in which λi and pi are the ith eigenvalue and eigenvector, re-
spectively. With the eigenvectors p1,p2, . . . ,pd corresponding
to the first d eigenvalues, the optimal projection matrix can
be represented as P = [p1,p2, . . . ,pd] ∈ RN×d. Then, the
low-dimensional feature Y can be represented as Y = P T X .
Algorithm 1 summarizes the pseudocode.

IV. EXPERIMENTAL RESULTS

In this section, eight sets of comparative experiments were set
up to validate MFS-PE on three mainstream HSI datasets (i.e.,
Houston, Dafeng Natural Reserve, and WHU-Hi-LongKou).

Fig. 5. Houston dataset. (a) False color image. (b) Ground truth.

Fig. 6. Dafeng Natural Reserve dataset. (a) False color image. (b) Ground
truth.

A. Dataset Description

1) Houston Dataset: This dataset is acquired by the Compact
Airborne Spectrographic Imager over the Houston university
campus and surroundings in June 2012. The Houston data are
introduced in GRSS Data Fusion Contest 2013 [66], and it
consists of 3449 × 1905 pixels with 144 bands. The amount of
surface material available of this dataset is 15, and has a spatial
resolution of 2.5 m. The scene in false color and corresponding
ground truth are shown in Fig. 5.

2) Dafeng Natural Reserve: This dataset is located in
Yancheng, a coastal city in Jiangsu Province, China [67]. It
is a wetland dataset geographically located between latitudes
32° 56′–33° 36′ N and longitudes 120° 42′–120° 51′ E. The
Dafeng Natural Reserve dataset is acquired by GF-5, it has a
pixel size of 986× 632 and contains a total of 9 types of features.
After removing the 75 bad bands, the remaining 256 bands are
used for subsequent experiments. The scene in false color and
corresponding ground truth are shown in Fig. 6.

3) WHU-Hi-LongKou: The WHU-Hi-LongKou dataset is
captured by the Headwall Nano-Hyperspec imaging sensor in
LongKou Town, Hubei Province, China, in July 2018 [68]. The
dataset has a spatial resolution of 0.463 m and contains 270
bands in the wavelength range of 0.4 to 1 μm. This dataset is
an agricultural scene with a total of 9 surface materials. The
scene in false color and corresponding ground truth are shown
in Fig. 7.
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Fig. 7. WHU-HI-LongKou dataset. (a) False color image. (b) Ground truth.

B. Experimental Setup

In our experiments, randomly divide the HSI data into a
training set and a testing set. For the Dafeng Natural Reserve and
WHU-Hi-LongKou datasets, 30 samples per class are randomly
selected as training samples, and for the Houston dataset, 20
samples per class are selected as training samples. The training
set is used to learn the DR model and the testing set is chosen to
validate of the model. The low-dimensional testing samples are
then classified using a support vector machine, and finally the
effectiveness of the algorithm is assessed by five metrics: CA per
category, overall classification accuracy (OA), average classifi-
cation accuracy (AA), Kappa coefficient (KC), and computation
time (in seconds).

In the experiments, the proposed MFS-PE is compared with
some of the most advanced DR algorithms, including NPE LR-
CRP, JSaCCPGT, S3-PCA, PCA [69], collaboration preserving
GE (CPGE) [39], block collaborative graph-based discriminant
analysis (BCGDA) [70], and spatial–spectral manifold recon-
struction preserving embedding (SSMRPE) [48]. For PCA,
NPE, CPGE, BCGDA, and LRCRP, these five algorithms are
all spectral-based DR methods, where BCGDA is enabled to
use the labeled information of the samples to enhance manifold
discrimination, and LRCRP combines minimizing local scat-
tering with maximizing total divisibility to obtain the optimal
projection matrix. For JSaCCPGT, S3-PCA, and SSMRPE al-
gorithms, spatial features are fully taken into account. Of these,
JSaCCPGT applies the data removed from noise by mean filters
to a CR model with multiple feature constraint terms to obtain
an optimal low-dimensional manifold space, S3-PCA performs
spatial–spectral reconstruction of samples from each homoge-
neous region after superpixel segmentation and performs both
global and local PCA to extract multiple feature information, and
SSMRPE performs weighted mean filters on HSI, which designs
a combined distance to capture spatial and spectral information
and adjust the reconstruction weights. To make the results more
reliable, the number of KNN for NPE, S3-PCA, and MFS-PE is
set to 7, and the window size is set to 7 for JSaCCPGT, SSMRPE,
and MFS-PE.

C. Classification Results

To compare the classification results of various DR algorithms
on three datasets, the training set is randomly selected from 30
samples per class on the Dafeng Natural Reserve dataset and

WHU-Hi-LongKou dataset, and 20 samples per class on the
Houston dataset, and the testing set consists of the remaining
samples. Tables I–III represent the classification results for each
of the three datasets, and Figs. 8–10 represent the relevant
classification maps for the entire scenes of the three datasets.

In Table I, the combined spatial–spectral methods—
JSaCCPGT, S3-PCA, MMSRPE, and MFS-PE—have better
classification results on the Houston dataset than algorithms
that only consider spectral information, such as NPE, CPGE,
and BCGDA. Algorithms that consider both local and global
features, i.e., S3-PCA and MFS-PE, are able to distinguish
each feature class better than other DR methods. The proposed
MFS-PE method has better classification results for most classes
and achieves the best AA, OA, and KC. This indicates that
MFS-PE constructs a robust graph that can efficiently extract
spatial–spectral features and local–global features to reveal the
internal manifold structure of the HSI. The results of the accu-
racy evaluation in Table I are accordingly reflected in Fig. 8.

Table II shows the classification results for the Dafeng Natural
Reserve dataset. In most classes, MFS-PE provides the best CA
and achieves the best AA, OA, and KC. As shown in Fig. 9,
compared to other methods, MFS-PE is able to smoothly denoise
the HSI data without loss of feature detail, which indicates that
combining the two embedding models is not only effective in
constructing adjacency graph, but also produces better maps of
classification results.

Table III reports the classification results of the nine DR
methods on the WHU-Hi-LongKou dataset, with S3-PCA and
MFS-PE being well ahead of the other algorithms in terms of
AA, OA, and KC, whereas the proposed algorithms can spend
less time cost to obtain higher accuracy. The results illustrate
that the combination of multiple feature information applied to
DR is extremely effective, which can result in a more robust
projection space. In the classification map shown in Fig. 10,
MFS-PE is able to effectively remove noise while retaining as
much detail as possible in the features.

In conclusion, the proposed MFS-PE algorithm not only fully
considers local–global features and spatial–spectral features,
but also combines two DR models to solve the upper limit of
single model classification performance, which can effectively
construct robust graph to fully exploit the intrinsic structure of
HSI data and obtain better classification maps.

V. DISCUSSION

In this section, selection of some key parameters is adjusted.
First, in the spatial–spectral CRP model, the spectral and spatial
regularization parameters λ and β need to be adjusted, then the
number of superpixel blocks 𝒦 used for local enhancement
and sample augmentation is analyzed, as well as the balance
parameter α when integrating the two models with different
mechanism. Next, the reduced subspace d is analyzed to obtain
the optimal dimensionality. Finally, the effectiveness of the
proposed local enhancement and KNN selection method are
demonstrated. The training set is randomly selected from 30
samples per class on the Dafeng Natural Reserve dataset and
WHU-Hi-LongKou dataset, and 20 samples per class on the
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TABLE I
CA FOR THE HOUSTON DATASET

Fig. 8. Classification results of all samples from the Houston data. (a) False color image. (b) PCA. (c) NPE. (d) CPGE. (e) BCGDA. (f) LRCRP. (g) JSaCCPGT.
(h) S3-PCA. (i) SSMRPE. (j) MFS-PE.

Houston dataset, and the testing set consists of the remaining
samples.

A. Analysis of Regularization Parameters λ and β

The classification performance of the proposed MFS-PE is
seriously affected by the different regularization parameters λ

and β, to evaluate algorithm performance, the parameters λ and
β are tuned with a set of {0.0001, 0.001, …, 1}. Fig. 11 shows
the CA with different regularization parameters λ and β.

From Fig. 11, we can see that the parameters λ and β have a
significant impact on the classification performance of MFS-PE,
indicating that both Tikhonov regularization with local enhance-
ment and regular terms with spatial characteristics help the
spatial–spectral CR model to obtain more robust collaboration
coefficients to construct the graph. Based on the experimental
classification results, we set λ and β to 0.001 and 0.01 for the
Houston dataset, 0.01 and 0. 01 for the Dafeng Natural Reserve
dataset, and 0.001 and 0.01 for the WHU-Hi-LongKou dataset
to obtain the best accuracy.
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TABLE II
CA FOR THE DAFENG NATURAL RESERVE DATASET

Fig. 9. Classification results of all samples from the Dafeng Natural Reserve data. (a) False color image. (b) PCA. (c) NPE. (d) CPGE. (e) BCGDA. (f) LRCRP.
(g) JSaCCPGT. (h) S3-PCA. (i) SSMRPE. (j) MFS-PE.

TABLE III
CA FOR THE WHU-HI-LONGKOU DATASET
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Fig. 10. Classification results of all samples from the WHU-Hi-LongKou data. (a) False color image. (b) PCA. (c) NPE. (d) CPGE. (e) BCGDA. (f) LRCRP.
(g) JSaCCPGT. (h) S3-PCA. (i) SSMRPE. (j) MFS-PE.

Fig. 11. Classification results with different regularization parameters λ and β. (a) Houston. (b) Dafeng Natural Reserve. (c) WHU-Hi-LongKou.

Fig. 12. Classification results of MFS-PE with different number of superpixel blocks. (a) Houston. (b) Dafeng Natural Reserve. (c) WHU-Hi-LongKou.

B. Analysis of Number of Superpixel Segmentation Blocks 𝒦

To analyze the effect of different numbers of superpixels on
classification performance, the number of segmentation blocks
𝒦 needs to be analyzed. Evaluate three datasets by setting the

number of superpixel blocks {1, 50, 100, 200, 300, . . . , 900}.
Experiments were conducted with trade-off parameter α set to
0.5 to ensure that the graphs constructed by both models had
the same weights. Fig. 12 shows the CA of different superpixel
blocks.
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Fig. 13. Classification results of MFS-PE with different tradeoff parameter α. (a) Houston. (b) Dafeng Natural Reserve. (c) WHU-Hi-LongKou.

As shown in Fig. 12, CA is influenced by the number of
superpixel segmentation blocks. When the number of superpix-
els is 1, the HSI is considered to be not segmented, so both
sample enhancement and local enhancement do not operate.
As the number of superpixel blocks increases, OA tends to
increase and then decrease. The reason for this is that as the
number of blocks increases from 1, sample enhancement and
local enhancement work together to increase the accuracy until
it reaches its maximum. However, as the number of blocks
continues to increase, the effect of local enhancement begins
to diminish, when fewer training samples have the same su-
perpixel labels as the reconstructed samples, resulting in the
spatial–spectral distance of most training samples from the
reconstructed samples being set to a maximum, which directly
affects the construction of spatial–spectral CR graph. Since the
amplified samples are not labeled, the improvement in accuracy
from sample enhancement does not improve significantly even if
the number of superpixel blocks continues to increase. Thus, the
accuracy tends to decrease mainly due to local enhancements.
In subsequent experiments, to balance local enhancement with
sample unlabeled sample augmentation for optimal classifica-
tion, the number of superpixel blocks is set to 300 for the Houston
dataset, 300 for the Dafeng Natural Reserve dataset, and 200 for
the WHU-Hi-LongKou dataset.

C. Analysis of Tradeoff Parameter α

In the experiment, the tradeoff parameter α is able to balance
the contribution between the spatial–spectral CR graph and the
sample augmented neighborhood-constrained graph. Thus, α
largely influences the classification performance of MFS-PE.
To obtain the best classification results, tradeoff parameter α is
chosen within a set of {0, 0.1, 0.2, …, 0.9, 1}. When α is 0 or
1, it indicates the use of single neighborhood constrained model
or spatial–spectral CR model, respectively. Fig. 13 shows the
effect of different parameters α on the CA of MFS-PE.

According to Fig. 13, the accuracy tends to rise and then
fall as α increases, indicating that the combination of the two
graphs contribute to the CA. To achieve the best classification
performance, α is set to 0.4 for the Houston dataset, 0.3 for
the Dafeng Natural Reserve dataset, and 0.5 for the WHU-Hi-
LongKou dataset in the following experiments.

D. Investigation of Embedding Dimension d

For the aforementioned DR algorithm, the embedding dimen-
sion d represents the number of effective features to be retained,
and therefore the size of d determines how well the classifi-
cation performs. In Fig. 14, the effect of different embedding
dimensions d on the CA is analyzed.

Some conclusions can be drawn from the three datasets that
follow Fig. 14. As d increases from 1 to 40, the overall classi-
fication accuracy of all DR methods tends to increase first and
then smooth out. This indicates that more embedding features
can retain richer discriminative information, resulting in more
robustly constructed graphs and better classification results.
However, due to the limited number of training samples, the
manifold information between samples is limited, so an increase
in d causes OA to peak and then remain stable. Considering all
DR methods for the three datasets, the OA reaches a maximum
for embedding dimensions d greater than 20. All methods are
compared down to 30 dimensions by CA.

E. Effectiveness Analysis of New KNN Method

In order to demonstrate the effectiveness of the proposed KNN
selection method, the superpixel-segmentation-based KKN
method is compared with the traditional spectral-domain-based
KNN method, and Fig. 15 shows the OAs of the two methods.

From the figure, it can be seen that the proposed KNN method
has different degrees of improvement compared to the traditional
method on all three datasets with equal K values. This suggests
that there is a relationship between the spectral similarity of
different blocks of superpixels and the spatial location of the
samples, and that a clever combination of them can lead to the
selection of more useful nearest neighbors.

F. Effectiveness Analysis of Local Enhancement

To demonstrate the effectiveness of the local enhancement
method, the experiments were validated under conditions with
and without local enhancement, and Fig. 16 shows the OAs in
both cases.

As shown in Fig. 16, with the use of local enhancement,
the CA of the three datasets is improved by about 1% over
that without local enhancement. This indicates that not all the
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Fig. 14. Classification results with different embedding dimensions d. (a) Houston. (b) Dafeng Natural Reserve. (c) WHU-Hi-LongKou.

Fig. 15. Effectiveness analysis of the proposed KNN method.

Fig. 16. Effectiveness analysis of local enhancement.

remaining training samples are useful when constructing the
spatial–spectral CR graph for each training sample, and the
weights of certain training samples, though small, still have
bad effects. Therefore, more robust graph can be constructed
efficiently by forcing the weights of these samples that play side
effects to a minimum.

VI. CONCLUSION

This article proposes an unsupervised DR method that can
fully take into account multiple feature information. Specifi-
cally, two GE models are combined to explore the collaborative
relationships and local features between the HSI data to solve
the performance upper limit of the single model. Then, sam-
ple augmentation and local enhancement are achieved through
superpixel segmentation to improve the stability of the new
model. Finally, a new KNN selection method is designed to
select more suitable neighbors. However, the proposed MFS-PE
method is performed without using the label information of
samples. In practical applications, the class label information of
the samples usually plays a large role. Therefore, the algorithm
will be extended to semisupervised or supervised versions with
available label information in the future research.
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