
7412 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Spatial–Spectral Feature Extraction With Local
Covariance Matrix From Hyperspectral Images

Through Hybrid Parallelization
Emanuele Torti , Elisa Marenzi , Giovanni Danese , Antonio J. Plaza , Fellow, IEEE, and Francesco Leporati

Abstract—This article presents the optimization and hybrid par-
allelization of a spatial–spectral feature extraction (FE) method
from hyperspectral images (HSIs) using local covariance matrix
(CM) representation, exploiting hybrid parallelism through mul-
ticore and manycore processors. The aim is to evaluate the per-
formance of parallel versions of this innovative algorithm that
characterizes spatial–spectral information prior to classification
when conducting FE. The HSI is first projected into a subspace,
using the maximum noise fraction method. Then, for each test pixel,
its most similar neighbors are clustered using the cosine distance
measurement. The result is used to calculate a local CM with each
nondiagonal entry characterizing the correlation between differ-
ent spectral bands. Such matrices represent the spatial–spectral
features and are fed to a support vector machine for classification.
To optimize the successive parallelization process, a new version
of the original MATLAB code has been first developed using C
language. This serial version serves as baseline for hybrid paral-
lelization in OpenMP and CUDA. Performance analysis has been
conducted using publicly available HSI datasets, confirming that
our parallel implementation ensures the quality of the classification
while significantly reducing the involved processing times.

Index Terms—Covariance matrix (CM), feature extraction (FE),
graphic processing unit (GPU), hyperspectral imaging (HSI),
parallelization.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) classification plays a cru-
cial role in various application fields. However, when the

training samples available a priori are limited, classification
accuracy can significantly degrade due to multiple causes. To
address this problem, feature extraction (FE) methods, which
include supervised and unsupervised approaches, have been pro-
posed. As a consequence, characterization of the spatial–spectral
information in HSI prior to classification is a fundamental task
in terms of efficiency [1]. In the case of limited availability of

Manuscript received 6 April 2023; revised 14 July 2023; accepted 30 July
2023. Date of publication 3 August 2023; date of current version 15 August
2023. (Corresponding author: Elisa Marenzi.)

Emanuele Torti, Elisa Marenzi, Giovanni Danese, and Francesco Leporati
are with the Department of Electrical, Computer and Biomedical Engineer-
ing, University of Pavia, 27100 Pavia, Italy (e-mail: emanuele.torti@unipv.
it; elisa.marenzi@unipv.it; giovanni.danese@unipv.it; francesco.leporati@
unipv.it).

Antonio J. Plaza is with the Department of Technology of Computers and
Communications, Escuela Politécnica, University of Extremadura, E-10071
Cáceres, Spain (e-mail: aplaza@unex.es).

Digital Object Identifier 10.1109/JSTARS.2023.3301721

training samples, the challenge is to find new methods that can
outperform state-of-the-art techniques.

HSIs are made of hundreds of spectral bands [1], where
each pixel is a high-dimensional vector (also defined as spectral
signature) providing spectral information that can be used to
distinguish between different materials [2]. Single pixels carry
information from across the electromagnetic spectrum of an
image; the associated spectral signature is formed by many
contiguous wavelengths, which generally cover the visible and
infrared parts of such spectrum [3]. Their main advantage is the
ability to collect these unique “fingerprints” that can be later
used for classification purposes. Specifically, HSIs enable the
identification of the materials that compose a specific object,
providing a better understanding of the scene under analysis. For
this reason, they have been widely used in many applications,
such as target and change detection [4], [5], image enhancement
[6], and classification [7].

Nevertheless, the huge amount of data collected needs to be
processed and analyzed, typically using complex algorithms
with a heavy computational burden, reducing the amount of
time required as much as possible. This fact often prevents
the use of HSI-based systems in applications with real-time
or near real-time constraints. Parallel processing using paral-
lel hardware devices, such as field programmable gate arrays
(FPGAs) and graphic processing units (GPUs), offers a possible
solution for this problem. For example, many works describe the
implementation of the entire unmixing chain into GPUs [8], [9],
[10], [11], [12], providing the fastest results with independence
of the size and content of the HSI and the characteristics of the
used GPU architecture [12].

This work presents the optimization and hybrid parallelization
of an innovative method to simultaneously exploit the correlation
among different spectral bands and the spatial information in the
HSI, allowing for a more discriminative FE process, through the
concept of local covariance matrix representation (LCMR).

This article is organized as follows. Section II provides a
review of relevant related works. Section III presents the al-
gorithm for spatial–spectral FE with LCMR and support vector
machine (SVM) classification, which we have considered for
parallelization purposes. Section IV presents the code opti-
mization from the original MATLAB algorithm to the serial C
language version, together with parallelization techniques for
this method using OpenMP paradigm and CUDA language.
Section V discusses the conducted performance analysis, which

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-8437-8227
https://orcid.org/0000-0003-4537-5618
https://orcid.org/0000-0002-4411-681X
https://orcid.org/0000-0002-9613-1659
https://orcid.org/0000-0003-2901-4935
mailto:emanuele.torti@unipv.it
mailto:emanuele.torti@unipv.it
mailto:elisa.marenzi@unipv.it
mailto:giovanni.danese@unipv.it
mailto:francesco.leporati@unipv.it
mailto:francesco.leporati@unipv.it
mailto:aplaza@unex.es

TORTI et al.: SPATIAL–SPECTRAL FEATURE EXTRACTION WITH LOCAL CM FROM HSIS THROUGH HYBRID PARALLELIZATION 7413

compares serial and parallelized versions with the same pub-
licly available HSI images (standard test datasets used in the
remote-sensing field). Finally, Section VI concludes this article.

II. RELATED WORK

A. Parallelization Challenges

HSIs are widely used in a variety of fields, due to their richness
of information, such as image processing [5], [6], [7], [8], [9],
[10], [11], [12], [13], precision agriculture [14], urban mapping
[15], and environmental monitoring [16].

Hyperspectral sensors acquire scenes at different wavelengths
of the electromagnetic spectrum and they produce a cube [17].
Contiguous wavelengths are grouped into bands, and each pixel
is represented by three components (x, y, z), where x and y denote
the two-dimensional spatial position, whereas z identifies the
band. Due to its high memory size (that can range from hundreds
of megabytes up to many gigabytes) and the complexity of the
algorithms used, HSI analysis is characterized by high computa-
tional requirements. Therefore, different approaches have been
designed to reduce information redundancy, caused by the high
correlation between adjacent bands of the HSI [18]. A common
strategy is dimensionality reduction (DR), which produces a new
compact dataset by applying a transformation based on a suitable
criterion. Another approach is the band selection (BS), which can
be divided into supervised and unsupervised BS [19], [20], [21].
Newer methods are based on the distance covariance descriptor
for exploring spectral–spatial relationships, especially linear and
nonlinear interdependence in the spectral domain, or on the
principal component analysis (PCA) combined with the 2-D
singular spectral analysis [22], [23].

An important aspect in HSI processing is that pixel resolution
is generally not fine enough to separate different endmembers
[4]. As a consequence, there is the need to develop real-time
implementations of spectral unmixing techniques [24].

A possible downside is the processing of huge amounts of
data, typically using complex algorithms with a considerable
computational burden. This can limit their use in applications
under real-time or near real-time constraints. Parallel processing
using appropriate hardware devices offers a possible solution [3].

B. Available Parallelization Techniques

To accelerate processing speed and reduce storage for the clas-
sification, a series of parallel and distributed-based approaches
have been proposed [25], [26].

Anomaly detection is another field where recent advances
require parallel and distributed systems for efficient implemen-
tations [27].

This poses issues for their applications in real-time contexts
without the aid of proper high-performance computing (HPC)
techniques and technologies [28]. More specifically, the latter
have been used in many works for various stages of the unmixing
process because of their speed [29], [30], whereas GPUs are able
to implement the entire unmixing chain with optimal results,
independent to the specific HSIs and the device model involved
[8], [9], [10], [11], [12]. Other approaches make use of OpenCL
(Open Computing Language), a high-level design language that
can efficiently parallelize code on multiple types of devices [12].

Moreover, in recent years, cloud computing has emerged
as the new paradigm for many remote-sensing parallelization
and optimization applications. In fact, a cloud-based technique
has been developed for spectral analysis and compression of
HSIs of the autoencoder deep neural network for nonlinear
data compression [31]. In addition, cloud computing is used for
deep learning inference at FE, metric mapping, and semantic
segmentation [32].

In specific remote-sensing contexts, especially in onboard
scenarios where high computational complexity algorithms are
extremely useful though demanding, low power consumption
HPC architectures are promising solutions [33].

1) Hybrid Parallelization: Hybrid parallelism is a form of
parallelization technique that makes use of different languages
or methodologies, which are combined together in a specific
application or approach.

Recently, a combination of model and data parallelization
methods has been proposed to minimize communication over-
head in multidevice parallel training of DNN models. More-
over, a hybrid CPU-GPU real-time implementation of the un-
mixing chain has been proposed that makes use of GPU’s
CUDA CuBLAS library for linear algebra routines, together
with OpenMP and BLAS for multicore parallelization [10]. In
fact, performance of existing parallelization methods can still be
improved by optimally allocating model computations and data
partitions to the devices for better model training performance
[34].

In this work, a hybrid parallelization approach has been
implemented combining two parallel programming languages:
OpenMP and CUDA for GPU.

2) OpenMP: OpenMP is a standard application program-
ming interface for shared memory programming [35]. It com-
prises compiler directives, library routines, and environment
variables that make this an easy parallel and portable program-
ming model [36].

3) CUDA: NVIDIA’s Compute Unified Device Architecture
(CUDA) is a coevolved hardware–software architecture that
enables the development of massively parallel programs with
GPUs providing a development environment using C program-
ming language [37], [38]. Threads run on streaming processors,
each executing the same portion of code in single-instruction-
multiple-thread fashion [39].

GPUs can be understood as an array of independent proces-
sors. Each of these processors corresponds with an indepen-
dent thread of execution. The parallelism that can be inferred
in this architecture totally differs from the FPGA architecture
parallelism. Hence, the parallelism inferred in the GPU can be
efficiently exploited when there is a situation in which a set of
operations is to be independently performed to many different
elements of a dataset.

The GPU models used in this work are the Tesla K40c active
and the GeForce RTX 2080: this kind of accelerators can process
datasets that have twice the dimensions of previous models, since
they have an integrated memory of 12 GB of RAM. This family
of devices can have up to ten times the performance of CPUs
thanks to the GPUBoost functionality, by converting available
power in performance increase, which is directly managed by
the user. For the Tesla model, the main characteristics are a

7414 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

memory bandwidth of 288 GB/s with 2880 CUDA cores and a
maximum power consumption of 235 W; the system interface
is a PCI Express 3.0 × 16 with a clock frequency of 875 MHz.

In the case of the RTX device, the bandwidth is 448 GB/s
with 2944 CUDA cores with a clock frequency of 1.8 GHz and
a maximum power consumption of 225 W; the system interface
is a PCI Express 3.0 × 16.

C. Classification Methods

HSI classification is one of the main challenges regarding their
processing. Various classifiers have been adopted, including
SVMs [40], neural networks [41], random forests [42], and
sparse representation techniques [43]. However, when a priori
training samples are limited, the accuracy [40], [41], [42] can
significantly degrade due to the Hughes effect. To find a subspace
in which the separability among the transformed samples can be
enlarged, many FE methods have been developed, which can
be both supervised (e.g., linear discriminant analysis [44]) and
unsupervised. Regarding the latter, typical approaches are PCA
[45], independent component analysis [46], and maximum noise
fraction (MNF) [47].

More specifically, SVMs represent an important classifier in
this context. Many works have benefited from this approach
since the SVMs can deal with small-sized training datasets
and provide higher classification accuracy than other traditional
methods. Besides, SVMs have high memory efficiency and
strong generalization [48].

A convolutional neural network (CNN) based on one-
dimensional SVM convolution operations has been proposed
to perform pixel-based classification with one-dimensional HSI
signatures, analyzing each pixel spectrum independently from
the pixel spatial neighborhood [49].

Another application concerned a novel PCA and segmented-
PCA (SPCA) based multiscale 2-D-singular spectrum analysis
(2-D-SSA) fusion method for joint spectral–spatial HSI FE and
classification [50]. PCA and SPCA are used for spectral dimen-
sion reduction, whereas multiscale 2-D-SSA extracts abundant
spatial features at different scales and is followed by PCA for
DR. The obtained multiscale spatial features are then fused to
form multiscale spectral–spatial features, whose performance is
evaluated using the SVM classifier.

D. Spatial–Spectral FE and Covariance Matrix (CM)
Approaches

Spatial and spectral information are used together to achieve
superior classification performance. A recent example imple-
mented Gabor filtering for spatial FE in conjunction with sparse
random projections for spectral FE and DR. Finally, a super-
vised classification with a 3-D CNN performed volumetric data
analysis [51].

Many spatial–spectral FE techniques have been proposed in
recent years, such as the extended morphological profile, which
extracts spatial information based on the structure of HSIs using
morphological operations [52]. Based on the assumption that
there is a strong correlation among neighboring pixels, various
works use edge-preserving filtering to combine spatial and spec-
tral information [53], [54].

In addition, deep learning algorithms have been used, such as
CNNs, due to their success in the computer vision community
[55], [56], [57], [58]. In all these cases, usually a DR method
is first applied. The resulting bands are therefore processed
separately by the filters or feature descriptors. However, the main
drawback of deep models is the need of large labeled datasets to
be successfully trained.

Another approach when using a limited number of training
samples is based on the SuperPixel-based multiple statistical
FE [59]. For each dimension-reduced pixel obtained by MNF,
the most similar superpixel-based neighbors of different sizes
are highlighted based on the spatial structures of the HSIs to
exploit contextual spatial information. Then, the mean, covari-
ance descriptor, and a Gaussian feature are extracted to explore
spatial geometry information, correlations between spectral
bands, and spatial–spectral variations. Next, multiple kernels
map these features in the Euclidean and Riemannian manifold
spaces (MSs) to a uniform Hilbert space and embed them into a
multitask kernelized sparse representation classification model,
effectively fusing the features for classification performance and
robustness.

LCMR is an effective feature representation method that
can make use of the correlation between different features and
is applied for fusion of spatial and spectral data [41], [42].
Each nondiagonal element represents the covariance between
two features. The aim is to obtain discriminative features of
different pixels by computing CMR from the local neighborhood
determined by a sliding window.

III. ALGORITHM CONSIDERED FOR PARALLELIZATION

In this article, we present a parallelization of a spatial–spectral
FE method for HSIs using local CM representation, to highlight
correlation between spectral bands and their spatial-contextual
information.

To exploit this method, a novel LCMR approach is proposed,
enabling a more discriminative FE process.

Here, the first step is the application of the MNF-based DR
to the input HSI, useful to reduce the computational complexity
and to remove noise. Its aim is to identify a linear transformation
matrix to maximize the SNR.

After that, for each test pixel of the image, the K−1 most
similar neighboring pixels are measured using cosine distance.
A window with size T×T is used to extract the neighbors of
a central pixel; then, the cosine-distance-based K-NN filter is
computed on these pixels. Such local neighbors are both spatially
and spectrally close to the reference pixel. This approach is
used because of its simplicity and effectiveness, especially for
classification purposes [60], [61]. In addition, it does not need
careful parameter setting or heavy computational burden [43],
[62]. The next step is the CM calculation for the K pixels, the
test pixel, and its neighboring ones. Each nondiagonal entry of
the CM represents the correlation among two spectral bands.
Finally, such covariance matrices are given as input to an SVM
as spatial–spectral features, for the final classification and la-
bel assignment with the Log-Euclidean-based kernel, since the
covariance matrices lie on the Riemannian MS and not on the
Euclidean space. In fact, a regularization is necessary to serve as

TORTI et al.: SPATIAL–SPECTRAL FEATURE EXTRACTION WITH LOCAL CM FROM HSIS THROUGH HYBRID PARALLELIZATION 7415

Fig. 1. Flowchart of the LCMR approach, showing all the main steps [1].

Algorithm 1: Original Classification Algorithm.
1: Load HSI
2: Define and initialize parameters: labels, number of

classes, window_size, K, number of training iterations
3: MNF for dimensionality reduction
4: if FE not done:
5: LCMR
6: else
7: Load the FE HSI
8: end
9: for i from 0 to n_training_iterations:

10: Generate the sample image
11: Set variables for training and test sets
12: Calculate covariance matrix
13: Apply SVM for classification
14: Calculate error matrix
15: end
16: Build the classification matrix and print as output

input for learning algorithms. Fig. 1 shows the following main
consecutive steps of the considered classification method: 1)
MNF-based DR; 2) cubes localization; 3) cubes vectorization
resulting in MNF feature matrices; 4) KNN-based neighboring
pixel refining; 5) local CM calculation; and 6) kernel-based SVM
for label assignment.

The SVM is executed using the LIBSVM library [63] adopting
a Gaussian kernel. In this case, the number of MNF PCs is the
same as in the case of LCMR.

The pseudocode in Algorithm 1 presents the structure of the
algorithm: after loading the HSI to be processed, all parameters
are defined and initialized. This is followed by the MNF and by
the LSMR if the FE has not been done already, otherwise the
processed image is loaded for the successive steps.

During training, the sample image is generated together with
setting all variables for test and training sets; hence, the CM
is calculated, followed by the SVM; finally, the error matrix is
obtained.

The output is represented by the classification matrix.

IV. CODE OPTIMIZATION AND PARALLELIZATION

A. Optimization in C Language

The original algorithm was developed in MATLAB and eval-
uated using a set of synthetic images that represent standard HSI
testbed. It defines 9 classes as final output, 25 as the window size,

102 as the K-NN parameter, and 36 samples used for training.
Usually, a good practice is to have a number of samples that
is approximately 5 times the number of labeled pixels in the
classes. In this case, an appropriate compromise is to have 4
samples per class, as presented also in [1].

The first step is to perform DR by applying the MNF algorithm
to the image.

Since it is done multiple times, the next step is to check
whether FE has already been applied to the image: if so, the
processed image is loaded, otherwise the LCMR method is per-
formed taking into account both previously defined parameters
and the result of the MNF. Successively, the sample image is
generated to train the algorithm. The outputs, which are the test
and training ids, labels, covariance, and K-NN matrices, are then
used as input for the classification with SVM. To highlight the
classified pixels, different colors have been used in order to have
a clearer representation of the classification map.

Since the aim of this work is to evaluate the performance of
a parallelization using multicore and manycore approaches, the
first step of the optimization is to convert the original MATLAB
code into a serial C algorithm. This is very useful because both
OpenMP and CUDA languages are written on a C code base.

Therefore, attention has been paid to maintain all the elements
of the original approach: DR, covariance calculus, training and
test of SVM, and errors processing. The algorithm initializes all
parameters and calculates MNF and LCMR; then, memory is
allocated for all variables and parameters in order to apply SVM.

B. Proposed Hybrid Parallelization

The presented approach is suitable for the use of the libsvm li-
brary; therefore, this has been integrated into the algorithm as the
classification step. It is preceded by DR with the MNF approach,
followed by the LCMR. This choice has been made because
this function is already optimized in terms of performance and
accuracy of results. After that, profiling is performed.

This has also influenced the hybrid parallelization process,
combining parts with OpenMP and other portions of code using
CUDA language on GPU.

In particular, the SVM classification has not been subject of
parallelization, since this is not the most burdensome part of
the computation, whereas the best results can be obtained by
parallelizing all the matrices calculations, which make up about
80% of the whole methodology. Moreover, the training of an
SVM model is not a task that can be efficiently implemented
on GPUs, since the obtained acceleration is very low [64].
The sample generation has been parallelized using OpenMP,
together with the error calculus after applying SVM: in fact, the

7416 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

entire function errorMatrixGeneration, which is the first to be
applied, is composed of a for loop with many operations to be
done and this can be efficiently parallelized. Following this part,
accuracy estimation has been kept in the serial C version. On the
contrary, the training part of the algorithm has been optimized
using CUDA on GPU. cuBLAS library has been adopted, since
it allows faster linear algebra computations, whereas the rest of
the training phase has been parallelized with OpenMP.

The pseudocode in Algorithm 2 shows the hybrid paralleliza-
tion approach: after all parameters and variables initialization,
the HSI is loaded and memory is allocated for all matrices
involved in the algorithm.

If the FE has not been done previously, the minimum noise
fraction, followed by the LCMR, is performed; otherwise, the
already processed image is loaded.

The successive step is to first allocate memory in the host CPU
for all data involved in the learning and classification phases and
then allocate memory in the device GPU for data involved in the
training phase, since this is the part that is parallelized with
CUDA. Hence, data are copied from host to device memory
and grid and blocks are initialized for the execution of the GPU
kernel for the training. The sample image is generated in parallel,
by creating a matrix containing samples for each class. The
threads copy from the input images a subset of the spectral pixels
ensuring that the classes are balanced. Here, the cuBLAS library
has been adopted because it is a standard library for arithmetic
operations. To use this library, a special variable called handle
is declared and initialized. This variable stores all information
need by the library to perform the operation and is given as
first input parameter to all the cuBLAS functions. In particular,
the cublasDgemm routine has been adopted. It computes the
standard matrix–matrix product, which can be used to estimate
the CM. This routine takes as input two matrices already stored
in the GPU memory and performs the multiplication, saving the
resulting matrix in the GPU memory. It also allows to automati-
cally transpose the input matrices, if needed by the computation.
Moreover, it adopts the column-major matrix storage format.
This is not the standard data layout for the C language, which
adopts the row-major format. This issue is solved by exploiting
the property of the matrix–matrix multiplication and transposing
the first input matrix.

The entire training is performed in CUDA, generating
the sample image, applying covariance, followed by copying
the output data back from device GPU to host CPU, since
the cublasDgemm library stores the results only in the GPU
memory space.

OpenMP parallelization is used to calculate probability values
for the classification, which is not parallelized on the GPU (since
it is not the most demanding computational phase in this specific
case), together with the SVM prediction step. In particular,
the #pragma omp parallel for directive has been exploited. It
distributes the different for loop iterations among the parallel
threads. Moreover, it accepts clauses to manage data partitions
and load balancing. The shared and private clauses indicate
which data are private to a single thread and the information
shared among all threads, respectively. In the proposed parallel
implementation, the loop variables, such as the indices, are kept
private to the single thread while the covariance matrices are

Fig. 2. Summary of the proposed hybrid parallelization strategy. The vertical
black dashed line represents the separation of the address spaces of CPU and
GPU. The blue dashed arrow represents the memory copy from host to device,
whereas the red dashed arrow denotes the data copy from device to host.

shared among the threads. Concerning the load balancing, it is
managed by the schedule clause. OpenMP gives five possible
scheduling modes, namely static, dynamic, guided, auto, and
runtime. In the static mode, the iterations are equally distributed
among the threads. On the other hands, the dynamic scheduler
iterations are organized in chunks and each chunk is assigned
to a thread. The chunks are assigned to the threads following
the “first-come first-do” approach. The guided mode is a special
case of the dynamic scheduler in which the chunk size is not
fixed but it is exponentially decreasing. The auto mode and the
runtime mode demand to the operating system the choice of the
scheduling approach. In this case, after several experiments, we
choose the dynamic scheduling, since it is the one with the lowest
processing times. Fig. 2 summarizes the hybrid parallelization
approach, highlighting the data transfers between host and de-
vice. The blue dashed arrow denotes the data transfer from host
to device, whereas the red dashed arrow indicates the copy from
device to host.

The error matrix is calculated without parallelization and, at
last, all memory allocations in the CPU are freed.

The sample generation code has been parallelized using
OpenMP: for each class, regarding the test set, the id, label,
and class index initializations have been parallelized. After that,
the training data are set and the sample is generated, as shown
in Algorithm 3.

Also, the error matrix calculation has been performed with
OpenMP (see Algorithm 4); after loading memory, parameters,
and variables, the main cycle for generating the matrix is paral-
lelized. Finally, the accuracy is evaluated.

V. DISCUSSION

To analyze the performance of the parallelized algorithm and
evaluate the differences with the serial version, a set of real
HSIs, which are widely used in the remote-sensing field, have
been adopted.

TORTI et al.: SPATIAL–SPECTRAL FEATURE EXTRACTION WITH LOCAL CM FROM HSIS THROUGH HYBRID PARALLELIZATION 7417

Algorithm 2: Hybrid Parallelization Approach.
1: Parameters and variables initialization
2: Read HSI
3: Host memory allocation for all matrices involved
4: if FE not done:
5: Apply MNF
6: Apply LCMR
7: else
8: Read the already processed image
9: end

10: Host memory allocation for all data involved in
learning and classification

11: Device memory allocation for data involved in training
12: Copy data: host -> GPU device
13: Grid and blocks initialization for GPU kernel

execution
14: cublasCreate(&handle);
15: cudaStreamCreate(&stream1);
16: for i from 0 to n_training_iterations:
17: Generate the sample image
18: loadTrainData<<<dimGrid,dimBlock>>>…
19: cublasDgemm(…); for covariance calculation
20: cudaDeviceSynchronize();
21: end
22: Copy data: GPU device -> host
23: #pragma omp parallel for private(jj,j)

schedule(dynamic)
24: {
25: OpenMP parallelization of the probability values

for each pixel, for the classification step
26: }
27: Apply SVM training function
28: #pragma omp parallel for private(j) schedule(dynamic)
29: {
30: OpenMP parallelization of SVM prediction step
31: }
32: Error matrix calculation
33: Free memory allocations

Computation has been performed on an Intel Processor
i7-3770 working at 4.08 GHz with ten iterations for the training
part.

The first validation has been performed between the serial C
version and the original MATLAB code [1] to ensure that the
results were the same. Then, the hybrid parallel version results
have been compared against the C serial version. In this case,
the classification accuracy differed for only about 10-3 between
the two implementations. Therefore, the error introduced by the
parallel version is negligible considering that accuracy is often
expressed as a percentage.

More specifically, the same datasets involved in the analysis
of the serial implementation have been adopted, for comparison
purposes [1], which are as follows.

1) University of Pavia: Acquired by the ROSIS-03 sensor
over the campus at the University of Pavia, Pavia, Italy.

Algorithm 3: Sample Generation.
1: for each class:
34: #pragma omp parallel for private(i)
35: {
36: OpenMP parallelization of:
37: - id and label initialization for the test set
38: - Initialization of the class_index
2: }
3: Set the training data
4: Construct the sample

Algorithm 4: Error matrix calculation.
1: Load parameters and initialize variables
2: Load memory
3: Apply error matrix generation function:
39: #pragma omp parallel for private(variables)

schedule(dynamic)
40: {
41: OpenMP parallelization of the main for cycle that

represents the generation
42: }
43: Kclass accuracy calculation
44: Overall accuracy calculation

This dataset contains 103 spectral bands after the noise-
corrupted bands are discarded; each band is of size 610
× 340. The spatial resolution is 1.3 m, and the spectral
coverage ranges from 0.43 to 0.86 µm.

2) Pavia town center: Acquired by the same ROSIS-03 sen-
sor over the town center of Pavia, Italy. This dataset con-
tains 102 spectral bands after the noise-corrupted bands
are discarded; each band is of size 1096 × 1096. The
spatial resolution is 1.3 m, and the spectral coverage ranges
from 0.43 to 0.86 µm.

3) Indian Pines: It covers the agricultural Indian Pines test
site in Northwestern Indiana and was collected by the
AVIRIS sensor. The dataset is of size 145 × 145 × 220,
with a spatial resolution of 20 m and a spectral range from
0.2 to 2.4 µm. Before the classification, 20 spectral bands
(i.e., 104th–108th, 150th–163rd, and 220th) are discarded
due to low SNR. The HSI image contains 16 classes.

4) Salinas: This image was also collected by the AVIRIS
sensor over the Salinas Valley, CA, USA. The dataset is
of size 512 × 217 × 224, with a spatial resolution of 3.7
m/pixel. Before classification, 20 water absorption bands
were removed (namely: 108th–112th, 154th–167th, and
224th).

Different parameters have been evaluated, which are as fol-
lows.

1) Processing time and speedup: The main loop of the al-
gorithm is subject to parallelization with both OpenMP
and CUDA, hence the analysis focused on the comparison
between this version with the MATLAB and the C codes,
together with the speedup parameter. It can be observed

7418 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE I
PERFORMANCE ANALYSIS IN TERMS OF PROCESSING TIMES FOR THE MAIN

FOR LOOP

Fig. 3. Speedup of the C language implementation regarding the MATLAB
original version: this parameter progressively decreases with the increase of the
HSI dimensions, even though it is almost always over 1. This means that, apart
from the Pavia town center image (for which the MATLAB algorithm remains
the fastest to complete), in all other cases, the combination of OpenMP and
GPU is the best one in term of elaboration times. In particular, the best results
are obtained in the comparison with the C code.

from Table I that, among the two serial versions, MATLAB
is always faster than C language. In fact, the four images
under evaluation have been tested applying ten iterations
for the training, showing the main for loop, where the
parallelization is implemented. The serial C version is
slower than MATLAB code, whereas the parallelized al-
gorithm greatly decreases computation times by a factor
between 5,31 and 12,25 in the case of C version and
in the range [0,89-2,61] for the original code. However,
the parallelization significantly reduces elaboration times,
making this approach the fastest one, as can be highlighted
also by the speedup. In the case of the smaller images, it
can reach a value higher than 10 for the C code and it
is usually twice as fast as the MATLAB implementation.
In the case of the speedup, this progressively reduces with
the increase of the dimension of the image to be processed
(see Fig. 3).

2) Processing time and speedup for the generation of covari-
ance matrices and noise reduction parts: Due to the nature
of the algorithm, these portions of code were parallelized
using only OpenMP and not through hybrid paralleliza-
tion (see Table II). Concerning the speedup for the C
implementation, the parallelization shows better results
for all the images, whereas the MATLAB version remains
faster than the other two approaches. This is due to the
HSI images used (details of each image are reported in
Table III) and, more importantly, due to the nature of the
algorithm, which does not allow to parallelize many parts,
since it has a series of sequential steps.

TABLE II
PERFORMANCE ANALYSIS IN TERMS OF PROCESSING TIMES FOR GENERATION

OF THE COVARIANCE MATRICES AND NOISE REDUCTION

TABLE III
CHARACTERISTICS OF THE PROCESSED HSIS

Fig. 4. CPU usage for different parts of the algorithm.

3) Another important parameter is the percentage of CPU
used in different portions of the code. Fig. 4 shows the
amount of work done for two specific parts of the algo-
rithm: The main loop and the error matrix generation.

The Tesla K40 device is a mature technology that has been
developed mainly for HPC purposes, whereas the RTX 2080
model is an evolution of the Tesla family of GPUs and it has
been conceived not only for the HPC field, but also for graphics
applications. Its clock is higher than the first GPU, therefore in
terms of throughput, the RTX 2080 is faster.

As a consequence, tests performed with the RTX model
aimed at minimizing possible outliers due to the different
configurations of this device. Hence, 400 iterations have been
done for each of the four datasets available. As shown in
Table IV, execution times are comparable among the two GPUs
for the smaller datasets, due to their reduced dimensions that
do not allow to fully exploit GPU advantages. However, in the
University of Pavia dataset, even though both GPUs have similar
execution times, it is possible to note a better speedup in the
case of the RTX 2080 device. Moreover, the Pavia town center

TORTI et al.: SPATIAL–SPECTRAL FEATURE EXTRACTION WITH LOCAL CM FROM HSIS THROUGH HYBRID PARALLELIZATION 7419

TABLE IV
PERFORMANCE COMPARISON WITH TWO GPU MODELS

dataset shows a reduction in the RTX 2080 model, which can be
observed also considering the speedups.

The reason for the different performance of the two boards
is the architectural organization of the CUDA cores. The Tesla
K40c GPU features 15 SMX and can then process 15 threads
blocks in parallel. On the other hand, the RTX 2080 board is
equipped with 128 SMX, allowing to process more blocks in
parallel than the Tesla K40c board. This is a critical issue when
the data dimensionality increases. In other words, more SMX
allow to process more blocks in parallel and to elaborate more
data at the same time. When the data dimensionality is low,
the number of blocks processed in parallel is no more a critical
issue, whereas having more cores inside the same SMX allows
to obtain a better performance since more cores can process data
while the others are accessing the memory. These considerations
are supported by the processing times of Table IV, where the
Tesla K40c GPU achieves the best performance with the two
smallest image, whereas the RTX 2080 board outperforms the
first device with the other images.

VI. CONCLUSION

This article presents the optimization and hybrid paralleliza-
tion of an FE methodology applied to HSIs, using the LCMR.
Our aim is to accelerate the execution of the original MATLAB
code and optimize portions of the algorithm, which are suitable
for OpenMP (multicores) and CUDA (manycores). The hybrid
parallelization approach, in contrast with solely OpenMP or
CUDA, has been evaluated as a better option, since it allows
to optimize every eligible portion with the most appropriate
parallelization technique. For this reason, a first optimization
has been performed by obtaining a new serial version of this
algorithm in C language, since this is the backbone of both
OpenMP and CUDA parallelization. The algorithm applies, at
first, a DR with the maximum noise reduction operator, then the
LCMR is calculated for FE purposes. After that, the SVM is
used for the classification and, at last, the error matrix calcula-
tion is performed and the classification matrix is produced as
output. Specific parts of the procedure have been written with
the addition of OpenMP directives, such as the generation of
the sample and the error matrix calculation. Concerning GPU
implementation, CM calculation has been performed with this
approach. This version has been tested using four test sets of real
HSIs, which are usually applied in the remote-sensing context.
The parallelized solution demonstrates optimal results compared
to the serial C code while performance remains faster in the case
of the original MATLAB implementation. This is due to the
dimensions of such images and also the nature of the algorithm,
which does not allow complete parallelization.

REFERENCES

[1] L. Fang, N. He, S. Li, A. J. Plaza, and J. Plaza, “A new spatial–spectral
feature extraction method for hyperspectral images using local covariance
matrix representation,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 6,
pp. 3534–3546, Jun. 2018, doi: 10.1109/TGRS.2018.2801387.

[2] P. Ghamisi, J. Plaza, Y. Chen, J. Li, and A. J. Plaza, “Ad-
vanced spectral classifiers for hyperspectral images: A review,” IEEE
Geosci. Remote Sens. Mag., vol. 5, no. 1, pp. 8–32, Mar. 2017,
doi: 10.1109/MGRS.2016.2616418.

[3] R. Guerra, E. Martel, J. Khan, S. López, P. Athanas, and R. Sarmiento,
“On the evaluation of different high-performance computing platforms
for hyperspectral imaging: An OpenCL-based approach,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 11, pp. 4879–4897,
Nov. 2017, doi: 10.1109/JSTARS.2017.2737958.

[4] X. Kang, X. Zhang, S. Li, K. Li, J. Li, and J. A. Benediktsson, “Hyperspec-
tral anomaly detection with attribute and edge-preserving filters,” IEEE
Trans. Geosci. Remote Sens., vol. 55, no. 10, pp. 5600–5611, Oct. 2017,
doi: 10.1109/TGRS.2017.2710145.

[5] E. Marenzi, E. Torti, F. Leporati, E. Quevedo, and G. M. Callicò, “Block
matching super-resolution parallel GPU implementation for computational
imaging,” IEEE Trans. Consum. Electron., vol. 63, no. 4, pp. 368–376,
Nov. 2017, doi: 10.1109/TCE.2017.015077.

[6] C. Wu, L. Zhang, and B. Du, “Kernel slow feature analysis for scene
change detection,” IEEE Trans. Geosci. Remote Sens., vol. 55, no. 4,
pp. 2367–2384, Apr. 2017, doi: 10.1109/TGRS.2016.2642125.

[7] Y. Liu, J. Li, P. Du, A. Plaza, X. Jia, and X. Zhang, “Class-oriented spec-
tral partitioning for remotely sensed hyperspectral image classification,”
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 10, no. 2,
pp. 691–711, Feb. 2017, doi: 10.1109/JSTARS.2016.2588980.

[8] S. Bernabé, S. Sánchez, A. Plaza, S. López, J. A. Benediktsson, and
R. Sarmiento, “Hyperspectral unmixing on GPUs and multi-core pro-
cessors: A comparison,” IEEE J. Sel. Topics Appl. Earth Observ. Re-
mote Sens., vol. 6, no. 3, pp. 1386–1398, Jun. 2013, doi: 10.1109/JS-
TARS.2013.2254470.

[9] S. Sánchez, R. Ramalho, L. Sousa, and A. Plaza, “Real-time imple-
mentation of remotely sensed hyperspectral image unmixing on GPUs,”
J. Real Time Image Process., vol. 10, no. 3, pp. 469–483, 2015,
doi: 10.1007/s11554-012-0269-2.

[10] E. Torti, G. Danese, F. Leporati, and A. Plaza, “A hybrid CPU–GPU real-
time hyperspectral unmixing chain,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 9, no. 2, pp. 945–951, Feb. 2016, doi: 10.1109/JS-
TARS.2015.2485399.

[11] L. I. Jiménez and A. Plaza, “HyperMix: An open-source tool for
fast spectral unmixing on graphics processing units,” IEEE Geosci.
Remote Sens. Lett., vol. 12, no. 9, pp. 1883–1887, Sep. 2015,
doi: 10.1109/LGRS.2015.2435001.

[12] E. Martel, R. Guerra, S. López, and R. Sarmiento, “A GPU-based process-
ing chain for linearly unmixing hyperspectral images,” IEEE J. Sel. Topics
Appl. Earth Observ. Remote Sens., vol. 10, no. 3, pp. 818–834, Mar. 2017,
doi: 10.1109/JSTARS.2016.2614842.

[13] E. Marenzi, A. Carrus, G. Danese, F. Leporati, and G. M. Callico, “Efficient
parallelization of motion estimation for super-resolution,” in Proc. 25th
Euromicro Int. Conf. Parallel, Distrib. Netw.-Based Process., 2017, ,
pp. 274–277, doi: 10.1109/PDP.2017.64.

[14] Y. Guan, S. Guo, Y. Xue, J. Liu, and X. Zhang, “Application of
airborne hyperspectral data for precise agriculture,” in Proc. IEEE
Int. Geosci. Remote Sens. Symp., 2004, vol. 6, pp. 4195–4198,
doi: 10.1109/IGARSS.2004.1370060.

[15] J. Rosentreter, R. Hagensieker, A. Okujeni, R. Roscher, P. D. Wagner,
and B. Waske, “Subpixel mapping of urban areas using EnMAP data
and multioutput support vector regression,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 10, no. 5, pp. 1938–1948, May 2017,
doi: 10.1109/JSTARS.2017.2652726.

https://dx.doi.org/10.1109/TGRS.2018.2801387
https://dx.doi.org/10.1109/MGRS.2016.2616418
https://dx.doi.org/10.1109/JSTARS.2017.2737958
https://dx.doi.org/10.1109/TGRS.2017.2710145
https://dx.doi.org/10.1109/TCE.2017.015077
https://dx.doi.org/10.1109/TGRS.2016.2642125
https://dx.doi.org/10.1109/JSTARS.2016.2588980
https://dx.doi.org/10.1109/JSTARS.2013.2254470
https://dx.doi.org/10.1109/JSTARS.2013.2254470
https://dx.doi.org/10.1007/s11554-012-0269-2
https://dx.doi.org/10.1109/JSTARS.2015.2485399
https://dx.doi.org/10.1109/JSTARS.2015.2485399
https://dx.doi.org/10.1109/LGRS.2015.2435001
https://dx.doi.org/10.1109/JSTARS.2016.2614842
https://dx.doi.org/10.1109/PDP.2017.64
https://dx.doi.org/10.1109/IGARSS.2004.1370060
https://dx.doi.org/10.1109/JSTARS.2017.2652726

7420 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

[16] H.-C. Chang and A. Burke, “Integration of hyperspectral and polari-
metric radar remote sensing techniques for monitoring invasive weeds,”
in Proc. IEEE Geosci. Remote Sens. Symp., 2014, pp. 2950–2952,
doi: 10.1109/IGARSS.2014.6947095.

[17] A. Fontanella, E. Marenzi, E. Torti, G. Danese, A. Plaza, and F. Leporati,
“A suite of parallel algorithms for efficient band selection from hyper-
spectral images,” J. Real Time Image Process., vol. 15, pp. 537–553, 2018,
doi: 10.1007/s11554-018-0765-0.

[18] C.-I. Chang and S. Wang, “Constrained band selection for hyper-
spectral imagery,” IEEE Trans. Geosci. Remote Sens., vol. 44, no. 6,
pp. 1575–1585, Jun. 2006, doi: 10.1109/TGRS.2006.864389.

[19] M. Gong, M. Zhang, and Y. Yuan, “Unsupervised band selection based
on evolutionary multiobjective optimization for hyperspectral images,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 544–557, Jan. 2016,
doi: 10.1109/TGRS.2015.2461653.

[20] K. Sun, X. Geng, L. Ji, and Y. Lu, “A new band selection method for
hyperspectral image based on data quality,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2697–2703, Jun. 2014,
doi: 10.1109/JSTARS.2014.2320299.

[21] S. Jia, G. Tang, J. Zhu, and Q. Li, “A novel ranking-based
clustering approach for hyperspectral band selection,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 1, pp. 88–102, Jan. 2016,
doi: 10.1109/TGRS.2015.2450759.

[22] M. Li, W. Li, Y. Liu, Y. Huang, and G. Yang, “Adaptive mask
sampling and manifold to Euclidean subspace learning with dis-
tance covariance representation for hyperspectral image classification,”
IEEE Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 5508518,
doi: 10.1109/TGRS.2023.3265388.

[23] Y. Yan, J. Ren, Q. Liu, H. Zhao, H. Sun, and J. Zabalza, “PCA-domain
fused singular spectral analysis for fast and noise-robust spectral–spatial
feature mining in hyperspectral classification,” IEEE Geosci. Remote Sens.
Lett., vol. 20, 2023, Art. no. 5505405, doi: 10.1109/LGRS.2021.3121565.

[24] E. Torti, G. Danese, F. Leporati, and A. Plaza, “A hybrid CPU-GPU real-
time hyperspectral unmixing chain,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 9, no. 2, pp. 945–951, Feb. 2016, doi: 10.1109/JS-
TARS.2015.2485399.

[25] Z. Wu et al., “GPU parallel implementation of spatially adaptive hyper-
spectral image classification,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 4, pp. 1131–1143, Apr. 2018, doi: 10.1109/JS-
TARS.2017.2755639.

[26] Z. Wu, Y. Li, A. Plaza, J. Li, F. Xiao, and Z. Wei, “Parallel and dis-
tributed dimensionality reduction of hyperspectral data on cloud com-
puting architectures,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 9, no. 6, pp. 2270–2278, Jun. 2016, doi: 10.1109/JSTARS.2016.
2542193.

[27] Q. Du, B. Tang, W. Xie, and W. Li, “Parallel and distributed com-
puting for anomaly detection from hyperspectral remote sensing im-
agery,” Proc. IEEE, vol. 109, no. 8, pp. 1306–1319, Aug. 2021,
doi: 10.1109/JPROC.2021.3076455.

[28] E. Marenzi, E. Torti, G. Danese, and F. Leporati, “FPGA high level
synthesis for the classification of skin tumors with hyperspectral images,”
in Proc. 11th Mediterranean Conf. Embedded Comput., 2022, pp. 1–4,
doi: 10.1109/MECO55406.2022.9797211.

[29] C. González, D. Mozos, S. Lopez, and R. Sarmiento, “FPGA implemen-
tation to estimate the number of endmembers in hyperspectral images,”
in Proc. 25th Int. Conf. Field Programmable Log. Appl., 2015, pp. 1–8,
doi: 10.1109/FPL.2015.7293936.

[30] H. Du and H. Qi, “A reconfigurable FPGA system for parallel independent
component analysis,” EURASIP J. Embedded Syst., vol. 2006, no. 1, 2006,
Art. no. 023025, doi: 10.1155/ES/2006/23025.

[31] J. M. Haut et al., “Cloud deep networks for hyperspectral image analy-
sis,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 12, pp. 9832–9848,
Dec. 2019, doi: 10.1109/TGRS.2019.2929731.

[32] J. M. Haut, M. E. Paoletti, S. Moreno-Álvarez, J. Plaza, J.-A. Rico-
Gallego, and A. Plaza, “Distributed deep learning for remote sensing data
interpretation,” Proc. IEEE, vol. 109, no. 8, pp. 1320–1349, Aug. 2021,
doi: 10.1109/JPROC.2021.3063258.

[33] G. M. Callicó, S. Lopez, B. Aguilar, J. F. López, and R. Sarmiento, “Parallel
implementation of the modified vertex component analysis algorithm
for hyperspectral unmixing using OpenCL,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 8, pp. 3650–3659, Aug. 2014,
doi: 10.1109/JSTARS.2014.2340579.

[34] S. Akintoye, P. L. Han, D. X. Zhang, H. Chen, and P. D. Zhang, “A hybrid
parallelization approach for distributed and scalable deep learning,” SSRN
Electron. J., 2022, doi: 10.2139/ssrn.4043672.

[35] M. Klemm, B. R. de Supinski, “OpenMP Application Program Interface
Version 5.0.” Independently published, 2019.

[36] L. Dagum and R. Menon, “OpenMP: An industry standard API for shared-
memory programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55,
Jan.–Mar. 1998, doi: 10.1109/99.660313.

[37] “NVIDIA CUDA programming guide 3.1,” May 2010.
[38] D. Luebke, “CUDA: Scalable parallel programming for high-performance

scientific computing,” in Proc. 5th IEEE Int. Symp. Biomed. Imag.: From
Nano Macro, 2008, pp. 836–838, doi: 10.1109/ISBI.2008.4541126.

[39] D. Mustafa, “A survey of performance tuning techniques and tools for
parallel applications,” IEEE Access, vol. 10, pp. 15036–15055, 2022,
doi: 10.1109/ACCESS.2022.3147846.

[40] F. Melgani and L. Bruzzone, “Classification of hyperspectral re-
mote sensing images with support vector machines,” IEEE Trans.
Geosci. Remote Sens., vol. 42, no. 8, pp. 1778–1790, Aug. 2004,
doi: 10.1109/TGRS.2004.831865.

[41] F. Ratle, G. Camps-Valls, and J. Weston, “Semisupervised neural net-
works for efficient hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 48, no. 5, pp. 2271–2282, May 2010,
doi: 10.1109/TGRS.2009.2037898.

[42] J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, “Investigation of the
random forest framework for classification of hyperspectral data,” IEEE
Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492–501, Mar. 2005,
doi: 10.1109/TGRS.2004.842481.

[43] L. Fang, C. Wang, S. Li, and J. A. Benediktsson, “Hyperspectral image
classification via multiple-feature-based adaptive sparse representation,”
IEEE Trans. Instrum. Meas., vol. 66, no. 7, pp. 1646–1657, Jul. 2017,
doi: 10.1109/TIM.2017.2664480.

[44] W. Li, S. Prasad, J. E. Fowler, and L. M. Bruce, “Locality-preserving
dimensionality reduction and classification for hyperspectral image anal-
ysis,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1185–1198,
Apr. 2012, doi: 10.1109/TGRS.2011.2165957.

[45] S. Prasad and L. M. Bruce, “Limitations of principal components analysis
for hyperspectral target recognition,” IEEE Geosci. Remote Sens. Lett.,
vol. 5, no. 4, pp. 625–629, Oct. 2008, doi: 10.1109/LGRS.2008.2001282.

[46] A. Villa, J. A. Benediktsson, J. Chanussot, and C. Jutten, “Independent
component discriminant analysis for hyperspectral image classification,”
in Proc. 2nd Workshop Hyperspectral Image Signal Process.: Evol. Remote
Sens., 2010, pp. 1–4, doi: 10.1109/WHISPERS.2010.5594853.

[47] A. A. Green, M. Berman, P. Switzer, and M. D. Craig, “A transformation
for ordering multispectral data in terms of image quality with implications
for noise removal,” IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1,
pp. 65–74, Jan. 1988, doi: 10.1109/36.3001.

[48] H. Li, “An overview on remote sensing image classification methods with a
focus on support vector machine,” in Proc. Int. Conf. Signal Process. Mach.
Learn., 2021, pp. 50–56, doi: 10.1109/CONF-SPML54095.2021.00019.

[49] M. A. Shafaey et al., “Pixel-wise classification of hyperspectral im-
ages with 1D convolutional SVM networks,” IEEE Access, vol. 10,
pp. 133174–133185, 2022, doi: 10.1109/ACCESS.2022.3231579.

[50] H. Fu, G. Sun, J. Ren, A. Zhang, and X. Jia, “Fusion of PCA and
segmented-PCA domain multiscale 2-D-SSA for effective spectral-spatial
feature extraction and data classification in hyperspectral imagery,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5500214,
doi: 10.1109/TGRS.2020.3034656.

[51] B. Praveen and V. Menon, “Study of spatial-spectral feature extraction
frameworks with 3-D convolutional neural network for robust hyper-
spectral imagery classification,” IEEE J. Sel. Topics Appl. Earth Ob-
serv. Remote Sens., vol. 14, pp. 1717–1727, 2021, doi: 10.1109/JS-
TARS.2020.3046414.

[52] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480–491,
Mar. 2005, doi: 10.1109/TGRS.2004.842478.

[53] X. Kang, S. Li, and J. A. Benediktsson, “Feature extraction of hy-
perspectral images with image fusion and recursive filtering,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3742–3752, Jun. 2014,
doi: 10.1109/TGRS.2013.2275613.

[54] X. Kang, S. Li, and J. A. Benediktsson, “Spectral–spatial hyperspec-
tral image classification with edge-preserving filtering,” IEEE Trans.
Geosci. Remote Sens., vol. 52, no. 5, pp. 2666–2677, May 2014,
doi: 10.1109/TGRS.2013.2264508.

[55] L. Mou, P. Ghamisi, and X. X. Zhu, “Deep recurrent neu-
ral networks for hyperspectral image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 55, no. 7, pp. 3639–3655, Jul. 2017,
doi: 10.1109/TGRS.2016.2636241.

https://dx.doi.org/10.1109/IGARSS.2014.6947095
https://dx.doi.org/10.1007/s11554-018-0765-0
https://dx.doi.org/10.1109/TGRS.2006.864389
https://dx.doi.org/10.1109/TGRS.2015.2461653
https://dx.doi.org/10.1109/JSTARS.2014.2320299
https://dx.doi.org/10.1109/TGRS.2015.2450759
https://dx.doi.org/10.1109/TGRS.2023.3265388
https://dx.doi.org/10.1109/LGRS.2021.3121565
https://dx.doi.org/10.1109/JSTARS.2015.2485399
https://dx.doi.org/10.1109/JSTARS.2015.2485399
https://dx.doi.org/10.1109/JSTARS.2017.2755639
https://dx.doi.org/10.1109/JSTARS.2017.2755639
https://dx.doi.org/10.1109/JSTARS.2016.2542193
https://dx.doi.org/10.1109/JSTARS.2016.2542193
https://dx.doi.org/10.1109/JPROC.2021.3076455
https://dx.doi.org/10.1109/MECO55406.2022.9797211
https://dx.doi.org/10.1109/FPL.2015.7293936
https://dx.doi.org/10.1155/ES/2006/23025
https://dx.doi.org/10.1109/TGRS.2019.2929731
https://dx.doi.org/10.1109/JPROC.2021.3063258
https://dx.doi.org/10.1109/JSTARS.2014.2340579
https://dx.doi.org/10.2139/ssrn.4043672
https://dx.doi.org/10.1109/99.660313
https://dx.doi.org/10.1109/ISBI.2008.4541126
https://dx.doi.org/10.1109/ACCESS.2022.3147846
https://dx.doi.org/10.1109/TGRS.2004.831865
https://dx.doi.org/10.1109/TGRS.2009.2037898
https://dx.doi.org/10.1109/TGRS.2004.842481
https://dx.doi.org/10.1109/TIM.2017.2664480
https://dx.doi.org/10.1109/TGRS.2011.2165957
https://dx.doi.org/10.1109/LGRS.2008.2001282
https://dx.doi.org/10.1109/WHISPERS.2010.5594853
https://dx.doi.org/10.1109/36.3001
https://dx.doi.org/10.1109/CONF-SPML54095.2021.00019
https://dx.doi.org/10.1109/ACCESS.2022.3231579
https://dx.doi.org/10.1109/TGRS.2020.3034656
https://dx.doi.org/10.1109/JSTARS.2020.3046414
https://dx.doi.org/10.1109/JSTARS.2020.3046414
https://dx.doi.org/10.1109/TGRS.2004.842478
https://dx.doi.org/10.1109/TGRS.2013.2275613
https://dx.doi.org/10.1109/TGRS.2013.2264508
https://dx.doi.org/10.1109/TGRS.2016.2636241

TORTI et al.: SPATIAL–SPECTRAL FEATURE EXTRACTION WITH LOCAL CM FROM HSIS THROUGH HYBRID PARALLELIZATION 7421

[56] W. Zhao and S. Du, “Spectral–spatial feature extraction for hyperspec-
tral image classification: A dimension reduction and deep learning ap-
proach,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 8, pp. 4544–4554,
Aug. 2016, doi: 10.1109/TGRS.2016.2543748.

[57] W. Li, G. Wu, F. Zhang, and Q. Du, “Hyperspectral image classification
using deep pixel-pair features,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 2, pp. 844–853, Feb. 2017, doi: 10.1109/TGRS.2016.2616355.

[58] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232–6251, Oct. 2016, doi: 10.1109/TGRS.2016.2584107.

[59] D. Li, F. Kong, J. Liu, and Q. Wang, “Superpixel-based multiple statistical
feature extraction method for classification of hyperspectral images,” IEEE
Trans. Geosci. Remote Sens., vol. 59, no. 10, pp. 8738–8753, Oct. 2021,
doi: 10.1109/TGRS.2021.3056722.

[60] T. Lu, S. Li, L. Fang, L. Bruzzone, and J. A. Benediktsson, “Set-to-set
distance-based spectral–spatial classification of hyperspectral images,”
IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7122–7134,
Dec. 2016, doi: 10.1109/TGRS.2016.2596260.

[61] C.-I. Chang, “An information-theoretic approach to spectral variabil-
ity, similarity, and discrimination for hyperspectral image analysis,”
IEEE Trans. Inf. Theory, vol. 46, no. 5, pp. 1927–1932, Aug. 2000,
doi: 10.1109/18.857802.

[62] T. Lu, S. Li, L. Fang, Y. Ma, and J. A. Benediktsson, “Spectral–spatial
adaptive sparse representation for hyperspectral image denoising,” IEEE
Trans. Geosci. Remote Sens., vol. 54, no. 1, pp. 373–385, Jan. 2016,
doi: 10.1109/TGRS.2015.2457614.

[63] C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vector
machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, May 2011,
Art. no. 27, doi: 10.1145/1961189.1961199.

[64] E. Torti et al., “Acceleration of brain cancer detection algorithms during
surgery procedures using GPUs,” Microprocessors Microsyst., vol. 61,
pp. 171–178, 2018, doi: 10.1016/j.micpro.2018.06.005.

Emanuele Torti received the bachelor’s degree in
electronic engineering, the master’s degree in com-
puter science engineering (cum laude), and the Ph.D.
degree in electronics and computer science engineer-
ing from the University of Pavia, Pavia, Italy, in 2009,
2011, and 2014, respectively.

He is currently an Assistant Professor with the En-
gineering Faculty, University of Pavia. His research
interest includes high-performance architectures for
real-time image processing and signal elaboration.

Elisa Marenzi received the B.S. and M.S. degrees
in biomedical engineering and the Ph.D. degree in
bioengineering and bioinformatics from the Univer-
sity of Pavia, Pavia, Italy, in 2007, 2010, and 2014,
respectively.

She is currently an Assistant Professor with the
Custom Computing and Programmable Systems Lab-
oratory, University of Pavia. Her research interests
include GPU parallel computing and the design and
development of electronic and embedded systems.

Dr. Marenzi obtained the second place in the Best
Student Paper contest organized by the IEEE Sensors Applications Symposium
in February 2012. In June 2012, she obtained third place in an academic com-
petition promoted by the local industrial association and won a national contest
for people under 30 on social innovation and technology, the Lifebility Award
2012, promoted by Milan’s Lion Club. In 2014, she was awarded for her Ph.D.
thesis from Rotary and the National Association for Automatic Computing.

Giovanni Danese received the Ph.D. degree in elec-
tronics and computer engineering from the University
of Pavia, Pavia, Italy, in 1987.

Since 1998, he has been the Leader of the Mi-
crocomputer Laboratory, Computer Engineering and
Systems Science Department, University of Pavia.
Since 2021, he has also been a Full Professor with
the Computer Programming and Computer Architec-
ture, Engineering Faculty, University of Pavia. His
research interests include parallel computing, special-
purpose computers, and multiprocessor devices for

artificial neural network implementations.

Antonio J. Plaza (Fellow, IEEE) received the M.Sc.
and Ph.D. degrees in computer engineering from the
University of Extremadura, Badajoz, Spain, in 1999
and 2002, respectively.

He is currently the Head of the Hyperspectral
Computing Laboratory, Department of Technology
of Computers and Communications, University of
Extremadura. He has authored more than 600 publi-
cations, including 400 journal papers, 25 book chap-
ters, and 330 peer-reviewed conference proceeding
papers. His research interests include hyperspectral

data processing and parallel computing of remote-sensing data.
Dr. Plaza is a Fellow of the IEEE for contributions to hyperspectral data

processing and parallel computing of earth observation data. He was a member
of the Editorial Board for the IEEE Geoscience and Remote Sensing Newsletter
from 2011 to 2012 and the IEEE Geoscience and Remote Sensing Magazine in
2013. He was also a member of the steering committee of the IEEE JOURNAL

OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

(JSTARS). He was a recipient of the recognition of best reviewers of the IEEE
Geoscience and Remote Sensing Letters in 2009 and the IEEE TRANSACTIONS

ON GEOSCIENCE AND REMOTE SENSING in 2010, for which he served as an
Associate Editor from 2007 to 2012. He was a recipient of the Best Column
Award of the IEEE Signal Processing Magazine in 2015, the 2013 Best Paper
Award of the JSTARS journal, and the most highly cited paper in 2005–2010 in
the Journal of Parallel and Distributed Computing. He was also the recipient of
the best paper awards at the IEEE International Conference on Space Technology
and the IEEE Symposium on Signal Processing and Information Technology.
He is also an Associate Editor for the IEEE ACCESS. He served as the Director
of Education Activities for the IEEE Geoscience and Remote Sensing Society
(GRSS) from 2011 to 2012, and as a President of the Spanish Chapter of the
IEEE GRSS from 2012 to 2016. He has reviewed more than 500 manuscripts for
more than 50 different journals. He served as the Editor-in-Chief for the IEEE
TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING journal. He has guest
edited 17 special issues on hyperspectral remote sensing for different journals.
He has been included in the Highly Cited Researchers list in 2018–2022.

Francesco Leporati received the Laurea degree in
electronics engineering and the Ph.D. degree in elec-
tronics and computer engineering from the University
of Pavia, Pavia, Italy, in 1988 and 1993, respectively.

He is currently an Associate Professor with the
University of Pavia, where he teaches mechatronics,
industrial informatics and embedded systems, and
digital systems design. His research interests include
high-performance computing and embedded systems
in particular for bioengineering.

Dr. Leporati is a member of the IEEE Computer
Society and Euromicro Society (the Director of Italian correspondents and
General Secretary).

Open Access funding provided by ‘Università degli Studi di Pavia’ within the CRUI CARE Agreement

https://dx.doi.org/10.1109/TGRS.2016.2543748
https://dx.doi.org/10.1109/TGRS.2016.2616355
https://dx.doi.org/10.1109/TGRS.2016.2584107
https://dx.doi.org/10.1109/TGRS.2021.3056722
https://dx.doi.org/10.1109/TGRS.2016.2596260
https://dx.doi.org/10.1109/18.857802
https://dx.doi.org/10.1109/TGRS.2015.2457614
https://dx.doi.org/10.1145/1961189.1961199
https://dx.doi.org/10.1016/j.micpro.2018.06.005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

