
7850 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Downscaling Sentinel-3 Chlorophyll-a Concentration
for Inland Lakes Based on Multivariate Analysis and

Gradient Boosting Decision Trees Regression
Simin Zhang , Nanfeng Liu , Ming Luo , Tao Jiang, Ting On Chan , Cynthia Sin Ting Yau , and Yeran Sun

Abstract—Downscaling Chlorophyll-a (Chl-a) concentration de-
rived from satellite image is crucial for refined applications such as
water quality monitoring. However, the precision of downscaling
is usually constrained by various environmental factors. In this
paper, we develop a downscaling method for Chl-a concentration
to improve precision, especially for inland lakes with different
surrounding environment. The method downscales the Sentinel-3
Chl-a concentration from 300 m to 30 m, based on the multivariate
analysis (MVA) and the gradient boosting decision tree (GBDT)
model. Firstly, we analyzed 21 Chl-a concentration related indices
to identify optimal factors for Chl-a concentration variability.
Secondly, a GBDT model is constructed to convey the non-linear
relationship between the optimal factors and Chl-a concentration
at coarse resolution. Finally, fine-resolution Chl-a concentrations
were produced by employing the model to refine cofactors for 12
distinct lakes. The results indicated that the proposed MVA-GBDT
method effectively inferred the variability of Chl-a concentration
with a mean RMSE of 4.505 mg/m3, an improvement of 5%–
39% over other methods. Furthermore, for lakes with large water
quality heterogeneity, the method led to a cross validation RMSE
and a difference in accuracy of 5.371 mg/m3 and 0.866 mg/m3,
respectively. In addition, this study examined the significance of
the auxiliary factors and found that the NDCI and WST were
the two most important factors for MVA-GBDT to detect Chl-a
concentration distributions, particularly for NDCI in lakes with
high nutrient contrasts. These findings contribute to the generation
of fine-scale Chl-a concentrations in lakes and support related
applications.
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I. INTRODUCTION

LAKES are often the main local source of drinking water.
Besides, the lakes not only contribute directly to the exis-

tence and development of human activities (e.g., fish farming)
but also have a significant impact on worldwide biochemical
cycles and local ecosystems [1], [2], [3]. Nevertheless, the lakes
are becoming increasingly eutrophic, as their water quality is
deteriorating due to climate change and human activities. For
instance, a research item assessing the trophic conditions of lakes
(>10 km2) globally showed that in the summer of 2012, 63%
of lakes were eutrophic, 26% were mesotrophic, and 11% were
hypertrophic [4].

Chlorophyll-a (Chl-a), is a photosynthesis compound existing
in every algal plant. Its concentration reflects the biomass of
phytoplankton, which is closely linked to nutrient concentra-
tions and is a representative metric for assessing the extent
of hypotrophy and water quality in lakes [5], [6]. However,
Chl-a concentration measurements often require field sampling
and in-laboratory work, which is time-consuming and relatively
costly. Furthermore, given the rapid growth rate of phytoplank-
ton, the high variability of the inland conditions suppresses the
availability of reliable Chl-a concentration [7].

Remote sensing techniques have evolved rapidly during the
last few decades. They appear to be a viable and sometimes
the only solution to make measurements over a large area, as
they have the prospect of providing contiguous data with high
spatial coverages [8]. The Chl-a concentration can be assessed
by using reflectance measurements from sensors mounted on
satellites. Several sensors on board the satellites collect Chl-a
concentration information in water columns at different spatial
and temporal resolutions. These sensors include MODIS-Aqua
[9], VIIRS sensor on the NOAA-20 meteorological satellite [10],
OLI sensor on Landsat 8 [11], and MSI on Sentinel-2 satellites
[12]. MODIS-Aqua is generally considered to be effective in
providing raw information for global Chl-a concentrations [13].
While the MODIS-Aqua’s temporal resolution (1 day) renders
its measurements ideal for continual monitoring, the 1-km res-
olution is too coarse for inland lake monitoring.

The Sentinel-3 OLCI sensor is the new generation that is
currently regarded as the most compatible sensor for remote
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sensing of the watercolor of lakes [14], [15], [16] since its
launch in 2016. The Sentinel-3 OLCI provides two types of Chl-a
concentrations: the open ocean and complex water Chl-a concen-
trations. The complex water Chl-a concentration is engineered
for complicated waters by applying the neural network (NN)
method [17]. While this provides a feasible solution for assessing
Chl-a concentration of the lake surface with different water
nutrient content, the quality of data decreases at local levels,
especially for spatially complicated small and medium-sized
inland lakes.

A possible solution to improve the coarse spatial resolution
of Chl-a concentration is to develop spatial downscaling algo-
rithms that use high-resolution satellite reflectance [10]. Spatial
downscaling techniques have been used for numerous satellite
images, such as land surface temperatures [18], [19], [20], [21],
precipitations [22], [23], [24], [25], and soil moistures [26],
[27], [28], [29]. For Chl-a concentration, Fu et al. [30] first
represented coastal Chl-a concentration as a polynomial function
of the Landsat OLI optimal band and its combination, based on
the assumption that the scale is invariant. Since then, several
modified versions of the method have been proposed, using
different regression methods, or incorporating various auxiliary
factors. In particular, machine learning (ML) approaches have
been incorporated into different methods for downscaling. For
example, the random forest (RF), the support vector regression,
and the genetic programming method [31], [32], are used for the
downscaling. Although the ML methods have shown promising
results in Chl-a concentration downscaling, their application is
limited to large coastal areas due to the coarse resolution of
MODIS. For inland lakes, which are relatively small in area
and subject to natural and anthropogenic influences, there has
been little exploration in the literature. Therefore, we develop
a method for downscaling Sentinel-3 Chl-a concentration to a
fine resolution of 30 m to support related applications in various
lakes across China.

There are two main components of the proposed method: the
determination of the downscaling algorithm and the selection of
auxiliary factors. As for downscaling algorithm, because Chl-a
concentration and surface features have a complex nonlinear
relationship, the ML techniques often perform better than tradi-
tional statistical regression algorithms for downscaling [32]. The
gradient boosting decision tree (GBDT) is a ML algorithm that
integrated different decision trees to produce a reliable method
[33], but its application in downscaling has rarely been explored.
Besides, the Chl-a concentration spatial distribution of lakes
varies greatly due to China’s complex topographic and climatic
characteristics. As a result, the training data for ML modeling
may be biased. The GBDT is an iterative approach resistant to
exceptions and inconsistent values, resulting in consistent per-
formance. Thus, adapting GBDT to downscale satellite-derived
Chl-a concentration becomes the motivation behind this work.

The auxiliary factors mostly used for Chl-a concentration
extraction are spectral reflectance and their derivatives. For
example, they are texture and thermal features [34], [35], [36].
Recently, some factors derived from vegetation red-edge bands
have been shown to be strongly related to the Chl-a concentration
[37], [38]. However, most dated sensors lacked red-edge bands,

Fig. 1. Twelve lakes (Lakes 1–12) in China are represented spatially along
with the corresponding Sentinel-2 true color images.

making these factors difficult to be considered in the models.
Fortunately, the Sentinel-2 satellites established three bands in
the vegetation red-edge region (670–760 nm), providing effec-
tive datasets complement to phytoplankton monitoring for lakes.

This article presented a method downscaling Sentinel-3 Chl-
a concentration by adapting multivariate analysis (MVA) and
GBDT algorithm, leading to a more refined application in lake
surface monitoring. To extract as much information related to
Chl-a concentration from satellite observations as possible, the
optical bands of Sentinel-2 and its derived red-edge indices,
chlorophyll indices, and texture features (TF), the backscat-
tering characteristics of Sentinel-1, and the thermal features
of Landsat-8 were treated as the auxiliary factors to syntheti-
cally characterize the targeted lake’s ecological or geographic
features.

II. STUDY AREA AND EXPERIMENTAL DATA

A. Study Area

Twelve inland lakes (Lakes 1–12, area >1000 km2, including
the top five lakes) distributed across China were selected as
study areas (see Fig. 1). As can be seen, owing to a large
distribution, the selected lake ecosystems vary considerably in
terms of land cover type (trees, bare ground, snow, etc.), lake
water quality status (oligotrophic, mesotrophic, and eutrophic),
climate zone (warm temperate, subtropical, mid-temperate, and
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plateau climatic), and lake type (brackish and freshwater lakes);
more details about the selected lakes can be found in Table IV
(see Appendix).

B. Chl-a Concentration Products

We obtained images of each lake for different months in 2021
from the Sentinel-3 OLCI dataset provided by the European
Space Agency (https://sentinel.esa.int/web/) (see Table IV for
details). Their surface reflectance from the image dataset in the
Sentinel-3 optical bands was first processed with radiometric
calibration and atmospheric correction. Then, an integrated
Case 2 Regional Coast Color (C2RCC) algorithm based on NN
technology, embedded in the Sentinel toolbox in the Sentinel
Application Platform, was used to invert Sentinel-3 Chl-a con-
centration images [39]. After that, the water body was extracted
from each processed image to obtain the Chl-a concentration
map.

C. Auxiliary Datasets Acquisition

In this study, we acquired fine-resolution auxiliary data
from three major satellite datasets: Sentinel-1, Sentinel-2, and
Landsat-8. We downloaded the Sentinel-1 synthetic aperture
radar (SAR) and the Sentinel-2 multispectral instrument (MSI)
data from the Copernicus Open Access Hub (https://scihub.
copernicus.eu/) and the Landsat-8 level-2 data from the United
States Geological Survey site (https://earthexplorer.usgs.gov/).
The products covered a timeframe of January 1 to December 31,
2019, with revisit frequencies of 12 days for Sentinel-1, 5 days
for Sentinel-2, and 16 days for Landsat-8. Due to cloud cover and
the quality of remote-sensing reflectance, only a few matched
dates with valid data that met the criteria of cloud coverage
< 10% over the study region, were chosen for input in the down-
scaling model. Finally, we obtained available satellite images of
each lake for matching acquisition dates during 2019. Detailed
temporal information is shown in Table IV (see Appendix).

III. METHODOLOGY

The proposed method integrated the MVA and the GBDT
regression, avoiding the GBDT being overfitted even under more
than 20 types of features used as input for training, resulting in
an accurate downscaling of the Sentinel-3 Chl-a concentration
from 300 to 30 m for inland lakes with a large discrepancy
in nutrient status and surrounding environment. The proposed
MVA-GBDT method consists of four steps, including a thorough
accuracy assessment scheme, as shown in Fig. 2. Each step will
be described in the following sections in detail.

A. Step 1: Data Preprocessing

To reduce geometric mismatches between various datasets,
image registration tools from the ENVI software package were
applied. Subsequently, for the Sentinel-1 and Sentinel-2 re-
flectance, the Savitzky–Golay filter was utilized to generate
gap-filled reflectance data. For water surface temperature (WST)
obtained from Landsat-8, cloud-free time series were recon-
structed using the harmonic analysis of time series method. This
method has been widely used to reconstruct time series of LST

Fig. 2. Workflow of the proposed method.

and NDVI to remove random noise or eliminate cloud/snow con-
tamination. [40], [41]. Next, the modified normalized difference
water index (MNDWI) was adopted to recognize water masses
[42]. The MNDWI thresholds for water mass recognition were
determined by iteratively computing the output. After that, the
optimal thresholds were used for the high-resolution images.
Finally, all the auxiliary data were resampled from 300 and
30 m for model training and prediction using the cubic con-
volutional interpolation resampling method [43]. This creates
a correspondence between the satellite products and the Chl-a
concentrations.

B. Step 2: Explanatory Factors Selection

According to the literature on Chl-a concentration analysis
(e.g., [30], [31], and [32]), it is realized that the Chl-a con-
centration is relatively sensitive to spectral reflectance, TF, and
water temperature. Furthermore, some literature (e.g., [37], [38],
[44], and [45]) suggest that chlorophyll and red-edge indices
are essential for the extraction of Chl-a concentration. As a
result, in this work, 21 indicators (including optical bands, water
temperature, normalized difference chlorophyll index (NDCI),
chlorophyll index red-edge, etc.) were selected by integrating
multisource satellite data to construct a comprehensive Chl-a
indicator system (as shown in Table I). These indicators can be
broadly classified into the following six types.

1) Multispectral reflectance, which is widely considered an
important parameter for Chl-a inversion (e.g., [30], [31],
and [32]), mainly consists of the visible, near-infrared
(NIR), and shortwave infrared (SWIR) bands. They char-
acterize differences in the surface reflection of solar
radiation.

2) Chlorophyll indices, including the NDCI [44] and the
blue-red-green index (BRG) [45], which are specifically
designed for the inversion of chlorophyll in water bodies.

3) Red-edge index, which is calculated from the unique
red-edge bands of Sentinel-2 imagery. The red-edge in-
dices derived from vegetation red-edge bands have been

https://sentinel.esa.int/web/
https://scihub.copernicus.eu/
https://scihub.copernicus.eu/
https://earthexplorer.usgs.gov/
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TABLE I
DESCRIPTION OF THE FACTOR SET FOR DOWNSCALING

shown to be strongly correlated to the Chl-a concentration
[37], [38].

4) TF, which include correlation, contrast, entropy, and vari-
ance. Some researchers have suggested that texture infor-
mation can enhance the precision of Chl-a concentration
assessment [46], [47]. Thus, several TF obtained by using
the widely used gray scale co-occurrence matrix method
were selected as Chl-a concentration factors.

5) Backscattering characteristics, derived from the
Sentinel-1 SAR image. The vertical transmit/vertical
receive (VV) and vertical transmit/horizontal receive
(VH) bands are used to capture the topographic features
of inland lakes as supplementary information.

6) Thermal characteristics (TC), derived from the Landsat-8
thermal infrared sensor (TIRS) imagery. According to
Quiros et al. [48], the WST is highly coupled to Chl-a
concentration under normal circumstances for turbid wa-
ters since the cooling rate is inversely proportional to the
trophic state of the lake. A ratio between the WST between
two neighborhood points A and B is given by

ΔWSTA/ΔWSTB ≈ dB/dA (1)

where ΔWST is the surface temperature change, and dA and
dB are the Chl-a concentration of the two neighborhood points.

To determine a set of factors for constructing a robust
downscaling model, a two-stage procedure was applied to im-
plement optimal factor selection. First, we used the signifi-
cance assessment approach to evaluate the contribution of the
abovementioned auxiliary factors. Second, according to the
significance-ranked results, the stepwise regression method [49]
was used to avoid factor multicollinearity in downscaling. The
subset of factors with the highest accuracy was used as the best
explanatory factor for the model.

In addition, we differentiate the roles of the six different types
of auxiliary factors and find out the best factors to facilitate the
Chl-a downscaling, by designing eight sets of factor combina-
tions for the downscaling. These combinations are as follows.

1) Multispectral reflectance.
2) Multispectral reflectance + Chlorophyll indices.
3) Multispectral reflectance + Red-edge indices.
4) Multispectral reflectance + TF.
5) Multispectral reflectance + TC.
6) Multispectral reflectance+ backscattering characteristics.
7) All factors.
8) Optimal factors.

C. Step 3: Construction of Downscaling Model

Several studies have discussed ML algorithms (such as RF)
for solving nonlinear regression problems in downscaling [50],
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[51], [52]. Unlike other ML algorithms, GBDT structures an
aggregate of decision tree learners by using boosted iterations.
At every iteration, a new decision tree is used to reinforce
a loss function based on the sharpest gradients. The GBDT
method has several unique properties other ML algorithms
miss. One of them is that the GBDT is more stable to offsets
and imbalances. Thus, a high and efficient predictive prop-
erty is assured in the model [53]. Given the complex nonlin-
ear relations between Chl-a concentration and its features, the
GBDT algorithm was selected to construct the downscaling
model.

Downscaling methods are mostly based on the scale in-
variance hypothesis. This hypothesis states that the statistical
relation between predictors and coarse-resolution explanatory
factors also holds at fine-resolution [28], [54], [55]. The spe-
cific procedures for the downscaling are as follows. First, the
statistical relation between the explanatory factor and original
coarse-resolution Chl-a concentration was established using
the GBDT regression model. Then, based on the constructed
statistical relation, the explanatory factors at fine and coarse
resolution were applied to predict the Chl-a concentration at
fine and coarse resolution, respectively. Finally, the difference
between the coarse resolution and the original coarse resolution
Chl-a concentration is considered to be the fine resolution Chl-a
concentration prediction via using the Kriging. Mathematically,
it is expressed as

CHLf = CHLc + (Fc (Sf ) − Fc (Sc)) (2)

where f and c represent fine and coarse resolution, respectively,
and F represents the statistical function between Chl-a concen-
tration and explanatory factor (S).

There are three important parameters in the GBDT down-
scaling method: the number of decision trees in the regression
procedure, the explanatory factors used to segment the nodes,
and the loss function. The parameterization of downscaling
models is critical to avoid multicollinearity and overfitting. In
this work, we adopted a two-stage procedure to implement
model parameterization. For the first stage, inspired by Zebari
et al. [56], the significant assessment and stepwise regression
were used to select explanatory factors and deal with mul-
ticollinearity since they preserved the physical meaning of
the factors for subsequent analysis. For the second stage, a
grid search method with ten-fold cross-validation (i.e., dividing
all pixels into ten groups; nine groups at a time for training
and the rest for validation) [57] was applied to determine the
number of decision trees and the loss function. Ultimately,
100 and the minimum absolute deviation were determined
as the final number of decision trees and the loss function,
respectively.

D. Step 4: Accuracy Verification Strategy

Due to the lack of the Chl-a concentration observed at high
spatial resolutions, the aggregation-disaggregation approach
was adopted to evaluate model performance [50], [58], [59].
Specifically, we maintained the original Chl-a concentration
(300 m) to auxiliary factor (30 m) spatial resolution ratio of 10:1.

Initially, Chl-a concentration and explanatory factors were up to
3000 m and 300 m, respectively, where the original 300-m Chl-a
concentration was used as a reference to validate the 3000 m
downscaled Chl-a concentration.

Statistical analyses were also performed on a series of quanti-
ties: the determination of the coefficient (R2), root mean squared
error (RMSE), mean absolute error (MAE), and structural simi-
larity (SSIM). R2 represents the variance explained by the model;
RMSE is the most commonly-used statistical term to quantify
the model error, revealing the deviation between the predicted
and the true values; MAE is the average value of absolute errors,
which provides an alternative way for analysis of the prediction
errors; SSIM represents the SSIM between the downscaled and
original images. These indicators can be expressed as follows:

R2 = 1−
∑m

i=1 (CHLc − CHLf )
2

∑m
i=1 (CHLc − μf )

2 (3)

RMSE =

√
1

m

∑m

i=1
(CHLc − CHLf )

2 (4)

MAE =
1

m

m∑
i=1

|(CHLc − CHLf )| (5)

SSIM =
(2μcμf + C1) · (2σcf + C2)(

μ2
c + μ2

f + C1

)
·
(
σ2
c + σ2

f + C2

) (6)

where m is the number of samples, the subscripts c and f
denote coarse and fine resolution, μ is the average of the Chl-a
concentration,σ2 andμ2 are the covariance and variance of Chl-a
concentration, and C1 and C2 are constants used to maintain
numerical stability, which are set to 0.1 and 0.05, respectively.

IV. RESULTS AND ANALYSIS

A. Optimal Combination of Explanatory Factors

The individual significance of each auxiliary factor and the
variation of downscaling accuracy with the factors are shown
in Fig. 3. The most significant two explanatory factors are
NDCI and WST, possessing factor significant scores of 16.5%
and 11.5%, respectively. This is because when the Chl-a (e.g.,
phytoplankton) presents in water, more NIR is reflected and
more red light is absorbed, leading to a significant increase
in NDCI [44]. Concurrently, all the lakes in the study area
exhibited a large nutrient state (see Table IV), indicating that
there would be potential coupling existed between NDCI and
Chl-a concentration in lakes with larger trophic contrasts across
the water surface. In addition, the warm temperature provides
the basic conditions for phytoplankton blooms in the water body,
and therefore WST can sharply affect the changes in Chl-a
concentration [48].

As shown in Fig. 3, with an increasing number of aux-
iliary factors involved in the downscaling, the R2 increased
significantly from 32.5% to 75.8% in the first stage (only six
factors). This increment is in response to the high importance
score of the auxiliary factors and the low correlation between
factors (the maximum correlation coefficient is 0.67, see Fig. 10
in the appendix for details). In the middle stage (7–14 factors),



ZHANG et al.: DOWNSCALING SENTINEL-3 CHL-A CONCENTRATION FOR INLAND LAKES BASED ON MULTIVARIATE ANALYSIS 7855

Fig. 3. Individual importance of each auxiliary factor and the variation of downscaling accuracy with factors.

the speed of R2 improvement decreased significantly but still
showed a steady upward trend, and the R2 gradually reached
75.8%. In the later stages (15–21 factors), the R2 gradually
showed a decreasing trend. This is because of the increase of
redundant factors and irrelevant factors in the later stages (see
Fig. 10). Therefore, the first 14 factors would be the optimal
feature set, specifically, they are NDCI, WST, Green, NIR,
NDVIre2, Blue, VV, NDVIre3, GCLM_Ent, Red, NDre1, BRG,
NDVIre1, and GCLM_Con.

B. Comparison of Different Types of Auxiliary Factors

To quantitatively and accurately assess the effects of different
types of factors on the downscaling accuracy, the analysis of the
accuracy assessment was carried out for different combinations.
R2 and RMSE are included in the main evaluation indices,
and the specific results are presented in Fig. 4. Based on the
multispectral reflectance, the mean R2 and RMSE were 75.42%
and 7.94 mg/m3, respectively. When different types of factors are
added to the multispectral reflectance, the downscaling accuracy
is shown to be varying (see Fig. 4). The downscaling accuracy
tends to increase with the addition of chlorophyll index, red-edge
index, thermal features, and backscattering features. There is a
significant increase in accuracy for the chlorophyll index and
red-edge index (p<0.01). However, the downscaling accuracy
tends to decrease with the addition of TF, with a mean R2 of
73.11% and RMSE of 8.04 mg/m3. This indicates that fac-
tors related to biochemical components of phytoplankton (e.g.,
chlorophyll index, red-edge index, etc.) can effectively infer the
spatial variability of Chl-a concentrations, whereas image TF
limits their extraction of information on Chl-a concentrations in
diverse environments due to their nonsmooth nature. In addition,

Fig. 4. Boxplot of R2 and RMSE for seven combinations over Lakes 1–12. The
Wilcoxon test was applied to assess whether there was a significant difference
in accuracy between the referenced combination and the other combinations.
MSR: multispectral reflectance, CI: chlorophyll index, REI: red-edge index, TF:
texture feature, TC: thermal characteristic, BC: backscattering characteristic.

when all features were involved in downscaling, accuracy de-
creases, which may be due to the presence of redundancy from
multiple covariates between factors.
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Fig. 5. Downscaling accuracy assessment depicted as 3-D histograms for the four different approaches for Lakes 1–12. (a) R2. (b) RMSE. (c) MAE. (d) SSIM.

C. Comparison of Diverse Regression Models

To assess the performance of the GBDT method based on
MVA, three alternatives (the MPR, RF, and ANN) based on the
same inputs, were implemented for intermethod comparison.
The accuracies of Chl-a concentration downscaling contributed
by each method are shown in Fig. 5 as individual 3-D histograms
in terms of the statistical quantities. As can be seen from Fig. 5,
the GBDT consistently delivered the best results in diverse
lakes, outperforming the ANN, RF, and MPR. Compared to the
MPR approach, the downscaling RMSEs of the GBDT method
correspond to a 31% to 39% improvement. The ANN and RF
methods were less accurate than GBDT but still had a 5% to
25% improvement over the MPR approach.

The statistics derived from different methods are tabulated in
Table II. In a brief comparison of 12 lakes, GBDT has the highest
accuracy (average R2 is 0.82, RMSE is 4.47 mg/m3), followed
by ANN (average R2 is 0.79, RMSE is 4.99 mg/m3), RF (average
R2 is 0.77, RMSE is 5.11 mg/m3), and MPR (average R2 is 0.71,
RMSE is 7.22 mg/m3).

For some lakes, the discrepancy in performance between the
methods is significant. For example, in Lake 1 (June 2021)
and 4 (September 2021), the difference in RMSE between the
GBDT and MPR methods was the largest among all the lakes in
the study area. For the Chl-a concentration of Lake 4 acquired
in September, the downscaling accuracy of GBDT was higher
relative to the MPR based on uniform decomposition. This may
be attributed to accelerated changes in the phytoplankton status
of the lake during the late rainy season [60]. This is expected that
the subpixel changes resulting from the uniform decomposition
cannot reproduce for large 300-m pixels.

The pixel-based density scatter plots for the methods are
shown in Fig. 6. As can be seen in the scatter plots, the points
concentrated more for GBDT compared to others. However,
ANN and GBDT are comparable for some extreme observations.
The scatter plots of the GBDT and ANN are equipollent for some
lakes (e.g., Lake 6 and Lake 10), also they show that GBDT and
ANN have outperformed the RF and MPR methods. This is
consistent with the accuracy shown in Table II.

As can be seen in Fig. 7, the GBDT, ANN, RF, and MPR
methods reproduced most of the contrasts in the spatial distri-
bution of Chl-a concentration when compared to the original
maps. In addition, the downscaled Chl-a concentration maps
generated by the GBDT method showed higher agreement with
the hues of the original maps, compared with the ANN, RF,
and MPR methods. This indicates that the GBDT algorithm
better recovered the original spatial variability of Chl-a con-
centration. For some lakes (e.g., Lake 1), the downscaled Chl-a
concentration maps generated by the MPR method possess
more overestimation. For the fine-resolution, Chl-a concen-
tration maps generated by GBDT, ANN, and RF methods,
similar overestimations were much less significant, especially,
by the GBDT method. This suggests that GBDT, ANN, and
RF methods can better capture extreme Chl-a concentration
variation at the subpixel level, still, the GBDT method is
shown to be superior to the ANN and RF methods for such
applications.

The above-discussed results also suggest that the fine-
resolution images obtained from the GBDT method have high
consistency with the original images, and the RMSE and R2 are
both satisfactory (mean RMSE under 4.50 mg/m3 and R2 over
0.80). This indicates that the proposed MVA-GBDT method can
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TABLE II
STATISTIC RESULTS OF THE GBDT, ANN, RF, AND MPR METHODS

feasibly increase the spatial resolution of Chl-a concentration.
However, its performance can be hindered in some cases. For ex-
ample, Lakes 2 and 4 have high RMSEs (exceeding 6.5 mg/m3).
Such limited performance can be explained in terms of the
following reasons.

1) Limited spatial resolution of the satellite imagery: Al-
though the Sentinel-2 imagery has a resolution of 10 m,
such a resolution is still inadequate for the inversion of
water surfaces less than 100 m wide (i.e., these surfaces
can be captured with only a few pixels), particularly for the
extraction of boundaries. To reduce the downscaling errors
in the boundaries, this study extracted lake boundaries
as finely as possible from supplementary high-resolution
images simultaneously to relieve the problem. However,
as an additional high-resolution image source is required,
a complete remedy is impossible.

2) High temporal variability of Chl-a concentration: The Chl-
a concentration is unstable and susceptible to fluctuations
in the water environment, so it can vary considerably
over short periods of time even for small areas [61],
[62]. Therefore, we conducted model training using Chl-a
concentration from multiple regions at different times.
However, this can only ensure high-accuracy prediction
for most regions, and low prediction accuracy is still
inevitably found for some regions with high water qual-
ity heterogeneity and large temporal variability in Chl-a
concentration.

3) Impact caused by other nonmodeled factors: The factors
that influence the distribution of Chl-a concentration are
dominated by hydrologic and meteorological factors, with
other environmental factors, such as runoff and topog-
raphy. It is evident from field studies, for example, that
water depths have deepened substantially over time in
some areas such as Lake 7 and Lake 8 [63]. Not only
does this affect the actual Chl-a concentration in the lakes,
but also reduces the accuracy of satellite-derived Chl-a
concentration. Thus, it may be beneficial to incorporate
more related factors to further improve the model.

Overall, the proposed MVA-GBDT downscaling method, in-
corporating different types of auxiliary factors, yielded high
consistency between the downscaled outcomes and original
values, suggesting that the downscaled outcomes can be used as
a reference for the subsequent spatiotemporal analysis of Chl-a
concentration with fine spatial resolution.

D. Performance of the MVA-GBDT Method in
Different Environments

Training models with complex features tend to be prone to
overfitting issues (i.e., the model fits well only in certain regions),
then model generalization may be limited. To verify if the
proposed MVA-GBDT model suffers from overfitting, a cross-
validation experiment of downscaling models is performed. The
MVA-GBDT model trained with data obtained from a single
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Fig. 6. Pixel-based density scatterplots of Sentinel-3 Chl-a versus downscaled Chl-a at 300-m resolution by employing GBDT, ANN, RF, and MPR for Lakes
1–12.

lake, is used for downscaling prediction for the rest of the lakes
in the study area. The audits were conducted over different time
periods for the 12 lakes.

The training and test results for the 12 lakes based on the
MVA-GBDT model, are shown in Table III. Each row in the
table represents the MVA-GBDT model trained with the data
from an individual lake, and each column represents the re-
sults of testing the trained MVA-GBDT model. The smallest
RMSE is 3.10 mg/m3 for Lake 1, and it is relatively larger
for Lake 2 (7.83 mg/m3) and Lake 4 (8.75 mg/m3). Factors
affecting the results are derived from several sources. The
most important part of which is the difference in the surround-
ing environment for the lakes as well as the quality of the
data and the correlation between the training and reference
data.

Lake 2 is located in the middle and lower reaches of the
Yangtze River, as can be seen in Fig. 1, which has the greatest
difference in width between the 12 lakes. Meanwhile, Lake 4
lies on the border of the developed provinces and towns, which
is the most severely nutrient-rich among the 12 lakes (water
blooms occur frequently in summer). Because these conditions
and natural factors of Lakes 2 and 4 are very distinct from that of
other lakes, the RMSE differences are relatively larger for local
downscaling.

By comparing the downscaled results obtained after training
the MVA-GBDT on the remaining Lakes, the RMSEs of test
scores using the training data confined within their surface area,
are the smallest, with the exception of two special study regions
(e.g., Lakes 5 and 7). The best results from Lakes 5 and 7 are
with the 8th and 9th training models, respectively. It is seemingly
that this phenomenon occurs because explanatory variables in
the study area itself are not sufficiently well adjusted for surface
temperature, and rather than the best model test results are
obtained under the training of study regions more similar to
them. The difference between the RMSE and the optimal results
is 0.57 mg/m3 for Lake 5 and 0.81 mg/m3 for Lake 7. It is
worth noting that there is no large difference found from the
MVA-GBDT model built using its own study region as training
data for this case. Consequently, the proposed MVA-GBDT
method is shown able to be generalized for downscaling of Chl-a
concentration in a wide variety of inland lakes.

V. DISCUSSIONS

A. Chl-a Concentration Downscaling From 300 to 30 m

As it is virtually impossible to collect high-resolution Chl-a
concentrations across multiple study areas nationwide to di-
rectly validate downscaled Chl-a concentrations (30 m) from
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Fig. 7. Downscaled Chl-a concentration map using GBDT, ANN, RF, and MPR for Lakes 1–12.

TABLE III
DOWNSCALING ERROR STATISTICS FOR PROPOSED METHOD TRAINED ON EACH AREA AT DIFFERENT TIME
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Fig. 8. Downscaling Chl-a concentration from 300 to 30 m. (a) and (b) Scatter distribution and linear fit of Sentinel and Landsat Chl-a concentrations for two
lakes. (c) and (d) Pixel-based density scatterplots of Landsat Chl-a concentrations versus downscaled Chl-a at 30-m resolution by employing MVA-GBDT. (e) and
(f) Downscaled Chl-a concentration map of Lake 1 and Lake 11.

Sentinel-3 Chl-a concentrations (300 m), we employed the
widely popular “upscaling-downscaling” technique [50], [58],
[59] for validation in this research. Specifically, the original
300-m Sentinel-3 Chl-a concentrations were first upscaled to
3000 m. Subsequently, the 3000-m Sentinel-3 Chl-a concentra-
tion was downscaled to 300 m by applying the MVA-GBDT
method and then compared to the reference 300 m Chl-a con-
centration.

We also recognize that this “upscaling-downscaling” tech-
nique from 3000- to 300-m smooths out the spatial hetero-
geneity of satellite images, which may lead to results based
on this technique that differ from the true Chl-a concen-
trations downscaled from 300 to 30 m. Therefore, two im-
ages (Lake 1 and Lake 11) of Chl-a concentration from
Landsat-8 [65] with a spatial resolution of 30 m was col-
lected, and the performance of the MVA-GBDT method was
examined by downscaling Chl-a concentrations from 300 to
30 m.

Fig. 8(a) and (b) depicts the scatter plot and linear regression
relationship between Sentinel and Landsat Chl-a concentration

products for the two substudy areas at the coarse spatial reso-
lution level. As shown in Fig. 8(a) and (b), the coefficients of
determination for the Sentinel and Landsat Chl-a concentrations
reach 0.93 and 0.88 at the 95% confidence interval, respectively,
with the RMSE controlled below 3.50 mg/m3. This high corre-
lation suggests that the Landsat Chl-a concentration products
can be used as validation data for the downscaling results of the
Sentinel Chl-a concentrations.

The pixel-based density scatterplots of Landsat-8 Chl-a con-
centrations versus downscaled Chl-a concentrations at 30-m
resolution using the MVA-GBDT method in the two lakes are
shown in Fig. 8(c) and (d). Although these evaluations are
slightly different from those from 3000 to 300 m, the main results
are similar. For the different inland lakes, the MVA-GBDT
downscaling algorithm all achieved satisfactory results with
mean RMSE below 4.00 mg/m3 and R2 above 0.80. We further
demonstrate the performance of MVA-GBDT in Chl-a concen-
trations downscaling from 300 to 30 m [see Fig. 8(e) and (f)]. The
results show that MVA-GBDT downscaled Chl-a concentrations
are able to maintain the overall spatial pattern of 300 m Chl-a
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Fig. 9. RMSEs calculated using the proposed MVA-GBDT method of uncorrected and corrected scale effects.

concentrations and are also able to add abundant chlorophyll a
concentration detail very similar to that of the reference Chl-a
concentration [see Fig. 8(e) and (f)]. Furthermore, validations
show that RMSEs for all Chl-a concentrations downscaled by
MVA-GBDT are satisfactory in such heterogeneous lakes. This
result guarantees that MVA-GBDT can be utilized in practical
situations to downscale Sentinel Chl-a concentrations from 300
to 30 m.

B. Analysis of Scale Effect in the MVA-GBDT Method

As described in Section III-C, the Chl-a concentration down-
scaling methods assume the same statistical relationship ex-
ists between Chl-a concentration and auxiliary factors at var-
ious spatial resolutions. However, this scale-invariant statistical
relationship is not always correct. For example, the relationship
between Chl-a concentration and NDCI has been shown to
vary with spatial resolution [44], and the relationship between
Chl-a concentration and WST varies considerably at scale [64].
Therefore, this study further improved the downscaling results
by considering scale effects.

The proposed MVA-GBDT method uses a comparison
scheme to quantify the uncertainty caused by scale effects
based on the availability of high-resolution Chl-a concentration
obtained from Landsat-8, which was shown high consistency
(as stated in Section V-A). The key to this scheme lies in the
replacement of the statistical relationship between scale factors
and Chl-a concentrations at low resolution [i.e., Fc (•) in (2)]
with that at high resolution [hereafter referred to as Ff (•)]. With
the high-resolution statistical relationship Ff (•), the standard
downscaling process given in (2) can be modified as follows:

CHLf = CHLc + (Ff (Sf ) − Fc (Sc)) . (7)

Equation (7) is interpreted similarly to (2). The scale effect
is quantified by comparing the difference in accuracy obtained
from (2) and (7).

Based on the above scheme, the scale effect of MVA-GBDT
was quantified (see Fig. 9). The results suggest that taking the
scale effect into account improves the accuracy of the pro-
posed downscaling method. In several heterogeneous regions,
the RMSEs after considering scale effects are significantly lower
compared to those without scale effects, with a reduction of
about 20%. This indicates that the precision of the proposed
downscaling method can be higher when scale effects are taken
into account.

C. Prospects of the Proposed Method

The presented MVA-GBDT method can facilitate the gener-
ation of Chl-a concentrations with a high spatial or temporal
resolution for national lakes and related applications owing to
the following properties.

1) High applicability to heterogeneous lakes: MVA-GBDT
can directly downscale Sentinel-3 Chl-a concentrations
to a resolution of 30 m, enhancing spatial details while
preserving the spatial distribution of the original 300 m
Chl-a concentration data, especially for lakes with high
heterogeneity (see Fig. 7).

2) Nationwide generalization: MVA-GBDT is applicable na-
tionwide due to feasibility testing under a variety of geo-
graphic lakes across the country and the regular and global
coverage of Sentinel-3 observations.

3) Coupling with spatiotemporal fusion algorithms: MVA-
GBDT has the potential to be coupled with spatiotem-
poral fusion algorithms to generate high spatiotempo-
ral Chl-a concentration products with a resolution of
30 m.

4) Mutipurposes: MVA-GBDT method can provide continu-
ous, fine-scale Chl-a concentration information on a large-
scale using block processing, supporting a wide range
of applications in lake ecology, eutrophication, fisheries
management, biochemical cycling, etc.
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Fig. 10. Correlations between diverse auxiliary factors.

VI. CONCLUSION

Obtaining high-resolution and accurate lake Chl-a concen-
tration derived from satellite imagery is important to many
aquatic applications. In this article, we proposed a downscaling
method based on the MVA and GBDT, namely MVA-GBDT,
aiming to downscale Sentinel-3 Chl-a concentration from 300
to 30 m. Furthermore, we compared the performance of the
presented method with two other classic methods (MPR and
RF) for 12 different inland lakes with distinct characteristics in
China. The main contributions of this article are summarized as
follows.

1) The MVA-GBDT method for downscaling Chl-a con-
centration for inland lakes is proposed. It is based on
the MVA and GBDT regression methods, which out-
performed the other two methods (RF, MPR) for down-
scaling at distinct lake environments. The performance
of the method is guaranteed by the optimal assess-
ment of spatial weights inserted by the GBDT method
for Chl-a concentration and the integration of the op-
timal set of auxiliary factors into the regression. Anal-
ysis of the statistical indicators showed that the pro-
posed MVA-GBDT method delivers an average RMSE
of 4.505 mg/m3, an improvement in accuracy of between
5% and 39% compared to the other methods shown in this
article.

2) High rigor of the MVA-GBDT method is demonstrated
and analyzed. The proposed method can be general-
ized to downscale Chl-a concentration under different

conditions, achieving an average RMSE of 5.371 mg/m3

after cross-validation for more than ten distinct inland
lakes. The resultant accuracy difference is less than
0.900 mg/m3. The results could potentially contribute to
the analysis of bio-geophysical mechanisms in inland lake
environments.

3) Multiple types of auxiliary factors (multispectral re-
flectance, chlorophyll index, red-edge index, TF, TC,
and backscattering characteristic) are first integrated into
the GBDT method, which optimizes the method to de-
liver the best outcome for such an application. It is
shown that the NDCI and WST were dominant fac-
tors for the downscaling, particularly the NDCI of the
lakes with a relatively larger nutrient variation. The
results are expected to serve as a reference for the
analysis of the bio-physical mechanism in the trophic
environment.

In conclusion, our results reveal that the performance of the
proposed MVA-GBDT method is promising with the addition of
satellite and in situ measurements, downscaling methods should
be further explored in the future, and the proposed method may
be upgraded to downscale data further to 10 m. For example, the
inclusion of the temporal variation of Chl-a concentration within
the method could be viewed as providing a high spatiotemporal
resolution product of Chl-a concentration.

APPENDIX

See Appendix Fig. 10 and Table IV.
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TABLE IV
OUTLINE OF 12 LAKES
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