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Detecting Clouds 1in Multispectral Satellite Images
Using Quantum-Kernel Support Vector Machines

Artur Miroszewski ¥, Jakub Mielczarek
Bertrand Le Saux

Abstract—Support vector machines (SVMs) are well-established
classifiers that are effectively deployed in an array of classification
tasks. In this article, we consider extending classical SVMs with
quantum kernels and applying them to satellite data analysis.
The design and implementation of SVMs with quantum Kkernels
(hybrid SVMs) are presented. Here, the pixels are mapped to the
Hilbert space using a family of parameterized quantum feature
maps (related to quantum kernels). The parameters are optimized
to maximize the kernel-target alignment. The quantum Kkernels
have been selected such that they enable the analysis of numer-
ous relevant properties while being able to simulate them with
classical computers on a real-life large-scale dataset. Specifically,
we approach the problem of cloud detection in the multispec-
tral satellite imagery, which is one of the pivotal steps in both
on-the-ground and on-board satellite image analysis processing
chains. The experiments performed over the benchmark Landsat-8
multispectral dataset revealed that the simulated hybrid SVM
successfully classifies satellite images with accuracy comparable
to the classical SVM with the radial basis function kernel for large
datasets. Interestingly, for large datasets, the high accuracy was
also observed for the simple quantum kernels, lacking quantum
entanglement.

Index Terms—Cloud detection, kernel methods, quantum
machine learning (QML), remote sensing.
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1. INTRODUCTION

ATELLITE imaging plays an increasingly important role in
S various aspects of human activity. The spectrum of appli-
cations ranges from cartographic purposes [1], [2] through me-
teorology [3], ecology, and agronomy [4] to security and urban
monitoring [5]. Consequently, dozens of terabytes of raw imag-
ing data are generated daily from satellite constellations, such
as those built within the European Copernicus Programme. The
large volume of multi- or hyperspectral images, which capture
the detailed characteristics of the scanned materials, makes them
difficult to transfer, store, and ultimately analyze. Therefore,
their reduction through the extraction of useful information is a
critical issue in real-world applications. An important step in the
data analysis chain of optical satellite data is the identification
of clouds. The interest is twofold: on the one hand, such cloudy
regions can be removed from further processing, as the objects
of interest are likely to be obscured. On the other hand, efficient
detection of cloud cover on the Earth’s surface is important in
meteorological and climate research [6]. Since the reduction
is performed on a huge amount of raw data, the efficiency of
this process is a key factor in practice. Therefore, it is reason-
able to search for new methods to analyze such huge datasets,
improving image data classification into clear and cloudy
areas.

One of the most promising directions is the application of
quantum algorithms executed on quantum computers. Quantum
computing methods hold the potential to improve significantly
both the time and accuracy performance of various data analysis
tasks. For example, it has been theoretically proven that solving
the linear set of equations can be exponentially sped up com-
pared to the best classical algorithms [7]—This task is known to
play a significant role in the data analysis. Moreover, quantum
algorithms have shown promise in improving the accuracy of
data analysis tasks, such as classification problems [8]. In this
context, the emerging field of quantum machine learning (QML)
[9] may play a crucial role in further advancing the development
of quantum computing and its applications in data analysis. The
field of QML encompasses a range of approaches that intersect
quantum computing with machine learning (ML). Among the
most studied methods in QML are the quantum extensions of the
support vector machine (SVM) algorithms [10], quantum-kernel
methods [11], variational quantum classifiers [8], quantum con-
volutional neural networks [12], quanvolutional neural networks
[13], and quantum principal component analysis (PCA) [14].
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These methods utilize quantum computing to develop more
powerful and efficient algorithms for various ML tasks.

In this article, we follow this research pathway and propose
to exploit quantum-kernel SVMs to tackle a fundamental task
of cloud detection in satellite images, being the “hello, world”
problem in Earth observation, which has been already widely
researched in [6], [15], and [16]. Yet, building accurate and
efficient cloud detection algorithms is of paramount practical
importance, as it can help significantly reduce the amount of
image data for on-board analysis or downlink by pruning cloudy
areas, which may not convey any useful information to the
end users, hence it can be interpreted as an on-board smart
compression technique [17]. Ultimately, being able to show the
usefulness of QML in such a fundamental issue would indicate
the importance of such techniques for the whole field of remote
sensing, and secondly, pave a way for other, more specialized
applications of QML in the field.

A. Contribution

In this article, we investigate the possibility of using QML
algorithms in the field of satellite data analysis. As the field
of QML is yet much less developed than classical ML, we
turn our attention to one of the most fundamental but crucial
problems in space-borne remote sensing—cloud detection. The
cloud detection problem can be addressed with the most explored
QML approaches. As already mentioned, the problem is not
only of academic interest but plays an essential role in satellite
data reduction. Moreover, not only is cloud detection of great
importance in satellite data reduction, but it also serves as a
valuable benchmark for quantum computing methods due to the
availability of numerous high-quality datasets. Even though it is
still in its infancy, the potential of quantum computations might
be a game changer for such applications (see [18], [19], [20],
and [21]).

Specifically, we compare the classification performance of a
classical SVM and its quantum extensions employing quantum
kernels.! The approach of quantum extensions of SVMs taken
in this article belongs to the classical-quantum class [22] of ML
algorithms. In this class, algorithms rely on the advantages of
quantum computation in order to improve classical ML methods.
The specific realization of the classical-quantum routine is called
an implicit quantum classifier [8], [23]. There are theoretical
arguments [8], [24], [25] that some relevant quantum kernels
are hard to evaluate on a classical computer. Therefore, if they
provide an advantage in classification accuracy, this would ad-
vocate a strong use case for quantum computing methods. In
this article, a family of quantum kernels has been selected such
that both the role of quantum entanglement can be investigated
and the quantum kernels can be studied for complex datasets.

Additionally, to get a deeper understanding of the quantum-
kernel methods and show their usefulness in practice, it is pivotal

Note that the quantum SVM (QSVM)[10] algorithm has theoretically been
proven to exhibit exponential speedup over the classical SVM. However, the full
application of the algorithm requires many qubits, being of the order of the size
of the training set. This is not the case for the hybrid SVM approach (with the
quantum kernel) considered here.
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to focus on widely adopted image data corresponding to real use
cases. Thus, we tackle the cloud detection task in satellite image
data, which is one of the most important processing steps for
such imagery. Our experimental study was performed over the
benchmark multispectral image data acquired by the Landsat-
8 satellite revealed that SVMs with quantum kernels offer a
classification accuracy at least comparable to classic radial basis
function (RBF) kernel SVMs.

B. Structure of This Article

The rest of this article is structured as follows. In Section II-A,
we discuss the theory behind SVMs, quantum-kernel methods,
and kernel-target alignment. The proposed hybrid SVMs are
presented in Section III. In Section IV, we report and discuss the
results of our experimental study. Finally, Section V concludes
this article.

II. THEORY

This section provides a gentle introduction to SVMs (see
Section II-A). Additionally, we present the background behind
the quantum-kernel methods (see Section II-B) and kernel-target
alignment (see Section II-C)—These concepts are exploited in
our hybrid SVMs for multispectral satellite data analysis.

A. Support Vector Machines (SVMs)

In binary classification, we assign one of two labels, conven-
tionally {—1,1}, to each datum in a set based on its features.
Considering the data in terms of points occupying a feature
space, the problem can be thought of as dividing the said feature
space so that each of its two parts contains only one class of
data points. There are a plethora of supervised ML classifiers
for this task, with SVMs being one of the most widely used
and well-established in the field, already exploited in an array
of pattern recognition and classification tasks [26]. In SVMs,
based on training data, a hyperplane is found, defined by its
normal vector w and offset b, such that for any training datum
x; and its label y;, we have

yi(w-xz; —b) > 1. (D

In order to decrease the risk of new data being misclassified, one
also aims to maximize the margin 2/||w||?, that is, the distance
between the two-class vectors 1. Having found a separating
hyperplane, it can be observed that it is defined by a (usually a
very small) subset of training vectors, called the support vectors,
satisfying either wx — b =1orwz — b= —1.

The aforementioned formulation leads to a hard-margin
SVM, disallowing for any points to fall inside the margin. This
makes it impossible to train the classifier on linearly nonsep-
arable data. However, a soft-margin SVM can be introduced
by allowing each datum z; to deviate by &; from satisfying the
conditions in (1), obtaining a new set of conditions

yi(wx; +b) > 1-&,. 2
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For an N-element training set, the optimization problem at
which one arrives is in its dual form given by

N N
.. 1
maximize: Zai ~5 Z o0y Y (T, )
i=1 ij=1
subject to: Zyiai =0,0<; <C 3)
i

where C' > 0 is the regularization parameter that specifies the
impact of values &; on the cost function. Then, the decision
function for classifying new data x takes the form of

N
f(x) = sgn (Z yioi{x, ;) + b) . 4)

=0

Observe that both training and test phases do not depend
directly on the data points z;, but on the overlap between
points calculated with inner product. If we introduced a different
similarity measure between points, the procedure would not
change. Therefore, an SVM lends itself to the use of the kernel
trick. With a nonlinear transformation ¢ chosen, any potential
occurrences of (¢(x;), ¢(z;)), the inner product of two data
points in a higher dimensional space, can instead be replaced
with the value of a kernel function k(z;, ;). This leads to the
objective of the optimization problem, being

N

N
1
z)w_§§:%%wwmﬁwﬂ ®)

i=1 ij=1

and the decision function

N
f(z) = sgn (Z yicik(z, ;) + b) (6)

=0

for a specified kernel function k.

Although there are numerous kernels already deployed in
SVMs in various applications [26], [27], the RBF kernel is
particularly widely used in SVMs [28]. The similarity measure
for this kernel is given as

R(wy,xy) = el (7)

The RBF kernel is known for its extremely high flexibility
(its Vapnik—Chervonenkis [29], [30] dimension is infinite) and
good generalization properties. Additionally, the RBF kernel is
convenient to fine tune, as it has only one parameter (the width
of the kernel ), which is commonly optimized together with the
regularization parameter C'. This is particularly important due
to the high time and memory complexity of the SVM training,
depending on the training set size. Hence, grid searching a large
solution space may easily become infeasible to optimize the
kernel hyperparameters. There are, however, fast approaches
toward optimizing the training sets, kernel parameters, and sub-
sets of feature sets for SVMs, which effectively exploit heuristic
techniques to accelerate this process [26].

7603

B. Quantum-Kernel Methods

The central motivation for utilizing quantum computational
methods in SVM kernels is to take advantage of the exponen-
tially large target space 7. This can lead to better separability
of the data. When considering the implementation of quantum-
kernel methods, a principal question that quickly arises pertains
to the way in which classical input data will be loaded into the
quantum circuit. In general, the objective will be to construct a
unitary operator for each input datum x, such that applying it
to the initial quantum zero state leaves us with a specified rep-
resentation of z. Considering an example of a 1-qubit quantum
circuilt

Us(@)|0) = |¢(x))- ®

This process is called quantum embedding, while such transfor-
mation Uy, induces quantum feature map |¢(x)). In perform-
ing quantum embedding of a classical datum on n qubits, we
effectively map it into a 2"-dimensional Hilbert space

Up(a) 10)°" = [¢(x)) € (C?)*" = . )

Some simpler, dimension-preserving examples of concrete
feature maps may be recalled. One such method, which is
referred to as the amplitude embedding, results in the quantum
state with probability amplitudes corresponding to the compo-
nents of the normalized input data vector. Let x € R", then its
quantum-embedded form will become

1 <
[v) = m ;xz |4)

where |4) is the ith Z-basis state. Another noteworthy approach
is basis embedding, which, in turn, considerably increases the
dimension of the data, resulting in a state that is not in super-
position. It builds on intuition brought by the analogy between
classical binary sequences and corresponding z-basis states

(10)

2= [b1...ba]T, b; € {0,1}. an

However, it is the ability to directly operate on complex
high-dimensional data stored in qubits that makes quantum
computing promising in the realm of data classification. There-
fore, commonly used feature maps aim to increase the dimen-
sionality of input data while also exploring the possibilities
provided by quantum entanglement and superposition. Such
methods of quantum embedding are introduced and discussed in
Section III-A.

Considering a collection of quantum states obtained by means
of applying a feature map to different classical input data, it is
straightforward to reason about them in terms of kernel methods.
Kernel K in regards to any two embedded classical data x1, x2
can be defined as the fidelity between the resulting quantum
states

K(xnxj) = | <¢($i)\¢($j)> |2~

Such kernel K is known as a quantum kernel, or a quantum
embedding kernel.

12)
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Fig. 1. Quantum circuit for estimating (U (z;)|U () [see (14)], with z;;, x;
embedded using an n-qubit U operator, with the use of the circuit inversion
method.

Taking into account that for any quantum state |¢)) € C2",
only (0™[¢) could trivially be estimated with the use of Z-basis
measurement, a method for realizing the estimation presented
in (12) needs to be selected. A well-known approach would
be to employ the swap test, which can further be extended to
allow fidelity estimation of two n-qubit states [31]. However,
this comes with the requirement of having 3n qubits available:
n qubits for each of the quantum states being compared and n
ancilla qubits. In a similar vein, a modification of the Hadamard
test can be made by extending the circuit with an n-qubit register
and preceding the controlled application of U(x;) with the
application of U(xz;) to the new register, conditioned on the
ancilla qubit being |0). For such a circuit, the fidelity can be
derived from measuring the final state of the ancilla qubit

p([0)) = 2+ 2Re (Uixj)\U(xl))

This approach reduces the number of required qubits to 2n + 1
but, in turn, requires us to be able to construct the controlled
version of U(z), the unitary that embeds the classical datum z
into n qubits.

Finally, if the state |¢)) is the result of applying U (x;) |0™),
not unlike the ones in Havlicek’s formulation of a hybrid SVM
[8] employed in this work, the fidelity between two states
|U(x;)),|U(x;)) can be simply derived by concatenating to the
existing circuit the Hermitian conjugate of the transformation
U(x;) and performing Z-basis measurement on all qubits (see
Fig. 1), yielding

13)

(U (2)|U(2:)) = P(|0")) = (0"|U" (2;)U (:)]0") . (14)

C. Kernel-Target Alignment

Using blindly a huge size of the target Hilbert space .77
in order to rigidly embed the classical data can backfire on
the resulting classification performance. First, one can easily
overfit the model leading to the poor generalization performance.
Second, in the high-dimensional space, almost all vectors are
orthogonal to each other, causing the vanishing of fidelity based
kernels [see (12)] and possible untrainability of the learning
models [32]. Therefore, one should look for a tradeoff be-
tween the size of the quantum embedded feature space and
the aforementioned obstructions. It has been proposed [32],
[33] to introduce additional, variational hyperparameters to the
quantum feature maps to calibrate them for the specific learning
task. Those hyperparameters can be chosen by maximizing a
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function called kernel-target alignment, which we introduce in
the following.

For a given set of data {x1,...,2y}, a kernel function can
be represented through a Gram matrix

K(zi,x5) = Kij. (15)

Each entry in the aforementioned matrix indicates the mutual
similarity for the data points x; and x;. Consider a kernel
function

Ra) =4 0
Tiy i) =
e —1, if x; and x; are in different classes.

if x; and x; are in the same class

It shows a clear distinction between classes of data points. If one
could construct a feature map that gives rise to the aforemen-
tioned kernel function, then one would obtain the perfect SVM
performance. Therefore, K is called the ideal kernel. As SVMs
are supervised learning models, for a given training data, one
can use data point labels to construct the ideal kernel matrix

Kij = yiy; (16)
where y;,y; € {+1, —1} are the labels of the data points z;, .
In general, in almost every situation, one will not be able to
find the exact feature map, which gives rise to the ideal kernel.
Therefore, parameterized families of feature maps are used
to optimize the resulting kernel matrix in such a way that it
resembles the ideal kernel as closely as possible.

To compare two kernel matrices, one can use the matrix
alignment given as

<K13 K2>F
VK1, K1) p(Ky, Ko p

where (K, Ko)p = Tr{KT K} is a Frobenius inner product.
One can utilize the matrix alignment A to create a smooth
function of kernel function parameters, which measures the
similarity between the specific and ideal kernel matrices. It is
called kernel-target alignment

A(Ky, Ks) = a7

>_ij i

\/(Zij ng) (Zij %2%2) .

As expected, the kernel-target alignment correlates with the
performance of the classifier [34], [35], and it is commonly
used in the model selection process. Denoting kernel families
obtained from the parameterized feature maps as K (6), where
0 is a hyperparameter (or a set of hyperparameters), we can
express the kernel optimization task as

max T(K(0)).

T(K)=AK,K) = (18)

19)

III. METHODS

This section presents the introduced hybrid models, which
are exploited for multispectral data analysis (see Section III-A).
Additionally, we discuss our approach for reducing the SVM
training sets in Section III-B—This step is pivotal to enable us
to train SVMs from massively large Earth observation data.
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Fig. 2. Layers with which we construct circuit architectures. (a) Data encoding layer S. The data rescaling parameter is set fixed w = 7 throughout this article.
(b) Variational layer W. During the kernel-target alignment optimization phase, 3 - n independent parameters (wo, - - - ,wWn—1;00, ..., 0p_1; 90, ..., Pn_1) are
varied for each W layer. (c) Entangling variational layer E. It consists of W variational layer followed with entangling gates. Therefore, it inherits 3 - n independent
variational parameters from W layer. For discussion of the layers, refer to Section III-A.
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Fig. 5. Overall test accuracy (Acc) of learning models for different training
sample sizes N. The classical SVM models are shown with triangular markers,
while hybrid models are shown with circular markers.

Fig. 3. Location of each 38-Clouds dataset training and test scene.

Ling RBE, WS,

To
s{\v’.{}i & SRR K
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Fig. 6. Box plots of the ratio of the number of support vectors (#SV) and the
size of the training set (V) obtained for the Ling, RBF,, and WS4 SVM models
over all 20 independent executions for each N. Each rectangular box shows IQR
of data points, with median indicated by the orange horizontal bar. The whiskers
extend to the extreme data points within 1.5 IQR from the rectangular box. The
outliers are marked with circles.

' such a map, each feature is encoded into different quan-

. b .'.P‘.“‘ tum register, therefore, the number of features ultimately
equals the number of qubit registers n = m.

Fig. 4. SLIC superpixel segmentation applied to the 38-Cloud training patch. 2) Variational layer W [see Fig. 2(b)]—The parameterized

Yellow lines indicate the borders of the segment. arbitrary rotations of each qubit. Each W layer introduces

3 - n variational hyperparameters. The layer is imple-

B

A. Hybrid Models mented by broadcasting Pennylane’s Rot operation.
In this work, we introduce the circuit architectures for kernel Both S and W layers consist of one-qubit gates, hence,
estimation in the cloud classification task. These circuits are they do not introduce entanglement to the system. There
designed with three types of gate layers (see Fig. 2). is a perfect separation of the qubit registers in the circuit.
1) Data encoding layer S [see Fig. 2(a)]—The rotations by 3) Entangling variational layer E [see Fig. 2(c)]—The W
the w-rescaled value of the specific feature performed on layer followed by strong entangling of qubits done by

the corresponding qubits. We keep the same scaling factor CNOT two-qubit gates. I layer inherits 3 - n independent

for each feature w = 7. The initial layer of Hadamard variational parameters from the W layer used in its def-

gates is introduced in order to utilize the superposition inition. The layer is implemented by the Pennylane’s

of states by abandoning the computational Z-basis. With StronglyEntanglingLayers operation.
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LCO8_L1TP_034033_20160520_20170223_01_T1

Fig. 7.

Ground Truth
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Ling
Acc: 0.80 1J1: 0.61 | Pr: 0.95 | Re: 0.63 | Sp: 0.97

Visualization of predictions of different models (Ling, RBF4, WS4, WSWS,), alongside the quantitative metrics. All models were

trained on one of the training samples of size N = 1280 (the same for all classifiers), together with the natural false color scene image (here:
LCO08_LI1TP_034033_20160520_20170223_01_T1), and the ground truth corresponding to this scene.

Our circuit architectures are recognized by their layer com-
position. By using the W.S,, symbols, we mean that the data
embedding map first transforms the initial state |0)*™ by the
arbitrary rotations layer W, then the data are encoded with the S
layer. To estimate a quantum-kernel entry, the conjugate embed-
ding map with respect to a different data point is concatenated to
the W.S,, circuit, as explained in Section II-B. Other architecture
symbols follow the same rule.

In this study, we investigate the S, WS, ES, and WSW S
circuit architectures. This choice enables us to analyze the signif-
icance of hyperparameter tuning, superposition, entanglement,
and expressivity in quantum feature maps, while being able to
simulate them with classical computers on areal-life dataset. It is
worth emphasizing that for the S and W layers-based maps, the
quantum-kernel complexity is expected to be low. Such circuits
are, therefore, easy to simulate on classical computers, and the
application of quantum computers does not provide an advantage
here. However, precisely thanks to this property, we were able
to perform studies for real-world large-scale datasets, which
would be much more difficult to do in the case of more complex
quantum kernels. This especially concerns the ZZ map discussed
in [8] and [24], for which the computations are # P—hard for
classical computers. The case of the ZZ map was beyond the
reach of our computational abilities for the complex dataset un-
der investigation. However, we managed to analyze intermediate
complexity kernels involving the entangling E layer. Hence, in
this article, we focus on applying the quantum-kernel methods

to huge amounts of real Earth observation data captured in orbit.
However, this was achieved by the cost of reducing the kernels’
complexity.

B. Training Data Reduction

SVMs suffer from their high time and memory training
complexity, which depend on the size of the training set. The
38-Clouds training data consists of approximately 1.24 billion
of pixels (the dataset is presented in more detail in Section IV-A),
the use of all of them is implausible as this size significantly ex-
ceeds the computational capabilities of modern computers in the
context of the SVM training. Since only a subset of all training
vectors is annotated as support vectors during the process of
SVM training, we can effectively exploit only a subset of the
most important examples or create the prototype vectors, which
are a good representation of similar examples [26] (e.g., com-
bining the information captured by several neighboring vectors
in the feature space). In this work, we follow the later approach
by utilizing the superpixel segmentation techniques [36]. Here,
we create coherent pixel groupings by considering similarity
measures defined using perceptual features—We build upon the
famous simple linear iterative clustering (SLIC) [37], which per-
forms the segmentation based on color and proximity distance
(see an example result of SLIC obtained for the 38-Cloud data
sample rendered in Fig. 4). For each multispectral training patch,
we do the following steps.
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LC08_L1TP_034029_20160520_20170223_01_T1

Fig. 8.

Ground Truth

7607

Ling
Acc: 0.61 1JI: 0.12 | Pr: 1.00 | Re: 0.12 | Sp: 1.00

WSWS,
Acc: 0.83 1JI: 0.62 | Pr: 0.95 | Re: 0.64 | Sp: 0.97

Visualization of predictions of different models (Ling, RBF4, WS, WSWSy), alongside the quantitative metrics. All models were

trained on one of the training samples of size N = 1280 (the same for all classifiers), together with the natural false color scene image (here:
LCO8_L1TP_034029_20160520_20170223_01_T1), and the ground truth corresponding to this scene.

1) Perform SLIC (Ngegmens = 200, smoothing kernel o = 5;
the hyperparameters of SLIC were fine-tuned experimen-
tally, in order to compromise between the reduction rate
and the spatial representativeness of the resulting training
examples) segmentation.

2) Remove margin pixels from each segment.

3) Create a prototype training vector example from each
segment by computing the following statistical measures
for each spectral band: mean, median, interquartile range
(IQR), min, max, and standard deviation.

4) Label the created superpixel with the majority label of the
pixels contained within the corresponding superpixel.

After data reduction, we obtained approximately 0.93 million

of training vectors (resulting in the massive reduction rate of
more than 1300x) consisting of 24 features and a ground-truth
label. Additionally, almost 92% of superpixels have their class
label decided by at least 80-20 vote ratio.

IV. EXPERIMENTAL VALIDATION

In this section, we discuss our experimental study focused
on understanding the abilities of hybrid SVMs in the context
of cloud detection in satellite multispectral data. The exploited
dataset is discussed in detail in Section IV-A, whereas the

experimental methodology is highlighted in Section IV-B. The
results are presented and discussed in Section I'V-C.

A. Dataset

We utilize satellite multispectral image data contained in the
38-Cloud dataset [38], [39]. It consists of 18 training and 20 test
scene images captured by the Landsat-8 satellite (30-m ground
sampling distance) over the continent of America (see Fig. 3).
Scenes cover a wide range of climate zones and terrain types,
including deserts, forests, meadows, mountains, agriculture,
urban areas, coastlines, snow, and ice. With each scene, we are
provided the ground truth for cloud binary classification. There
is no gradation in the cloud labels; hence, this class includes
both thick cumulus, partly transparent cirrus clouds as well
as thin haze. For convenience, scene images are cropped into
8400 (training) and 9201 (test) 384 x 384 pixel patches by the
authors of the dataset. Each pixel has five values associated with
it: intensity values in four spectral bands (blue: 450-515 nm,
green: 520-600 nm, red: 630-680 nm, and NIR: 845-885 nm)
and a ground-truth label (cloud or background). It is worth
noting that the scene images are not rotated to fit the standard
rectangular image format, therefore, they include a significant
amount of margin pixels, represented by [0,0,0,0] vectors with
the noncloud (background) class label assigned.



7608

LCO8_LI1TP_029044_20160720_201702.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

22 01_T1

Fig. 9.

Ground Truth

Visualization of predictions of different models (Ling, RBF4, WSy, WSWSy),
trained on one of the training samples of size N = 1280 (the same for all classifiers), together with the natural false color scene image (here:

LCO8_LI1TP_029044_20160720_20170222_01_T1), and the ground truth corresponding to this scene.
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alongside the quantitative metrics. All models were
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Acc: 0.84 | JI: 0.57 | Pr: 0.98 | Re: 0.57 | Sp: 0.99
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Box plots showing Acc obtained within 20 independent executions (for 20 reduced training sets
Each rectangular box shows IQR of data points, with median indicated by the orange horizontal bar. The

of the IV size) for the three scenes shown in Figs. 7-9.
whiskers extend to the extreme data points within 1.5
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TABLE I
RESULTS FOR RBF,4 CLASSICAL MODEL, AS WELL AS FOR THE WS4 AND W SW S, HYBRID MODELS

N Acc J Pr Re Spec
The RBF4 model
10 0.820 (0.138) 0.515 (0.123) 0.631 (0.132) 0.744 (0.177) 0.841 (0.201)
20 0.849 (0.084) 0.525 (0.105) 0.652 (0.089) 0.721 (0.163) 0.889 (0.086)
40 0.872 (0.067) 0.550 (0.084) 0.680 (0.088) 0.712 (0.130) 0.913 (0.076)
80 0.884 (0.054) 0.576 (0.075) 0.685 (0.080) 0.754 (0.075) 0.919 (0.061)
160 0.898 (0.036) 0.581 (0.068) 0.701 (0.063) 0.743 (0.080) 0.939 (0.036)
320 0.907 (0.026) 0.606 (0.058) 0.729 (0.059) 0.757 (0.060) 0.948 (0.029)
640 0.911 (0.020) 0.609 (0.047) 0.732 (0.048) 0.763 (0.040) 0.954 (0.019)
1280 0.919 (0.010) 0.628 (0.035) 0.757 (0.036) 0.763 (0.029) 0.963 (0.009)
The WS4 hybrid model
10 0.769 (0.156) 0.446 (0.157) 0.599 (0.131) 0.684 (0.245) 0.810 (0.213)
20 0.821 (0.128) 0.503 (0.119) 0.621 (0.125) 0.717 (0.178) 0.847 (0.191)
40 0.838 (0.128) 0.530 (0.112) 0.642 (0.130) 0.737 (0.142) 0.858 (0.196)
80 0.870 (0.066) 0.554 (0.091) 0.675 (0.094) 0.737 (0.119) 0.905 (0.070)
160 0.881 (0.057) 0.553 (0.096) 0.708 (0.097) 0.703 (0.135) 0.929 (0.055)
320 0.893 (0.044) 0.568 (0.092) 0.709 (0.088) 0.731 (0.122) 0.935 (0.036)
640 0.895 (0.053) 0.573 (0.100) 0.717 (0.087) 0.731 (0.129) 0.940 (0.040)
1280 0.911 (0.031) 0.602 (0.064) 0.723 (0.061) 0.757 (0.076) 0.949 (0.026)
The W SW S4 hybrid model

10 0.770 (0.156) 0.445 (0.159) 0.600 (0.132) 0.683 (0.247) 0.811 (0.213)
20 0.822 (0.127) 0.505 (0.117) 0.622 (0.124) 0.718 (0.175) 0.847 (0.191)
40 0.856 (0.082) 0.541 (0.095) 0.654 (0.089) 0.737 (0.144) 0.888 (0.088)
80 0.870 (0.067) 0.554 (0.092) 0.674 (0.093) 0.737 (0.120) 0.904 (0.071)
160 0.881 (0.059) 0.552 (0.096) 0.710 (0.096) 0.703 (0.140) 0.930 (0.058)
320 0.894 (0.044) 0.575 (0.082) 0.698 (0.081) 0.744 (0.104) 0.931 (0.038)
640 0.899 (0.048) 0.582 (0.089) 0.714 (0.081) 0.745 (0.114) 0.940 (0.038)
1280 0.910 (0.031) 0.602 (0.064) 0.723 (0.062) 0.758 (0.076) 0.949 (0.026)

The best results are boldfaced for each model—We report the average (standard deviation) of the corresponding metric obtained across 20 independent executions

for each size of the refined training set.

B. Experiment Methodology

We investigate the performance of classical and hybrid learn-
ing models based on SVMs. The classical SVMs are trained and
tested for the RBF and linear kernel. Hybrid, classical-quantum
models consist of two parts, the quantum-kernel estimation and
the classical SVM routine. The evaluated models are trained
on partly random balanced samples from the reduced training
set obtained by the procedure described in Section III-B. The
training data sample of size IV is obtained by randomly se-
lecting % superpixels, which have a cloud label and (% -1)
superpixels corresponding to a noncloud label. Then, the last
(Nth) noncloud superpixel is added—it contains zeroed features
and represents the “margin” superpixel. Due to the substan-
tial number of margin pixels in each scene in the 38-Cloud
dataset, not including a “margin” training example could result
in the significant drop in the model’s performance. We eval-
uated all models on a fixed set of training samples. For each
training set size N € {10, 20, 40, 80, 160, 320, 640, 1280}, we
randomly sample 20 sets (which remain unchanged across all
investigated SVM models). Hence, each model is trained 160
times. The investigated hybrid approaches were implemented in
the Pennylane python package, and the experiments were run
with the default.qubit simulator on classical computers.

The dimension of the quantum Hilbert space, to which we
encode the data, grows exponentially with the number of qubits
n that we use in quantum feature maps. All maps that we use
encompass exactly the same amount of qubits as the number
of features m, hence, n = m. The dimension of Hilbert space
needed to encode superpixels in the training dataset is 224(=
16,777,216). Performing large-scale simulations of such big
space on modern classical computers is unfeasible. Therefore,
in the case of the hybrid models, we perform feature extraction
by PCA. In the vast majority of cases, extracting two (four)

principal components explains 95% (99%) of variance in the
training data.

With each training set, we draw an additional balanced vali-
dation set of size max(NN/2,300). For the classical SVM with
linear kernel and the hybrid S; model, we tuned only the hyper-
parameter C'. It was done by testing different classifiers on a val-
idation sample in the hyperparameter range C' € [0.01, 147.01]
with the step size of 3. For the classical SVM with the RBF ker-
nel, the procedure is the same, but two hyperparameters (C, )
were tuned (the ranges of hyperparameters stay the same). For
hybrid models, we first optimized kernel function parameters in
order to maximize the kernel-target alignment 7 (K) [see (18)]
on the training sample. For this task, we used the Adam opti-
mizer [40]. In the case of hybrid W S, and E.S; models, we opti-
mize the wy, . ..,ws; 0, ..., 03; 00, ..., ps parameters present
in the W and E variational layers (see Fig. 2). These 12 pa-
rameters encode the families of available kernel functions in the
WS, and E S, models. In the case of W.SW .S, model, we opti-
mize 24 kernel parameters (w), ..., w3;00,...,09; 00, ..., ¢%
and w, ..., wi;00,...,0% 00, ..., L) present in two W vari-
ational layers. Once the variational layers have been fine tuned,
we performed C' hyperparameter tuning in the same manner as
for other classifiers.

The learning models are evaluated on all 20 test scenes
in the 38-Cloud dataset. It means that each model is
evaluated 3200 times (20 training samples X 8 training
sample sizes x 20 test scenes). To quantify the perfor-
mance of the investigated classification models, we exploited
accuracy: Acc = (TP + TN)/(TP + TN + FN + FP), Jac-
card index: J = TP/(TP + FN + FP), precision: Pr =
TP/(TP + FP), recall: Re=TP/(TP + FN), and speci-
ficity: Spec = TN/(TN + FP), where TP, TN, FP, and FP
denote true positives, true negatives, false positives, and false
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TABLE II
ADJUSTED P-VALUES FOR FRIEDMAN’S WITH POST HOC DUNN’S MULTIPLE COMPARISONS TESTS FOR THE EVALUATION METRICS ELABORATED USING THE LINy,
RBFy, WS4, AND W SW Sy MODELS

N Ling vs. RBFy Ling vs. WSy  Ling vs. WSWSy  RBFy vs. WSys  RBFy vs. WSWSy WSy vs. WSW Sy
Acc
10 >0.9999 0.0087 0.0132 0.0023 0.0036 >0.9999
20 0.8499 0.0087 0.1649 <0.0001 0.0014 >0.9999
40 0.0423 0.0858 >0.9999 <0.0001 0.3003 0.0087
80 0.0057 0.8499 >0.9999 0.3972 0.0423 >0.9999
160 <0.0001 0.0607 0.1649 0.0858 0.0291 >0.9999
320 0.0023 0.5185 0.0607 0.3972 >0.9999 >0.9999
640 0.0291 >0.9999 >0.9999 0.0197 0.6681 >0.9999
1280 0.0858 0.1649 0.5185 >0.9999 >0.9999 >0.9999
J
10 >0.9999 0.0014 0.1649 0.0423 0.0087 <0.0001
20 0.8499 0.1198 >0.9999 0.0009 0.0607 >0.9999
40 0.0009 >0.9999 0.3003 0.0002 0.3972 0.1198
80 <0.0001 0.0132 0.0132 0.2240 0.2240 >0.9999
160 <0.0001 0.0023 0.0197 0.5185 0.1198 >0.9999
320 <0.0001 0.1198 0.0003 0.0607 >0.9999 0.5185
640 <0.0001 0.1649 0.0005 0.0036 0.5185 0.5185
1280 <0.0001 0.0001 0.0009 >0.9999 >0.9999 >0.9999
Pr
10 0.2240 <0.0001 <0.0001 0.0002 0.0057 >0.9999
20 >0.9999 <0.0001 0.0001 <0.0001 0.0009 >0.9999
40 >0.9999 <0.0001 0.0197 <0.0001 0.0197 0.3003
80 >0.9999 0.5185 0.0036 >0.9999 0.0423 0.5185
160 >0.9999 0.5185 >0.9999 >0.9999 >0.9999 >0.9999
320 >0.9999 0.3003 0.0023 0.6681 0.0087 0.6681
640 >0.9999 0.2240 0.2240 >0.9999 >0.9999 >0.9999
1280 >0.9999 0.4713 0.6141 0.1018 0.1423 >0.9999
Re
10 0.0087 >0.9999 >0.9999 0.1198 0.0057 >0.9999
20 0.2240 >0.9999 0.2240 >0.9999 >0.9999 >0.9999
40 0.8499 0.0132 0.0001 0.6681 0.0291 >0.9999
80 0.0003 0.0057 0.0197 >0.9999 >0.9999 >0.9999
160 <0.0001 0.0014 0.1649 >0.9999 0.1649 0.8499
320 <0.0001 0.1198 <0.0001 0.2240 >0.9999 0.1649
640 <0.0001 0.5185 0.0003 0.0057 >0.9999 0.1198
1280 <0.0001 0.0023 0.0009 >0.9999 >0.9999 >0.9999
Spec
10 0.2240 <0.0001 0.0001 0.0009 0.1649 0.6681
20 >0.9999 <0.0001 0.0001 0.0001 0.0014 >0.9999
40 >0.9999 <0.0001 0.0423 <0.0001 0.0197 0.0423
80 >0.9999 0.1649 0.0002 0.5185 0.0014 0.3003
160 >0.9999 0.1198 0.1649 0.0858 0.1198 >0.9999
320 >0.9999 0.3003 0.0014 >0.9999 0.0197 0.5185
640 0.5185 0.0057 0.0009 0.6681 0.2240 >0.9999
1280 0.5185 0.0036 0.0014 0.5185 0.3003 >0.9999

The background of the statistically significant (p < 0.05) results is grayed.

negatives, respectively. All results are reported for the test sets
that were unseen during training (unless stated otherwise).

C. Results

The objectives of our experimental study is twofold.

1) To understand the impact of an increasing training set
size on the generalization capabilities of both classical
and hybrid SVMs.

2) To investigate the performance of the proposed quantum
classifiers in a real-world Earth observation task of cloud
detection from multispectral imagery.

InFig. 5, we render accuracy (averaged across all independent
executions for each training set size) for all models. We can
observe that increasing the size of the reduced training sets leads
to the consistent increase in the classification performance of
all SVM models. It is of note that the rate of the performance
increase started saturating for the RBF SVM model (RBF,),
whereas the quantum-kernel classifiers (WS, and W SW Sy)
manifest more rapid improvements for larger N’s. This phe-
nomenon can be further investigated in Table I, we gather all

quantitative metrics obtained using the best classical SVM with
the RBF kernel (RBF,), together with our QSVMs. Finally,
in Fig. 6, we present the ratio of the number of support
vectors elaborated during the training process of the underly-
ing model (Ling, RBF,, and WSy). Since the inference time
of SVMs depends linearly on the number of support vectors,
their number should be minimized to ensure fast operation of
the classifier. Although there are indeed outlying executions
resulting in large numbers of SVs for the W.S; SVMs, the
overall trend in the number of SVs remains consistent for all
N’s (see the median number of SVs rendered as orange lines in
Fig. 6).

To verify if the differences across the investigated models are
statistically important, we executed the Friedman’s tests with
post hoc Dunn’s over all metrics, averaged across all independent
executions for the sampled refined training sets (see Table II).
We can appreciate that the WS, and W.SW .S, models, with
the former being significantly less parameterized than the latter
one, lead to statistically same cloud detection performance.
Additionally, once the dataset is increased and reaches the size of
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N = 1280, the quantum-kernel SVMs deliver statistically same
quality measures as RBFy. In Figs. 7-9, we present three exam-
ple 38-Cloud test scenes of varying segmentation difficulty (see
different cloud characteristics). The qualitative analysis shows
that the quantum-kernel SVMs can indeed outperform or work
on par with well-established SVMs with the RBF kernel, and
both of them significantly outperform linear-kernel classifiers
in this task.

We are aware of some limitations of the hybrid SVMs. In
Fig. 10, we render the box plots obtained for three test scenes
visualized in Figs. 7-9. Although the aggregated metrics, aver-
aged across 20 independent executions indicate that the W .S,
model is competitive with the classical RBF SVMs, the former
classifier is slightly less stable, especially for lower N’s. How-
ever, increasing the size of the refined training set not only does
allow for significantly enhance the generalization capabilities
of the quantum-kernel SVMs, but it also improves their train-
ing stability. Although the RBF and quantum kernels (W Sy,
W.SW Sy) lead to the similar classification accuracy, optimizing
(on a classical machine) multihyperparameter quantum kernels
is much more resource intensive. For the RBF kernel, only
one kernel hyperparameter () is optimized, while for W .S,
(WSW Sy), 12 (24) kernel hyperparameters are optimized.

The best results (overall accuracy of approximately 92-93%)
of the proposed simple ML models based on superpixel seg-
mentation and SVMs do not deviate to a large extent from the
current state-of-the-art deep learning models benefiting from the
fully convolutional architectures (overall accuracy of approxi-
mately 94-96% reported for the 38-Cloud test scenes [38], [39],
[41]). Such large-capacity deep learning models, however, can
effectively exploit the contextual information within the image
during the segmentation process—This may be of paramount
importance for cloud detection, as the objects of interest may
manifest different shape and spectral characteristics. Thus, de-
signing additional feature extractors [42], followed by feature
selectors [43], may be pivotal to further improve the classifica-
tion accuracy of hybrid SVMs—appropriate feature extraction
and fusion strategies have been shown extremely important in
satellite image analysis using ML techniques [44].

V. CONCLUSION

In this work, we introduced hybrid SVMs exploiting quantum
kernels for the task of cloud detection in multispectral satellite
images, which is the “hello, world” in remote sensing. Such
quantum-kernel models, together with classical SVMs with
RBF and linear kernels were thoroughly investigated in the
experimental study performed over a widely used 38-Cloud
dataset capturing Landsat-8 imagery. In our processing chain,
the superpixel-powered training set selection is utilized to dra-
matically reduce the SVM training sets, and to pick the most
informative training examples, together with the training pro-
totypes, which are likely to become support vectors during the
training process. Overall, we quantitatively, qualitatively, and
statistically evaluated six SVM models—classical linear and
RBF kernel-based SVMs, alongside the suggested hybrid SVMs
based on the kernels elaborated by utilizing simulated quantum
circuits called Sy, WSy, ESy, and W.SW S,. The hybrid model
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S, executed a stiff (no variational layers) classical data encoding
into separate qubits, WS, introduced one variational layer,
E'S, added the entanglement between the qubit registers, while
WSW .S, was a straightforward extension of the W.S; model
achieved by doubling it (two encoding layers interwoven with
two variational layers).

The first observation inferred from our experiments is that the
stiff encoding Sy model underperforms, when compared to the
overall accuracy with other models (see the results rendered in
Fig. 5). Being able to embed data into vectors residing in 16-D
complex linear space does not necessarily increase expressivity
and performance of the model—the linear kernel, defined on
4-D space surpasses the S model for all tested cases. Therefore,
one needs to introduce additional parameters to the quantum
feature map in order to control and tune its behavior. However,
interestingly, there is no benefit in performance by introducing
the entanglement via the layer .

The results reported here constitutes an exciting point of
departure for further research. Albeit the classical and hybrid
SVMs offer high-quality cloud detection, they are still slightly
worse than the recent advancements in large-capacity deep
learning models. This can be attributed to the fact that the SVMs
investigated in this work operate on a small set of features that
do not capture the subtle shape and spectral characteristics of
the pixels’ neighborhood. We anticipate that introducing new
feature extractors to our pipeline can substantially enhance the
classification capabilities of the models. Our research efforts are
focused on deploying quantum-kernel SVMs for other multi-
spectral data for cloud segmentation (and segmentation of other
objects of interest as well, e.g., cultivated land [45]), especially
in large-scale Sentinel-2 imagery, as well as on using them for
hyperspectral image classification [46], and on quantifying their
robustness against noise-contaminated data [47]. Finally, we
are currently investigating the nonfunctional abilities of both
classical and deep ML models, with a special emphasis put on
their inference time, as it is critical in processing massively large
amounts of satellite imagery captured nowadays.
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