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Abstract—Hyperspectral image (HSI) processing tasks fre-
quently rely on spatial–spectral total variation (SSTV) to quantify
the local smoothness of image structures. However, conventional
SSTV only considers a sparse structure of gradient maps computed
along the spatial and spectral dimensions while neglecting other
correlations. To address this limitation, we introduce low-rank
guided SSTV (LRSTV), which characterizes the sparsity and low-
rank priors of the gradient map simultaneously. First, we verify
through numerical tests and theoretical analyses that the gradient
tensors are not only sparse but also low-rank. Subsequently, to
model the low rankness of the gradient map, we use the tensor
average rank to represent the low Tucker rank of gradient tensors.
The convex envelope of the tensor average rank is then employed to
penalize the rank on the gradient map after the Fourier transform
along the spectral dimension. By naturally encoding the sparsity
and low-rank priors of the gradient map, LRSTV results in a more
accurate representation of the original image. Finally, we demon-
strate the effectiveness of LRSTV by integrating it into the HSI
processing model, replacing conventional SSTV, and testing it on
two public datasets with nine cases of mixed noise and two datasets
with realistic noise. The results show that LRSTV outperforms
conventional SSTV in terms of accuracy and robustness.

Index Terms—Hyperspectral images (HSIs), restoration,
spatial–spectral, total variation (TV).

I. INTRODUCTION

THREE-DIMENSIONAL hyperspectral images (HSIs)
boast exceptional spectral accuracy, outstripping tradi-

tional imaging systems. Thanks to their ability to incorporate
many spectral bands, HSIs can reveal material properties and fa-
cilitate various image analysis tasks, including face recognition,
mineral exploration, target detection, and quality control [1].
However, real-world imaging conditions—such as weather, sen-
sor sensitivity, photon effects, and lighting conditions—can
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lead to a range of degradations in HSIs that seriously impact
subsequent processing [2], particularly when it comes to noise.
Therefore, an effective recovery algorithm is essential for im-
proving the accuracy of subsequent HSI processing.

HSI denoising, i.e., estimating a clean HSI from a noisy one,
is essentially an inverse problem. Regularization is one of the
most effective and widely used methods to solve this kind of
inverse problem. One of the key components of this method
is to explore and encode the prior structure and constrain the
solution space accordingly, in the form of a regularization term.
Regularization technology based on spatial–spectral total vari-
ation (SSTV) is a widely used and most effective and powerful
image restoration method. SSTV explores the local smoothness
(in most pixels) along the HSI spatial and spectral directions.
The spatial local smoothness means that similar objects/shapes
are usually distributed adjacently with similar spectral
waves. Moreover, sensor data from adjacent spectral bands tend
to have some correlation, e.g., because the spectral filters in the
sensors have overlapping bandpass characteristics similarity [3].
It should be noted, however, that spectra also contain important
narrow peaks and valleys. These properties lead to piecewise
smoothness, which translates into a low total variation (TV).
The local smooth prior structure possessed by HSI can be
equivalently characterized as the sparsity of the gradient map
calculated along the spatial and spectral modes of the HSI and,
then, naturally embedded as the TV of the different modes of
the HSI.

The TV regularization method has been widely used for image
restoration and has been successful in achieving good results.
However, it has some limitations in exploring the structures of
HSI beyond sparsity. The SSTV method, based on the L1 norm,
only captures sparsity in the gradient domain, assuming that the
sparsity in all bands of the gradient maps is independent. This
assumption does not reflect the actual HSI scene, as the original
HSI and its gradient map exhibit spectral band correlation and
low rankness. To address this limitation, we propose a novel
low-rank guided total variation regularization (LRSTV) term
that integrates both sparsity and low rankness of the gradient map
along all HSI bands. Compared to the conventional SSTV, the
proposed LRSTV represents additional low-rank features of the
gradient map and can replace SSTV to improve the performance
of the general HSI processing models. We demonstrate the low
rankness of the gradient map through numerical testing and theo-
retical analysis. Furthermore, we propose an LRSTV regularized
tensor low-rank decomposition model for HSI denoising and
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conduct comprehensive experiments on both simulated and real
data. The results confirm the superiority of the proposed model
over existing technologies and demonstrate the promising per-
formance improvement that can be achieved by easily replacing
traditional SSTV with LRSTV. The contributions of this article
are listed as follows.

1) We propose a novel low-rank guided total variation regu-
larization (LRSTV), which integrates the sparsity and low
rankness of the gradient map.

2) We have fully verified the fact that the gradient map of
the image is not only sparse but also (approximately)
low-rank from both numerical testing and theoretical
analysis.

3) We propose an LRSTV regularized tensor low-rank de-
composition model for HSI denoising.

The rest of this article is organized as follows: Section II
reviews studies relevant to low-rank-based methods and TV
regularized low-rank models. Section III proposes the LRSTV
regularization term, a low-rank denoising model based on it, and
an ADMM-based optimization algorithm is designed. Simulated
and real HSI data experiments verify the performance of the
proposed model in Section IV. Finally, Section V concludes this
article.

II. RELATED WORK

One of the simple techniques for HSI denoising involves
denoising each band independently. This approach utilizes tra-
ditional 1-D or 2-D denoising methods designed for natural
images and applies them to HSI denoising. Since each pixel
of HSI can be considered a 1-D signal, it can be denoised,
and each spectral band of HSI can be treated as a grayscale
image and denoised accordingly. However, these methods fail to
account for the strong correlation present in the spectral or spatial
directions in HSI, leaving ample room for model performance
improvement.

To address this limitation, recent research has focused
on extending 1-D or 2-D denoising models to 3-D models
that can explore spatial and spectral information simultane-
ously, leading to better outcomes than band-by-band denois-
ing techniques. Zhang et al. [4] proposed a recovery model
based on Bayesian theory that averages HSI spectral bands
to generate potential multispectral images. Additionally, Xue
et al. [5] and Wang et al. [6] introduced sparsity-based low-
rank decomposition methods that effectively represent struc-
tured sparsity and low-rank priors, resulting in promising
results.

Nonlocal self-similarity is a widely used prior information in
HSI processing [7], [8]. It means that for any image block of
HSI in space, a similar texture or structure can always be found
in the entire image. For the HSI of each band, the nonlocal
similarity block reveals the low rank of the spatial dimension.
Therefore, by exploring this low rankness, the spatial noise can
be significantly alleviated. BM4D [9] is a classic method of
encoding this nonlocal prior. Similar to the block technique
in BM4D, Zhang et al. [10] propose to divide the HSI into
overlapping small blocks and then rank them into a matrix

band by band, and finally use a low matrix to approximate
the restoration of the potential image. Furthermore, a nonlo-
cal model that exploits the intra and interpatch correlation is
proposed in [11]. To increase the approximate accuracy of low-
rank matrices, Chen et al. [12] proposed a nonconvex γ norm
instead of the nuclear norm in LRMR and proposed the NonL-
RMA model. Zha et al. [13] proposed a series of work about
rank residual constraints. Furthermore, rank metrics can also be
integrated with group sparsity for image restoration, e.g., [14],
[15], [16], [17], [18]. In addition, based on the plug-and-play
(PnP) framework, Zeng et al. [19] proposed the NLRPnP model,
which can simultaneously represent the local low-rank structure
and nonlocal self-similarity of HSI. Powered by a deep model,
the low-rank tensor-decomposition-based traditional iteration
denoising model is extended by a PnP deep prior network [20],
which boosts the performance on Gaussian denoising.

Recent studies have demonstrated the superiority of tensor-
based restoration methods over matrix-based methods [21]. One
advantage of tensor methods is that they can model the 3-D HSI
directly while matrix methods require the HSI to be unfolded into
2-D data, leading to loss or destruction of some structural infor-
mation. Tensor decomposition or approximation can represent
the low-rank structure of HSI in the tensor framework [22], [23],
[24]. Several widely used tensor-based methods include Tucker
decomposition and Tucker rank, CP decomposition and CP rank,
T-SVD decomposition and tubal rank, average rank, tensor train,
and tensor ring [25], [26], [27]. In [28], nonlocal low-rank and
CP tensor decomposition are combined to represent global spec-
tral correlation and spatial nonlocal self-similarity. To achieve an
accurate estimation of the Tucker rank, Tian et al. [29] introduce
a constraint on the latent factors of Tucker decomposition using
the nuclear norm. This constraint alleviates the burden associ-
ated with rank selection. Additionally, Zeng et al. [20] introduce
a deep network with Tucker-based low-rank prior into the PnP
framework to propose a deep PnP regularized HSI restoration
model, which achieves promising results. Xu et al. [30] propose
a redesigned deep sparse representation network that makes the
sparse-based model competitive again.

TV regularization is a powerful method for image restoration
that effectively captures the local smoothness of an image. It
can be easily incorporated into low-rank matrix or tensor-based
image restoration frameworks as a regularizer for representing
smoothness prior. TV achieves sparsity of the gradient map of
an image by utilizing either L1 norm (anisotropic TV) or L2

norm (isotropic TV). Numerous models for HSI restoration have
been developed using TV, such as those presented in [3] and
[31], which have been shown to effectively improve the model’s
performance.

In addition, several alternative regularization terms to TV have
also been proposed, including lp quasi-parameterization [32]
and l1 − αl2 parameterization of the gradient map [33]. The
classical TV is essentially a first-order gradient, and higher-order
generalized TV (TGV) [34] has been developed to capture in-
tensity variations of the smoothed region more accurately while
maintaining edge details and reducing artifacts, although with
high computational complexity [35]. While 2-D TV has shown
powerful capabilities in natural image processing, it has been
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extended to the 3-D case [36] for use in HSI, video, multispectral
images, and MRI image processing. For instance, Zeng et al. [37]
propose a nonconvex 3-D TV that utilizes anL1 − αL2 metric to
encode sparsity, improving gradient map sparsity representation
for HSI. Furthermore, an enhanced TV has been proposed in [3]
that defines regularization under a linear transform. Zhang et al.
[38] and Wang et al. [39] have proposed two hybrid TV methods
that enhance the modeling of HSI smoothness. Because of TV’s
simplicity and convexity, it can be easily combined with other
regularization terms into a unified model to enhance HSI restora-
tion algorithm performance, as demonstrated in [37], [40], and
[41], among others. However, TV-based regularization does not
fully exploit image similarity, particularly in HSI where spectral
correlation is significant.

III. HSI RESTORATION VIA A LRSTV REGULARIZED TENSOR

DECOMPOSITION

A. Proposed LRSTV Regularization

The regularization technology based on the TV has been
regarded as a powerful image restoration method. It can effec-
tively preserve the spatial sparsity in addition to protecting the
boundary information of the image. TV has two mathematical
definitions, i.e.,

‖X‖iso
TV :=

mn∑
i=1

√(
Di

1X
)2

+
(
Di

2X
)2

‖X‖ani
TV :=

mn∑
i=1

∣∣Di
1X
∣∣+ ∣∣Di

2X
∣∣ (1)

where X ∈ Rm×n; Di
1,Di

2 denote the gradient operator along
horizontal and vertical directions at pixel i. Subsequently, 2-D
TV was expanded to 3-D and widely used in HSI processing.
The widely used and worked sparsity measure designed for
gradient map is the SSTV, i.e., using L1-norm metric to measure
sparsity [40]

‖L‖ani
SSTV = τ1 ‖D1L‖1 + τ2 ‖D2L‖1 + τ3 ‖D3L‖1 (2)

where L ∈ Rm×n×p denotes an HSI, D3 is the additional gra-
dient operator along the spectral direction, and τ1, τ2, τ3 are
nonnegative regularization parameters.

Mathematically, SSTV regularization, i.e., 3-D anisotropic
TV, measures the sparsity of the gradient map by utilizing L1

norm as the convex approximation of L0 norm. This metric
has achieved great success in many tasks of image processing.
However, we noticed one thing that, in SSTV, only sparsity is
explored. Here, we cannot help but want to ask questions: Is the
gradient map only sparse? Is there no other prior information
that can be explored? According to the linear mixture model
of HSI, one can represent each spectral feature by using a
linear combination of a small number of pure spectral end mem-
bers. Especially, let L(3) denotes the mode-3 matrix of HSI L,
H ∈ Rp×r represents the endmember matrix, and P ∈ Rmn×r

denotes the abundance matrix. Then, we haveL(3) = PHT , and
r � p or r � mn [25], [40], which shows that the number of
end members r is relatively small than mn and p. This means

that only a few of the singular values ofL(3) are nonzero. Taking
Pavia as an example, as shown in Fig. 2, the singular value curve
of L(3) decays rapidly. Furthermore, in Fig. 2, one can also see
that both the singular value curves of L(1) and L(2) also decay
rapidly. In summary, all the three modes of HSI have similar low
rankness. Next, we will show this low-rank structure that appears
in the image domain will also be inherited by the gradient map
of the original image, and verify it from both numerical testing
and theoretical analysis.

Numerical testing: Fig. 1(a) displays a real 3-D HSI cube,
expressed as L ∈ R200×200×160; (b) shows the difference op-
erator along the spatial height, width, and spectral direction;
(c) represents the gradient maps of the original HSI in spatial
vertical, horizontal, and spectral directions are expressed as
Gn ∈ R200×200×160, n = 1, 2, 3. Each tensor is stacked by a
gradient map of 160 slices. Except for the sparsity shown in
Fig. 1(g). It can be seen from Fig. 1(f) that although the sparsity
in different bands of the gradient map is not the same or even
independent, there is a clear correlation between the different
bands of the HSI gradient map. Furthermore, Fig. 1(d) shows
the gradient map in the Fourier domain. Compared with the
original gradient map, one can see that the low rankness of the
gradient map in the Fourier domain is more obvious, especially
the gradient map in two directions of spatial dimension. Due to
the fact that most of the singular values are small and close to 0,
only a few singular values have large values.

Theoretical analysis: In fact, gradient transformation hardly
changes the rank of the original image, i.e., the gradient map
inherits the low rankness of the original image in the image
domain. Next, we prove this conclusion theoretically.

Theorem 4.1: Given any 3-D HSI L ∈ Rm×n×p and its gra-
dient tensors DxL,DyL,DzL ∈ Rm×n×p, we have

rtc (DxL) ≈ rtc (DyL) ≈ rtc(L) ≈ rtc (DzL) (3)

where the Tucker rank of A is defined as rtc(A) =
(r(A(1)), r(A(2)), r(A(3))), and r(A(i)) is the rank of mode-i
matricization of A.

Proof: Due to the three modes in multitubal rank having
equivalent status, we first prove the theorem in one model; then,
it can easily be deduced to the remaining two modes. Then, we
have

rtc(L) =
(
r(L(1)), r(L(2)), r(L(3))

)
rtc(DxL) =

(
r(DxL(1)), r2(DxL(2)), r3(DxL(3))

)
(4)

To prove rtc(DxL) ≈ rtc(L), one only need to prove that
r(DxL(i)) ≈ r(L(i)), i = 1, 2, 3. LetDxL(1) = DxL(1),where
Dx ∈ Rnp×np is the circulant matrix corresponding to the for-
ward finite difference operator Dx with periodic boundary con-
ditions along the x-axis. Then, we know that r(Dx) = np− 1.
To prove that

r
(
L(1)

)−1≤r
(DxL(1)

)≤min{np− 1, r(L(1))}≤r
(
L(1)

)
(5)

i.e., r(DxL(1)) ≈ r(L(1)). First, we prove that r(Dx) +
r(L(1))− np ≤ r(DxL(1)). Let r(Dx) = r1, r(L(1)) = r2,
r(DxL(1)) = r; then, there are invertible matrices Dx and L(1)
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Fig. 1. Illustration of the proposed LRSTV regularization terms. (a) Example of real HSI data HYDICE Washington DC Mall, represented as a tensor L.
(b) Illustrations of the difference operators along the spatial height, width, and spectral modes, respectively. (c) Gradient maps of L in spatial height, width, and
spectrum, represented as Gn, n = 1, 2, 3, respectively. Each of these tensors is stacked by 160 slices of gradient maps. (d) Singular value curves of the gradient
maps. (e) FFT-transformed gradient maps, F denotes a Fourier transform matrix. (f) Singular value curves of FFT-transformed gradient maps. (g) Frequency
distributions of the gradient maps of HYDICE Washington DC Mall data.

Fig. 2. (a) Real HSI cube of Pavia Centre. (b) Singular values of its model-
n(n = 1, 2, 3)unfolding matrix. From the figure, one can see that the third-order
real HSI is obviously correlated along its three modes.

such that the following equation holds:

PDxQ =

[
Er1 0
0 0

]
. (6)

Let Q−1L(1) =

[
Lr1×m

L(n−r1)×m

]
, we have

r = r
(DxL(1)

)
= r

(
PDxQQ−1L(1)

)
due to

PDxQQ−1L(1) =

[
Er1 O
O O

] [
Lr1×m

L(n−r1)×m

]
=

[
Lr1×m

0

]

we have r(Lr1×m) = r(DxL(1)) = r; however, r(Q−1L(1)) =
r2, this means that the number of linearly independent rows in
L(n−r1)×m is r2 − r, and the total number of rows is n− r1.
Therefore, r2 − r ≤ n− r1, that is, r ≥ r1 + r2 − n. Second,
to prove that r(DxL(1)) ≤ min{r(Dx), r(L(1))}, we only need
to prove r(DxL(1)) ≤ r(Dx) and r(DxL(1)) ≤ r(L(1)) at the
same time, which can be easily verified.

Similarly, we have{
r
(
L(2)

)− 1 ≤ r
(DyL(2)

) ≤ r
(
L(2)

)
r(L(3))− 1 ≤ r

(DyL(3)

) ≤ r
(
L(3)

) (7)

and r(DyL(2)) ≈ r(L(2)), r(DzL(3)) ≈ r(L(3)).Therefore, we
get that ⎧⎪⎪⎨

⎪⎪⎩
r(DxL(1)) ≈ r(L(1))

r(DyL(2)) ≈ r(L(2))

r(DzL(3)) ≈ r(L(3))

(8)

And for the forward finite difference operators Dx,Dy,Dz with
zero boundary conditions (r(Dx) = np− 1, r(Dy) = mp−
1, , r(Dz) = mn− 1) and symmetric boundary conditions

r (Dx) = np, r (Dy) = mp, , r (Dz) = mn (9)

we also have the conclusion (8). Therefore, the ranks of DxL(1),
DyL(2), and DzL(3) represent the ranks of L(1),L(2),L(3),
respectively.

From the above numerical tests and theoretical analysis, we
get the fact that the gradient map of HSI is not only sparse but
also has a low-rank structure, as long as the original HSI is
low-rank. For the HSI to be focused in this article, it is worth
noting that the low rankness along the spectral dimension is
much more obvious than that of the spatial dimension. Based
on these facts, we propose a novel TV regularization to simul-
taneously characterize the sparsity and low-rank priors of the
gradient map. Specifically, the proposed isotropic LRSTV and
anisotropic LRSTV are defined as follows:

‖L‖ani
LRSTV =

3∑
n=1

(τn ‖DnL‖1 + αnrtc(DnL)) (10)

‖L‖iso
LRSTV =

√∑3

n=1
τn ‖DnL‖22 +

3∑
n=1

αnrtc(DnL) (11)

where τn and αn are nonnegative regularization parameters.
Then, the key issue is to find a simple method to estimate Tucker
rank. Here, we utilize the new average rank to represent the
low rankness that exists in the gradient map, i.e., replacing
rtc(DnL) in (10) and (11) with ra(DnL), where ra(A) =
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1
n3

rank(bcirc(A)), and bcirc(A) ∈ Rn1n3×n2n3 is the block
circulant matrix of A defined as follows:

bcirc(A) =

⎡
⎢⎢⎢⎣
A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

⎤
⎥⎥⎥⎦ (12)

where A(i) := A(:, :, i) is the ith front slice of A.

B. Approximation of the LRSTV

Actually, there are some connections between tensor Tucker
rank and average rank, and these properties imply that the low
Tucker rank or low average rank assumptions are reasonable
for their applications in real visual data [42]. Let rtc (A) =(
r
(
A(1)

)
, r
(
A(2)

)
, r
(
A(3)

))
, where A(i) denotes the mode-

i matricization of A, be the Tucker rank of A. Then, we have
ra(A) ≤ r(A(1)), i.e., if a tensor with low Tucker rank, it also
has a low average rank; furthermore, the low average rank
hypothesis is weaker than the low rank hypothesis [42], [43].
Therefore, one can use tensor average rank to represent the low
Tucker rank in (10) and (11). Furthermore, with tensor average
rank we have the following theorem.

Theorem 4.2 ([44]): On the set {A ∈ Rn1×n2×n3 | ‖A‖ ≤
1}, A = U ∗ S ∗ V∗ represents the t-SV D of A ∈ Rn1×n2×n3 .
The tensor tubal rank rt(A) is defined as the number of
nonzero singular tubes of S, i.e., rt(A) = #{i,S(i, i, :) 	= 0}.
The tensor nuclear norm of A is defined as ‖A‖∗ := 〈S, I〉 =∑r

i=1 S(i, i, 1), r = rt(A). Then, the convex envelope of the
tensor average rank ra(A) is the tensor nuclear norm ‖A‖∗.

In addition, for the HSI, we focused on, in this article, its
spectral correlation is much stronger than spatial dimensions [3],
[40]. For example, as shown in Fig. 2, for the Pavia datasets with
a size of 200× 200× 80, all the singular value curves of mode-
1, mode-2, and mode-3 matricizations have obvious decaying
trends but the spectral modes have a greater rate of curve drop
than spatial modes. By using the HySime algorithm [45], it is
estimated the spectral rank is 8 while the empirical spatial rank
is 160, which gets the best PSNR and SSIM. Therefore, it is
necessary to introduce orientation sensitivity to the low-rank
measure. To this end, we mainly represent the low rankness
strictly defined along tubal orientation, i.e., model spectral low
rankness, by using the tensor nuclear norm proposed in Theorem
4.2, and (10) and (11) can be approximated as follows:

‖L‖ani
LRSTV =

3∑
n=1

(τn ‖DnL‖1 + αn ‖DnL‖∗) (13)

‖L‖iso
LRSTV =

√∑3

n=1
τn ‖DnL‖22 +

3∑
n=1

αn ‖DnL‖∗ (14)

where ‖.‖∗ represents the new tensor nuclear norm, Dn, n =
1, 2, 3 denote the gradient operator. The proposed LRSTV can
be regarded as a generalization of classic SSTV, that is, SSTV
is a special case of the proposed LRSTV. When the coefficient
λ is 0, LRSTV degenerates to SSTV. It is worth pointing out
that the new regularization not only imposes sparsity on the

Fig. 3. Effectiveness of the additional low-rank strategy. (a) Original false-
color image (R: 31, G: 61, B: 9). (b) Simulated noisy image under zero-mean
Gaussian noise, impulse noise, deadline, and stripe (the variance value of
Gaussian noise and percentages of impulse noise being randomly selected from
0.1 to 0.2, the width of the deadlines was randomly generated from 1 to 3, the
number of stripes being randomly selected from 20 to 40 (PSNR = 11.17 dB).
(c) Denoising result of the SSTV method without additional low-rank strategy
(PSNR= 31.07 dB). (d) Denoising result of the proposed method with additional
low-rank strategy (PSNR = 32.63 dB).

gradient map itself but also calculates low rank on the gradient
map after the Fourier transform along the spectral dimension
(FFT is contained in ‖.‖∗). It naturally encodes the sparsity and
low-rank priors of the gradient map and, thus, is expected to
reflect the inherent structure of the original image more faithfully
than common SSTV.

As demonstrated in the previous paragraph, since SSTV only
explores the sparsity of the gradient maps, it cannot effectively
restore a potentially clean image when the observed one has
serious noise pollution. Our LRSTV additionally explores the
low-rank prior of the gradient map, which helps to deal with sce-
narios with heavy noise. Due to image denoising is essentially an
inverse problem, the more precise and appropriate the constraints
added in the solution space, the closer the approximate solution
to the true solution is. In Fig. 3, we give an intuitive comparison
between TV models with and without gradient low-rank strategy.
Obviously, the local details of Fig. 3(d) are more clear than
that of SSTV without gradient low-rank strategy, which shows
the effectiveness of low-rank strategy in exploring the prior
knowledge of the gradient map.

C. Low-Rank Tensor Decomposition With Anisotropic LRSTV

Furthermore, it is important to note that in addition to the
previously mentioned sparse and low-rank priors of the gradient
map, the third-order HSI possesses inherent structural informa-
tion in both its spatial and spectral modes within the image
domain [40]. While the LRSTV method successfully captures
the low rankness of HSI in the gradient domain, the proposed
algorithm takes a significant stride forward by incorporating
low-rank tensor decomposition to effectively model the low
rankness of HSI in the image domain. This advanced approach
enables the algorithm to comprehensively capture and represent
the low-rankness characteristics of HSI in both the image and
gradient domains. Consequently, the proposed method provides
a dual-domain representation, ensuring a more holistic under-
standing and utilization of the low-rankness properties inherent
in HSI data. Here, Tucker decomposition is employed to rep-
resent the spatial–spectral low rankness of HSIs displayed in
Section III-A. By using the Tucker-3 decomposition, any third-
order tensor L ∈ Rm×n×p with multilinear rank (r1, r2, r3) can
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be decomposed as follows:

L = C ×1 U1 ×2 U2 ×3 U3,U
T
i Ui = I, i = 1, 2, 3 (15)

where C denotes the factor tensor, i.e., the so-called core tensor;
Ui is the ith factor matrix, which has rank ri, i = 1, 2, 3. Finally,
by combining the correlation between the spatial mode and the
spectral mode, the low rank and sparse structure of the gradient
map, we propose LRSTV regularized tensor decomposition
(named TDLRSTV) model, i.e.,

min
L,S

‖L‖ani
LRSTV + λ‖S‖1

s.t. Y = L+ S
L = C ×1 U1 ×2 U2 ×3 U3,U

T
i Ui = I, i = 1, 2, 3. (16)

D. Optimization Procedure

In this section, we design an algorithm based on ALM and
ADMM [40] to solve the proposed TDLRSTV. First, we intro-
duce three auxiliary variables to split the multiple regularization
terms applied on L. In addition, to simplify, we set the same
τn and αn for all n and denote them as τ, α, respectively,
and let Dw(·) = [w1 ×D1(·);w2 ×D2(·);w3 ×D3(·)], where
w1, w2, w3 are the three weighted parameters added to three L1

norm of gradient maps. Then, by introducing auxiliary variables
Z , F , and E , (16) can be rewritten as follows:

min
C,Ui,L,
F,S,E,Z

τ‖F‖1 + α‖E‖∗ + λ‖S‖1

s.t. O = L+ S,L = Z, Dw(Z) = F , E = F
L = C ×1 U1 ×2 U2 ×3 U3,U

T
i Ui = I. (17)

According to the ALM method, we rewrite the objective function
of (17) into the following augmented Lagrangian function:

L (L,S,Z,F , E) = τ‖F‖1 + α‖E‖∗ + λ‖S‖1
〈Γ1,O − L− S〉+ 〈Γ2,L − Z〉 + 〈Γ3, Dw(Z)−F〉
+ 〈Γ4, E − F〉+ μ

2

(‖O − L − S‖2F

+ ‖L − Z‖2F + ‖Dw(Z)−F‖2F + ‖E − F‖2F
)

(18)

with the constraints: L = C ×1 U1 ×2 U2 ×3 U3,U
T
i Ui = I,

where μ is the penalty parameter, and Γi(i = 1, 2, 3) are the
Lagrange multipliers. Next, we utilized alternating minimiza-
tion based on ADMM to split (18) into multiple subproblems,
then update each variable L,Z,F , E ,S alternately. In (k + 1)th
iteration, variables involved in (18) can be updated as follows:

1) Update C,Ui,L: With the other variables fixed, the sub-
problem of L can be reformulated as follows:

min
UT

i Ui=I
μ‖C ×1 U1 ×2 U2 ×3 U3 − 1

2

(
O − S(k)

+Z(k) +
(
Γ
(k)
1 − Γ

(k)
2

)/
μ

)
‖2F . (19)

Based on the HOOI algorithm [46], one can get C(k+1),

and U
(k+1)
1 ,U

(k+1)
2 , and U

(k+1)
3 , then we have

L(k+1) = C(k+1) ×1 U
(k+1)
1 ×2 U

(k+1)
2 ×3 U

(k+1)
3 .

(20)
2) Update Z: With the other variables fixed, the subproblem

of Z can be reformulated as follows:

Z(k+1) = argmin
Z

〈
Γ
(k)
2 ,L(k+1) −Z

〉
+

〈
Γ
(k)
3 , Dw(Z)

−F (k)

〉
+

μ

2

(∥∥∥∥L(k+1) −Z
∥∥∥∥
2

F

+

∥∥∥∥Dw(Z)−F (k)

∥∥∥∥
2

F

)
(21)

which can be treated as solving the following linear sys-
tem:

(μI+ μD∗
wDw)Z = μL(k+1) + μD∗

w

(
F (k)

)
+ Γ

(k)
2

−D∗
w

(
Γ
(k)
3

)
(22)

where D∗
w denotes the adjoint operator of Dw. By using

the fast Fourier transform (FFT) method [40], we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Tz = μL(k+1) + μD∗

w

(F (k)
)
+ Γ

(k)
2 −D∗

w

(
Γ
(k)
3

)
Pz=w2

1 |fftn (D1)|2+w2
2 |fftn (D2)|2+w2

3 |fftn (D3)|2

Z(k+1) = ifftn
(

fftn(Tz)
µ1+µPz

)
(23)

where fftn and ifftn indicate fast 3-D Fourier transform
and its inverse transform, respectively. | · |2 is the el-
ementswise square, and the division is also performed
elementwisely.

3) Update F: With the other variables fixed, the subproblem
of F can be reformulated as follows:

F (k+1) = argmin
F

τ‖F‖1 + μ

2

∥∥∥∥F − T1 + T2

2

∥∥∥∥
2

F

(24)

where T1 = Dw

(Z(k+1)
)
+

Γ
(k)
3

µ , T2 = E(k+1) +
Γ
(k)
4

µ .
By introducing the so-called soft-thresholding operator:

RΔ(x) =

⎧⎨
⎩
x−Δ, if x > Δ
x+Δ, if x < Δ

0, otherwise
(25)

where x ∈ R and Δ > 0, then we can update Fk+1 as

Fk+1 = R τ
μ

(
T1 + T2

2

)
. (26)

4) Update E: With the other variables fixed, the subproblem
of E can be reformulated as follows [42], [47]:

E(k+1) = argmin
E

‖E‖∗ + μ

2α

∥∥∥∥∥E −
(
F − Γ

(k)
4

μ

)∥∥∥∥∥
2

F
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Algorithm 1: TDLRSTV for HSI Denoising.
Require: m× n× p observed HSI O, stopping criterion ε,

and regularization parameters λ, τ , α.
Ensure: Denoised image L;

1: Initialize: 1st step: Update L, via (20)
2nd step: Update Z via (23)
3rd step: Update F via (26)
4th step: Update E via (27)
5th step: Update S via (29)
6th step: Update Γ1,Γ2,Γ3 via (30)
7th step: Update the parameter via
μ := min(ρμ, μmax)

2: Check the convergence condition
3: max{‖O − Lk+1 − Sk+1‖∞, ‖Lk+1 −Zk+1‖∞} ≤
ε.

= SVT

(
F − Γ

(k)
4

μ
,
α

μ

)
. (27)

5) Update S: Similarly, we should consider

S(k+1)=argmin
S

λ‖S‖1+μ

2

∥∥∥∥∥S−
(
O−L(k+1)+

Γ
(k)
1

μ

)∥∥∥∥∥
2

F

.

(28)

similar to the update of F , we have

Sk+1 = R λ
μ

(
O − L(k+1) +

M
(k)
1

μ

)
. (29)

Finally, we update multipliers Γi(i = 1, 2, 3), according
to the ALM⎧⎪⎨
⎪⎩
Γ
(k+1)
1 = Γ

(k)
1 + μ

(O − L(k+1) − S(k+1)
)

Γ
(k+1)
2 = Γ

(k)
2 + μ

(L(k+1) −Z(k+1)
)

Γ
(k+1)
3 = Γ

(k)
3 + μ

(
Dw

(Z(k+1)
)−F (k+1)

)
.
(30)

E. Time Complexity Analysis

The main per-iteration cost lies in the update of E ,Z,F ,S .
The update of E requires computing FFT and p SVDs of
m× n matrices. The updates of S and N only need to per-
form basic tensor operations. Thus, the per-iteration complexity

is O
(
mnp log(p) +m(1)n

2
(1)p
)

, where m(1) = max(m,n),

n(1) = min(m,n).

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we applied the proposed TDLRSTV to both
public simulation and real HSI datasets as shown in Fig. 4, and
compared the results with that of several state of the arts to
evaluate the performance of TDLRSTV.

A. Experimental Setting

Benchmark Datasets: Four HSIs datasets are tested.

Fig. 4. Simulation and real HSI datasets tested in the experiments. From left
to right: Washington DC Mall dataset, Pavia Centre dataset, HYDICE urban
dataset, and AVIRIS Indian Pines dataset.

1) Pavia City Center [48] dataset. The raw Pavia Center
dataset has a size of 1096× 1096× 102, i.e., there are 102
bands and each band is a 1096 × 1096 2-D image. After
removing the bands heavily polluted by noise, subblock
with a size of 200 × 200 × 80 are selected for simulation
experiments in this section.

2) Washington DC Mall data [49], the raw data have a
size of 1208 × 307 × 191. As [37], subblock with size
256 × 256 × 191 are selected.

3) Indian Pines dataset [49] with size 145× 145× 220 was
collected by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS). This dataset was selected for real data
experiments.

4) HYDICE Urban HSI dataset [50] has the size of
207 × 207 × 210. After deleting the water absorption
band, the remaining 189 bands were selected for testing.
This dataset was also selected for real data experiments.

Baselines: Ten SOTA HSI denoising methods are employed
as the comparison models, i.e., LRTA-based on Tucker de-
composition [51], BM4D [9] based on nonlocal self-similarity,
LRMR via low-rank matrix approximation [10], LRTV that
combines TV and LRMR [41], NAILRMA based on itera-
tive LRMR and noise estimation [52], LRTDTV based on
TV and low-rank tensor Tucker decomposition [40], enhanced
3DTV [3], and SSTV [53]. In addition, we also compared the
proposed model with deep-learning-based denoising models
DPLRTA [20], FFNNet [54], transformer-based SERT [55], and
deep-unrolling-based DNA-Net [56].

Evaluation Indexes: To measure the performance of tested
models, both qualitative visual evaluation and quantitative index
are utilized. Quantitative picture quality indices (PQI): peak
signal-to-noise ratio (PSNR), structural similarity (SSIM), and
feature similarity (FSIM) [57], which evaluate the quality of
the HSI spatial dimension, and erreur relative globale adimen-
sionnelle de synthèse (EGRAS) [58] and spectral angle mapper
(SAM) [59], which evaluate the quality of the HSI spectral di-
mension. The experiments are performed on MATLAB(2019b),
Intel core i7@2.2 GHz with 64 GB RAM (Windows), and
PyTorch on Linux.

B. Simulated HSI Data Experiments

Mixed noise setting: To simulate HSIs degradation process of
noise, nine different noise cases are simulated for the selected
HSI datasets. The details are listed as follows.
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Fig. 5. Recovery performance comparison on the Washington DC Mall data by LRTA, LRTV, BM4D, NAILRMA, LRMR, LRTDTV, SSTV, and the proposed
TDLRSTV. The noise level: Gaussian noise (with 0 mean and 0.15 variance) and sparse pepper-and-salt noise (with a percentage of 0.2) are added for all bands;
deadlines are added to the 131–160 band, the number of deadlines varies randomly from 3 to 10, and the width of deadlines varies randomly from 1 to 3; stripes
are added to the 111–140 band, where the number of bands varies randomly between 20 and 40. The color image is composed of bands 58, 85, and 155 for the
red, green, and blue channels, respectively. (a) Original image. (b) Noisy one (10.91 dB). (c) E3DTV (29.85 dB). (d) LRTV (28.35 dB). (e) BM4D (26.41 dB).
(f) NALRMA (22.29 dB). (g) LRMR (28.87 dB). (h) LRTDTV (28.78 dB). (i) SSTV (29.05 dB). (j) TDLRSTV (31.49 dB).

Fig. 6. Recovery performance comparison on the Pavia Centre data by E3DTV, LRTV, BM4D, NAILRMA, LRMR, LRTDTV, SSTV, and the proposed TDLRSTV.
The noise level: Gaussian noise [with 0 mean and variance random selected from (0.1, 0.2)] and sparse pepper-and-salt noise [with a percentage random selected
from (0.1, 0.2)] are added for all bands, i.e., the case 7: p = (0.1, 0.2), g = (0.1, 0.2), deadline for bands 54 : 74, stripe for bands 54 : 64. The color image is
composed of bands 31, 61, and 9 for the red, green, and blue channels, respectively. (a) Original image. (b) Noise image (11.17 dB). (c) E3DTV (31.21 dB).
(d) LRTV (31.16 dB). (e) BM4D (29.31 dB). (f) NALRMA (22.09 dB). (g) LRMR (30.21 dB). (h) LRTDTV (31.07 dB). (i) SSTV (30.45 dB). (j) Our (32.63 dB).

1) Case 1, Gaussian noise is added to all bands of the selected
data, the mean and variance are set as zero and 0.1,
respectively.

2) Case 2, on the basis of case 1, the variance is aggravated
to 0.2.

3) Case 3, both Gaussian noise (with 0 mean and 0.05 vari-
ance) and sparse pepper-and-salt noise (with a percentage
of 0.1) are added for all bands.

4) Case 4, on the basis of case 3, the variance of Gaussian
noise and the percentage of sparse pepper-and-salt noise
are enhanced to 0.075 and 0.15, respectively.

5) Case 5, with the same noise type as case 4, the variance of
Gaussian noise and the percentage of sparse pepper-and-
salt noise are further aggravated to 0.1 and 0.2, respec-
tively.

6) Case 6, the Gaussian noise is the same as case 2, in
addition, deadlines are added to the 131–160 band of
Washington DC mall and the 54–74 band of Pavia, respec-
tively. The number of deadlines varies randomly from 3
to 10, and the width of deadlines varies randomly from 1
to 3; stripes are added to the 111–140 band of Washington
DC mall and the 48–58 band of Pavia, respectively, where
the number of bands varies randomly between 20 and 40.
Here, we focus on vertical stripes, for oblique stripes, one
can refer to [60] and [61].

7) Case 7, Gaussian noise with zero mean and variance
varies randomly from (0, 0.2) [(0.1, 0.2) for Pavia] for
all bands, sparse pepper-and-salt noise with percentage
varies randomly from (0, 0.2) [(0.1, 0.2) for Pavia] for all
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Fig. 7. Recovery performance comparison on the Pavia Centre data by E3DTV, LRTV, BM4D, NAILRMA, LRMR, LRTDTV, SSTV, and the proposed TDLRSTV.
The noise level: Gaussian noise (with 0 mean and 0.1 variance) and sparse pepper-and-salt noise (with a percentage of 0.2) are added for all bands, i.e., P =
0.2,G = 0.2. The color image is composed of bands 14, 77, and 58 for the red, green, and blue channels, respectively. (a) Original image. (b) Noisy one (11.18 dB).
(c) E3DTV (32.38 dB). (d) LRTV (29.38 dB). (e) BM4D (28.52 dB). (f) NALRMA (21.87 dB). (g) LRMR (30.77 dB). (h) LRTDTV (31.02 dB). (i) SSTV (31.31 dB).
(j) TDLRSTV (33.10 dB).

TABLE I
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT DENOISING METHODS WITH THE SIMULATED NOISE IN CASES 1–9 ON WASHINGTON DC MALL

DATASET (THE BOLD ONE IS THE BEST ONE)
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TABLE II
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT DENOISING METHODS WITH THE SIMULATED NOISE IN CASES 1–9 ON PAVIA DATASET (THE BOLD ONE

IS THE BEST ONE)

bands. In addition, the deadlines and stripes in case 6 are
also added.

8) Case 8, deadline and stripe are the same as case 6 while all
the bands are added with the same Gaussian noise (vari-
ance of 0.15) and sparse pepper-and-salt noise (percentage
of 0.2).

9) Case 9, the types of noise are the same as case 8 but the
variance of Gaussian noise is aggravated to 0.2.

Visual comparison: To visually illustrate the denoising perfor-
mance of the proposed LRSTV, in two different noise situations,
for the Washington DC Mall and Pavia datasets, we have selected
three bands to synthesize a pseudocolor image, as shown in
Figs. 5, 6, and 7. In the figures, the red demarcated window is
the magnified area of the area marked by the green demarcated
window. From the magnified area, one can clearly see that
compared with other competing methods, the proposed method
effectively removes the noise while recovering the tiny details
and textures.

Quantitative comparison: For Washington DC Mall and
Pavia, Tables I and II list the five quantitative evaluation index
values (PQIs) of all competing methods. Bold shows the optimal
PSNR, SSIM, FSIM, ERGAS, and SAM values. The following
observations can be obtained from the table. First of all, under
most noise conditions, the proposed LRSTV always achieves
the best performance among the five evaluation indicators, which
fully proves the effectiveness of LRSTV for HSI denoising tasks.
Second, for the mixed noise in Washington DC Mall, as the noise
level increases, the advantages of our method over other methods
become more obvious. One can observe that when the Gaussian
noise variance is 0.2, the proposed method almost exceeds 2.2 dB
than LRTDTV. In addition, we took four noise cases as an
example, and plotted the PSNR and SSIM values of each band,
as shown in Fig. 8. From the figure, one can see that the PSNR
value and SSIM value of most bands obtained by the proposed
model are significantly higher than other methods. In Fig. 8, it is
important to highlight that the original 39th band, which serves
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Fig. 8. Comparison of quantitative evaluation index values, PSNR and SSIM, of each band on the Washington DC Mall data by LRTA, LRTV, BM4D, NAILRMA,
LRMR, LRTDTV, SSTV, and the proposed TDLRSTV. (a) Case 3. (b) Case 3. (c) Case 6. (d) Case 6. (e) Case 7. (f) Case 7. (g) Case 9. (h) Case 9. (i) Case 8.
(j) Case 8. (k) Case 9. (l) Case 9.

Fig. 9. Reflectance of the spatial pixel of Washington DC Mall in (21,140) under noise case 9. (a) Noisy image. (b) LRTA. (c) LRTV. (d) BM4D. (e) LRMR.
(f) LRTDTV. (g) SSTV. (h) TDLRSTV (Our).

as the ground truth for computing PSNR and SSIM, exhibits poor
image quality. Consequently, several tested models demonstrate
a significant decrease in both PSNR and SSIM scores for this
particular band.

To further assess and compare the performance of the tested
algorithms, Figs. 9 and 10 show the spectral characteristics of
the pixels (21, 140) of Washington DC Mall and (33, 44) of
Pavia before and after the denoising. Combining the ERGAS
and SAM values in Tables I and II, one can see that among all
competing methods, the HSI recovered by the proposed LRSTV
method has the spectral characteristics closest to the original
clean HSI.

Another interesting observation is that the proposed LRSTV
based on low rank and sparseness can obtain better results than
the classic SSTV based on sparseness alone and LRTDTV that
combines tensor decomposition and SSTV. This result demon-
strates the effectiveness of a sparseness criterion combining
low-rank and gradient sparsity in HSI processing.

C. Real HSI Data Experiments

Finally, we apply the proposed TDLRSTV to datasets with
realistic noise, i.e., HYDICE urban1 and the AVIRIS Indian
Pines [40] to verify the robustness of the algorithms. Figs. 11 and
12 show the recovered two kinds of HSI by using different tested
algorithms. From the figures, one can see that TDLRSTV can
provide better results than LRTDTV and SSTV, and again with
more details be preserved. The horizontal mean profiles of the
band 218 of AVIRIS Indian Pine before and after restoration
are shown in Fig. 13, where one can see that TDLRSTV
provides results with most stable horizontal mean profile curves.
Furthermore, Table III provides a blind image quality met-
ric [62], which is based on quality-sensitive feature learning.
As one can see that TDLRSTV produces the best (the lowest)

1https://engineering.purdue.edu/∼biehl/MultiSpec/hyperspectral.html

https://engineering.purdue.edu/~biehl/MultiSpec/hyperspectral.html
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Fig. 10. Reflectance comparison of the spatial pixel of Pavia in (33, 44) with noise Case 9.

Fig. 11. Recovery performance comparison on the HYDICE Urban data. The noise is real noise, and the original noisy image is band 207.

Fig. 12. Recovery performance comparison on the AVIRIS Indian Pines data. The noise is real noise, the color image (R: 164, G: 150, B: 218).
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Fig. 13. Horizontal mean profiles comparison on the AVIRIS Indian Pines data, the real noisy image is band 218.

Fig. 14. Comparison with deep learning, deep unrolling, PnP, and group-sparsity-based methods under noise case N (0, 0.1). (a) Noisy image. (b) FFDNet.
(c) FGSLR. (d) DPLRTA. (e) TDLRSTV.

TABLE III
BLIND HSI QUALITY ASSESSMENT ON THE INDIAN PINES IMAGE

Fig. 15. Comparison with deep-learning-based methods on the KAIST dataset
under noise case N (0, 0.2). (a) Noisy Image. (b) SERT. (c) DNA-Net.
(d) TDLRSTV.

score, further demonstrating the superiority of the proposed
model.

D. Comparison With Deep Learning and Group Sparsity

Considering the current research landscape in HSI processing,
it is imperative to include a comparison with deep learning
and group-sparsity-based methods. In this section, the pro-
posed model is evaluated against the following models: PnP
and deep prior-based HSI denoising model DPLRTA [20], end-
to-end network FFDNet [54], transformer-based SERT [55],
deep unrolling-based DNA-Net [56], and group-sparsity-based
FGSLR [63].

Fig. 16. Recovered spectrum compared with deep-learning-based methods
for the spatial pixel located at (100, 120) in the KAIST dataset, as illustrated in
Fig. 15.

To ensure a fair comparison, the same noise cases as those
employed in the original paper of DPLRTA are implemented,
specifically Gaussian noise with zero mean and variances
of 0.1 and 0.2. Table IV presents the PSNR, SSIM, FSIM,
and ERGAS metrics for the models on the Pavia dataset.
The results demonstrate that the proposed model achieves
superior PSNR and ERGAS performance under both noise
cases.

Fig. 14 showcases the denoised bands on the Pavia dataset
while Fig. 15 illustrates the denoised bands on the KAIST
dataset [64]. It can be observed that both the proposed model
and DPLRTA effectively denoise the images. Since the PSNR
difference is less than 2 dB, the denoised bands of DPLRTA and
the proposed method exhibit negligible discrepancies. However,
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Fig. 17. Sensitivity analysis of parameter: Spectral rank, λ α and τ . (a) PSNR value versus the spectral rank. (b) SSIM value versus the spectral rank. (c) PSNR
value versus λ. (d) SSIM value versus λ. (e) PSNR value versus α. (f) SSIM value versus α. (g) PSNR value versus τ . (h) SSIM value versus τ .

TABLE IV
QUANTITATIVE EVALUATION OF DEEP-LEARNING- AND

GROUP-SPARSITY-BASED METHODS AND THE PROPOSED MODEL IN DIFFERENT

NOISE CASES

both outperform FFDNet. Furthermore, Fig. 16 demonstrates the
recovered spectrum compared to deep-learning-based methods
for the spatial pixel at coordinates (100, 120) in the KAIST
dataset. The results indicate that TDLRSTV achieves compara-
ble spectral accuracy to SERT and DNA-Net.

E. Discussion

This article introduces a novel approach for regularizing
HSI reconstruction. The proposed method incorporates a prior
regularization term that effectively captures the low rankness
and smoothness characteristics of the gradient map. By inte-
grating this regularizer into an iteration-based HSI reconstruc-
tion model, we demonstrate its effectiveness by combining it
with Tucker decomposition for HSI denoising. To evaluate the
performance of the proposed TDLRSTV, we conduct com-
prehensive comparisons with state-of-the-art methods on both
simulated and real datasets. Additionally, we analyze various
aspects to further assess the effectiveness and efficiency of
TDLRSTV. These aspects include sensitivity analysis of the pa-
rameters, convergence analysis, evaluation of the running time,
and investigation of the component effects within the proposed
model.

1) Sensitivity Analysis of Parameter: There are three param-
eters used to trade off the regularization terms in the proposed
TDLRSTV, i.e., τ, λ, and α. λ is used to trade off the effect
of sparsity term ‖S‖1, it can be set as λ = C/

√
MN (M,N

is the spatial size of underlying HSI) [42], which is a constant
that needs to be tuned manually, Fig. 17(c) and (d) shows the
sensitivity of λ. α is used to trade off the low-rank term in
LRSTV, τ is the parameter used to control the effect of sparsity of
gradient maps, Fig. 17(e), (f) and (g), (h) shows the sensitivity
of α and τ , respectively. Besides, the Tucker rank (r1, r2, r3)
involved in the low-rank Tucker decomposition is also a sensitive
parameter. We set the spatial Tucker rank as follows: r1 is set

Fig. 18. Relative error, MSSIM, and MPSNR value versus the iteration number
of TDLRSTV. (a) Change in the relative error value. (b) Change in the MSSIM
value. (c) Change in the MPSNR value.

TABLE V
CPU RUNNING TIME (IN SECONDS) OF ALL THE TESTED MODELS

to 0.8 times the vertical spatial size and r2 to 0.8 times the
horizontal spatial size [40], and tune r3 based on the HySime
algorithm [45]. Fig. 17(a) and (b) shows the change of PSNR
and SSIM values versus the change of spectral rank r3. Here, we
set the spectral rank as the one corresponding to the best PSNR
or SSIM.

2) Convergence of the TDLRSTV-Based Algorithm: To show
the convergence of the proposed TDLRSTV, Fig. 18 shows
the change of relative error, MSSIM, and MPSNR as iteration
increases from 1 to 50. In Fig. 18, one can see that the relative
error, SSIM, and PSNR all converge to fixed values, which
means that the proposed algorithm is robust enough to be further
used in real application.

3) Running Time Analysis: Table V provides the running
time of all the tested algorithms, which are implemented on the
Pavia dataset. One can observe that matrix-based models, e.g.,
LRMR and SSTV, are faster than tensor-based models but the
gap is not very big. This is due to the fact that matrix-based
models usually unfold the 3-D HSI into 2-D matrix, which
reduces the subsequent computation but loses the 3-D structure
of the original HSI tensor. For the tensor-based metrics, they
model the 3-D HSI into a third-order tensor directly, and do not
lose any structure information but the complexity of 3-D data is
higher than 2-D case.

4) Ablation Experiment: In this section, we discuss the effect
of the low-rank and sparseness of the gradient map. Table VI
provides the comparison of the PSNR, SSIM with different
tradeoffs of the two terms. One can observe that introducing
low rankness for gradient improves both the PSNR and SSIM.
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TABLE VI
PSNR, SSIM OF THE ABLATION OF THE LOW-RANK AND SPARSENESS OF THE

GRADIENT MAP

By undertaking these analyses, we aim to provide a thorough un-
derstanding of the performance, efficiency, and underlying char-
acteristics of TDLRSTV in HSI reconstruction and denoising
tasks.

V. CONCLUSION

In conclusion, we have proposed a novel TV regularization
technique, LRSTV, for HS image restoration, which explicitly
represents the low-rank and sparsity of the gradient map in the
transform domain using the tensor L1-norm and the convex
envelope of the average rank. By doing so, we have over-
come the obstacles of traditional SSTV, which cannot retain
the correlation of the spatial–spectral structure of the gradient
map and cannot cope with high noise intensity tasks. Further-
more, we have demonstrated that the gradient map of HSI
exhibits both sparsity and low rankness, which enhances the
restoration accuracy. The proposed LRSTV has been embedded
into the HSI denoising model, and excellent results have been
achieved on both simulation and real datasets. Further work
will involve designing a better low-rank regularization term or
training a denoising network and combining it with the proposed
LRSTV to improve the performance of the HSI restoration
model.
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