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Estimation of Near-Ground Ozone With High
Spatio-Temporal Resolution in the Yangtze

River Delta Region of China Based on a
Temporally Ensemble Model

Zhen Li , Heng Dong , Zili Zhang, Lan Luo, and Sicong He

Abstract—Recently, the near-ground ozone pollution has be-
come an important factor restricting economic development and
ecological environment protection. Due to the aging equipment of
satellite sensors and the limitations of spatial resolution, the cur-
rent approach utilizing satellite remote sensing observation faces
challenges in effectively monitoring small-scale areas with sufficient
data. Taking the near-ground ozone concentration as the research
object, this article combined multiple classical machine learning
(ML) methods based on tree models and developed a temporally
ensemble model to achieve the estimation of near-surface ozone
in the 1 km2 area of the Yangtze River Delta region in China.
In the ensemble model, the coefficient of determination (R2) of
the 10-fold cross-validation was 0.91, and the root-mean-square
error was 9.21 µg/m3. All evaluation indicators confirm that our
approach was more accurate than some conventional ML mod-
els. The predicted spatial errors were evenly distributed, which
indicated the superior spatial stationarity of the ensemble model.
On the temporal scale, the ozone distribution predicted by the
model agreed well with the results of ground-based meteorological
station monitoring, both showing distinct seasonal trends. On the
spatial scale, the model output reflected well the refined spatial
variation of near-ground ozone at a small scale and captured the
“medium-high-low” trend of near-ground ozone concentration in
Shanghai and the trend of “low-medium” in Hangzhou, China.
In contrast, the satellite observation data cannot well reflect the
differences in details. In the future, this model will have good
application potential in the refined monitoring of polluting gases
across the country.
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I. INTRODUCTION

O ZONE is a common atmospheric component [1], [2]. In
the atmosphere, about 90% of ozone is distributed in

the stratosphere, which can effectively weaken the direct solar
ultraviolet radiation and is extremely important to the earth’s
ecological environment [3], [4], [5]. Ozone is also an oxidizing
and reactive gaseous trace pollution gas, which can be used as
a good tracer to cooperate with carbon emission monitoring to
realize “carbon pollution from the same source” and complete
the precise positioning of carbon sources [6]. As a photochemi-
cal product of volatile organic compounds (VOCs) and nitrogen
oxides, ozone plays an important role in forming and driving
photochemical smog and acid rain [7]. At the same time, ozone
is also a harmful substance to the human body. Long-time ex-
posure to high concentration of ozone can significantly increase
the probability of several diseases such as asthma, respiratory
infection, high blood pressure, and ischemic heart disease [8],
[9], [10], [11]. According to the World Health Organization,
the daily average ozone concentration that the human body
can withstand should not exceed 100 mg/m3. Therefore, refined
monitoring of atmospheric ozone, especially the temporal and
spatial distribution of near-ground ozone, can ensure the accu-
rate implementation of “carbon pollution from the same source”
and the effective implementation of air pollution evaluation,
treatment, and traceability. It has important scientific research
significance and practical value for protecting the physical and
mental health of residents and winning the battle to defend the
blue sky.

In order to monitor the instantaneous state of various com-
ponents in the air, China had established air quality monitoring
stations in every city. By the end of 2012, the initially formed
ground monitoring network had been able to quickly and accu-
rately obtain information on the state of the atmosphere near the
ground [12], including pollutant gases such as nitrogen dioxide
(NO2), sulfur dioxide (SO2), and ozone (O3). However, China’s
ground monitoring network is not perfect, the spatial distri-
bution of stations is uneven, and the air pollutant information
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it monitors can only represent a small range centered on the
monitoring stations [13], [14], which means that it is difficult
for ground stations to monitor air pollution conditions accurately
and comprehensively. Remote sensing observations can obtain
continuous atmospheric information at high frequency. In recent
years, the quantitative inversion technology of air pollutants
based on remote sensing has shown great application potential,
and gradually becomes an important method of continuously
monitoring the concentration of air pollutants in large areas
[15], [16]. The huge amount of data obtained by remote sensing
provides a new way for fine monitoring of regional ozone. At
present, the mainstream atmospheric trace gas observation satel-
lite sensors include the Ozone Monitoring Instrument (OMI)
[17], the Global Ozone Monitoring Experiment-2 [18], and
the Tropospheric Monitoring Instrument (TROPOMI) [19], and
the observation system formed by these sensors can provide
observation data from 1995 to the present. However, due to the
hardware conditions of the remote sensing satellite itself and
the limitations of external climate conditions, the existing ozone
remote sensing retrieval products have a series of problems such
as missing data, weak consistency between different sensors, and
coarse spatial resolution. All these problems make it difficult to
achieve fine monitoring of small areas such as urban areas by
remote sensing observations alone [20], [21].

Although the current satellite sensors for monitoring atmo-
spheric pollutants such as ozone have many shortcomings,
satellite remote sensing technology has also provided new data
for large-scale ozone monitoring research with its advantages
of high efficiency, large-scale and dynamic acquisition of at-
mospheric information source. On this basis, many estimation
methods for air pollutants have been developed [22], [23], [24].
Among them, machine learning (ML) models have been widely
used in the estimation of the near-ground pollutants due to
their ability to better deal with complex nonlinear relationships
between variables, to better process and analyze large-scale data
[25], [26]. As a classic algorithm in the ML model, the random
forest (RF) model is gradually used in the estimation of air
pollutants because of high-dimensional processing capability,
big datasets, and strong antinoise ability [27], [28]. Compared
with the traditional chemical transport model, the RF algorithm
not only reduces the computational cost but also improves
the computational accuracy [29]. Some scholars have explored
the complex nonlinear relationship between near-ground ozone
and explanatory variables using the extreme gradient boosting
(XGB) model based on the boosting algorithm. The model out-
performs other ML models in both site-based and sample-based
cross-validation (CV) results [30], [31], [32]. In addition, some
scholars have introduced the deep forest (DF) algorithm and the
light gradient boosting (LGBM) algorithm into the estimation of
ozone [33], [34], [35], [36]. As an upgraded version of the RF and
XGB, DF and LGBM have avoided the computational pressure
brought by a large amount of data and the overfit phenomenon
caused by multifeature data [37], [38]. It can be seen that the ML
model has a good prospect in estimating air pollutants. Some
recent studies have built an ensemble model of “ML model
+ neural network” combined with satellite observations data,
meteorological data, and human activity data [39], which has

also been used in evaluating the near-ground air pollutants.
The model avoids the problems of deviation and overfitting
in different base models and obtains better estimation results.
The ensemble multiple ML model method (FC-LsOA-KELM)
successfully estimated the ozone exposure of 11 cities in the Fen-
wei Plain of China [40]. This model has built multiple machine
learners, avoiding the deviation of prediction results caused by
different algorithm principles of a single model, and achieved
good results in monitoring fields such as nitrogen dioxide and
ozone. At present, although ML models and ensemble learning
models can effectively monitor the near-ground pollution gases,
they can still be further explored and improved in terms of spatial
resolution, time-series variation characteristic. Constructing a
prediction model that takes into account the influence of time
and obtains the results of near-ground ozone concentration dis-
tribution with high temporal and spatial resolution has become
the focus of pollution gas estimation research at this stage.

According to the problems existing in the current research,
this study combines concentration of ozone column data, re-
analysis data, meteorological data, and other multisource data
to propose a temporally ensemble model. Using this model,
the near-ground ozone exposure information at 1 km2 spatial
resolution in the Yangtze River Delta region of China was suc-
cessfully obtained, and the performance of four single-machine
models and ensemble models were compared and analyzed
by 10-fold CV. In addition, by comparing the model estima-
tion results with interpolation results of satellite observation
data on a monthly and seasonal scale, the advantages of the
ensemble model in predicting the spatio-temporal distribution
of the near-ground ozone were discussed. Finally, we selected
two cities (Hangzhou and Shanghai in China) and analyzed the
ability of the ensemble model to capture spatial heterogeneous
characteristics at high spatial resolution. This work aims to
develop a temporally ensemble model for near-ground ozone
estimation with high spatio-temporal resolution, to explore the
advantages of the model in predicting the spatio-temporal dis-
tribution of near-ground ozone, and to demonstrate its ability
to capture fine-grained changes in ozone concentration in small
regions. The high spatio-temporal resolution information ob-
tained through this model will provide important data support for
relevant Chinese departments in ozone monitoring and effective
governance.

II. MATERIALS AND METHODS

A. Data and Preprocessing

1) Distribution of Ground-Level Ozone Observation Sta-
tions: This study selected the Yangtze River Delta region of
China as the research area (see Fig. 1), which included Shang-
hai, Jiangsu Province, Zhejiang Province, and Anhui Province
(114.377°E-123.134°E, 26.167°N-35.527°N). The area covers
an area of 40 000 km2, with a total of 41 cities. The region is
one of the most economically dynamic regions, with the most
frequent industrial activities and the highest population density
in China.

In this work, hourly ozone data from the China Environmental
Monitoring Center in the Yangtze River Delta region from 2018
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Fig. 1. Distribution map of ground air quality observation stations.

to 2020 (see Fig. 1) were collected. The Environmental Mon-
itoring Center used ultraviolet photometers and equipment to
monitor ozone generation to measure and calibrate near-ground
ozone. The distribution of air quality monitoring stations in
China does not cover every city (see Table SI). In fact, the
layout of stations is affected by many factors, including city
size, industrial development level, population density, and geo-
graphical location [41], [42]. As of 2021, there are 324 stations
in this region, among which 138 in Jiangsu, 20 in Shanghai, 72 in
Zhejiang, and 94 in Anhui. The layout of monitoring stations is
strictly in accordance with the HJ664-2013 standard, which can
represent the real situation of the near-ground ozone. In addition,
in view of data omissions or outliers in the monitoring sites, this
work eliminated the monitoring data of less than 15 h per day
and obtained the daily average data of the sites after processing.

2) TROPOMI O3 Data: The satellite ozone column concen-
tration data used in this study were obtained from the Sentinel-
5P TROPOMI O3 Level 2 (S5P_L2_O3_TOT) released on
NASA’s official website with a spatial resolution of 7.0∗3.5 km2

(5.5∗3.5 km2 after August 6, 2019). S5P_L2_O3_TOT relies on
a direct-fit algorithm (S5P_TO3_GODFIT) that uses nonlinear
least squares inversion based on the difference between the
model simulated radiation and the satellite-monitored radiation.
This work obtained the tropospheric total vertical column ozone
concentration from S5P_L2_O3_TOT, keeping data with quality
control greater than 0.75 in the file to weaken the interference
of the data caused by clouds and other problems.

3) Reanalysis Data: The atmospheric conditions, radiant
heat, and ozone precursor information used in this work are
derived from the ERA5 reanalysis data released by the European
Center for Medium-Range Weather Forecasts (ECMWF). This
dataset is based on the methods used by the Numerical Weather
Prediction Center to optimally combine previously observed
results with the most recent observations every 12 h to produce
the best estimate of the state of the atmosphere and is the fifth
generation of ECMWF reanalysis of global climate and weather
over the past 40–70 years. This study selected 20 indicators from
the ERA5 dataset (https://cds.climate.copernicus.eu), including
atmospheric conditions, radiant heat, and ozone precursors,
which may have an impact on near-ground ozone concentration

changes, but not all indicators were involved in model construc-
tion. In addition, all the reanalysis data have undergone quality
control, removal of missing values, and handling of outlier such
as –9999 before being used as the modeling dataset.

4) Meteorological Data: Recently, studies on the estimation
of near-ground ozone have found that meteorological factors are
one of the critical factors affecting near-ground ozone concen-
tration and distribution. The temperature and humidity in the
meteorology can promote and delay the photochemical reaction
of ozone, and the wind speed can affect the transmission and
diffusion of ozone and precursors, which in turn affects the
concentration and distribution of ozone.

The meteorological data were obtained from the National
Meteorological Science Data Center of China. The land surface
temperature (LST), wind speed (WS), daily average air pres-
sure (AP), air temperature (AT), relative humidity (HD), and
cumulative rainfall of the meteorological stations in the study
area from 2018 to 2020 were selected. To ensure consistent
spatial resolution of research variables, we performed krig-
ing interpolation in ArcGIS software to obtain meteorological
raster data with 1 km2 spatial resolution after removing null
values, –9999, and values that do not match the variable in the
original data.

5) Other Geographic Data: The formation and distribution
of ozone are the result of many factors: human migration
and industrial production generate large amounts of VOCs,
which are important precursors to ozone formation, including
oxygen-containing organic compounds, nitrogen-containing or-
ganic compounds, and sulfur-containing organic compounds;
the distribution of different types of surface objects also affects
the variation of near-surface ozone. Therefore, this study incor-
porated road network density, population density, elevation, and
land cover data to characterize these impacts.

The land cover data were obtained from the Climate Change
Initiative (CCI) of the European Space Agency, with a spatial
resolution of 300 m and a temporal resolution of one year.
CCI divides all ground objects into 23 categories (see Table
SII), which will reduce the stability of the model [43], [44].
Considering the differences in the driving mechanism of ozone
by different land object types, this study reclassifies the land
use types into six types: forest land, grassland, urban land,
water body, agricultural land, and bare land (see Table SIII)
[45], [46]. The population gridded data was obtained from
Worldpop, and the road network density data were obtained
from the OpenStreetMap website (https://www.openstreetmap.
org) after projection transformation and statistical section
length operations.

The near-ground ozone concentration distribution is closely
related to altitude, so the digital elevation model (DEM) is also
taken into consideration. The DEM data are derived from the
Shuttle Radar Topography Mission (SRTM) of the USA (https:
//earthexplorer.usgs.gov/). For a specific description of the data,
see supplementary material (see Table SIV).

6) Variable Selection and Matching: ML models are widely
used for near-surface pollutant estimation due to the good
handling of complex nonlinear relationships between variables
[43], [44]. However, too many explanatory variables sometimes

https://cds.climate.copernicus.eu
https://www.openstreetmap.org
https://www.openstreetmap.org
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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not only increase the complexity of the model and reduce the
computational speed but also most of the explanatory variables
have multicollinearity among them, which will lead to great
noise and make the model unstable, resulting in overfitting, thus
affecting the accuracy of the model prediction [47]. Therefore,
it is necessary to properly screen the explanatory variables to
control the variables within a reasonable range. In this study,
the Pearson correlation coefficient [48], [49] (see Fig. S1) was
used to screen the explanatory variables, and eliminate variables
with low correlation coefficients and those with similar physical
significance. Some variables such as human activities have a
low correlation coefficient with ozone concentration, but always
affect the concentration and distribution of ozone. Therefore,
parts of them are also included.

Finally, 19 several predictors were introduced into the esti-
mation model, namely, boundary layer height (blh), mean sea
level pressure (msl), surface latent heat flux (slhf), top net solar
radiation (tsr), 100 m wind speed (v100), relative humidity (HD),
road network density (road), population (pop), land use data (lc),
satellite-observed ozone column concentration (O3_5p), eleva-
tion (DEM), LST, time (time), and satellite-observed formalde-
hyde column concentration (HCHO_5P).

This study designed a grid with a spatial resolution of
1 km∗1 km to standardize the data from different resolutions for
the construction of modeling datasets. First, all variables were
reprojected into a unified projected coordinate system, and for
data above 1 km2 resolution were sampled into the standard grid
using the nearest neighbor resampling method [50], and for data
below 1 km2 resolution were scaled to the standard grid using
inverse distance weight interpolation [51]. Finally, the grid data
that fell to the ground ozone monitoring station were collected,
and 209 852 valid data were obtained after removing outliers
and missing values for model construction and validation.

B. Methodology

Since the variables that affect ozone formation have time
dependence and a single model is unable to fully adapt to mul-
tidimensional data, this study proposed a temporally ensemble
model based on a variety of conventional ML models, taking
into account the temporal correlation between variables.

The RF algorithm is based on the bagging ensemble con-
structed by the decision tree as the base learner, and further
introduces the selection of random attributes in the training
process of the decision tree. It can not only effectively deal with
multisource data but also avoid overfitting phenomenon [52].
In contrast, the extreme random forest (EXT) algorithm uses
all samples on the selected sampling set as the training set of
decision trees, and randomly selects a feature value to divide
the decision tree after selecting the division feature, which is to
a certain extent improve the generalization ability of the model
[53]. As an implementation of the gradient boosting decision
tree (GBDT) framework in the boosting algorithm, the XGB
algorithm adds a regular term to the loss function to control
the overall complexity of the model, thereby greatly reducing
the overfitting problem [54]. The LGBM algorithm is also the
implementation of the GBDT algorithm; compared with the

Fig. 2. Framework of ensemble model.

presorted algorithm used by XGB, LGBM uses a histogram-
based decision tree algorithm. This method will greatly reduce
the calculation amount of segmentation gain, thereby reducing
memory usage and improving computing speed and ensuring
higher accuracy different algorithms and structures determine
that models have different advantages when dealing with data
of different dimensions [55]. This study introduces the above
models to compare the differences among models.

A single model often considers the entire time series from
an overall perspective to minimize the overall deviation. When
facing long-term series and multisource data, these single mod-
els may not be able to capture the true characteristics of lo-
cal time. Considering the temporal specificity of near-ground
ozone, we constructed a temporally ensemble model framework,
combined with a hard-voting ensemble approach [56], and de-
veloped an ensemble model based on classical ML models to
estimate ground-level ozone concentration. First, we divided
the modeling dataset into 12 monthly data according to the
time, constructed XGB, RF, EXT, and LGBM models by month,
and established the monthly mapping relationship between ex-
planatory variables and near-ground ozone concentration (see
(1) for details). In order to reduce the model deviation due to
different algorithm principles, this study used Bayesian opti-
mization to optimize the parameters of each model. The optimal
hyperparameters for each model are shown in Table SV. Next,
we employ a hard voting approach to comprehensively compare
the estimation results of LGBM, XGB, RF, and EXT models for
each monthly dataset using the coefficient of determination (R2),
the root-mean-square error (RMSE), and mean absolute error
(MAE) metrics. Ultimately, the optimal model for each month
is determined. Finally, the output results of the corresponding
models for each month were ensemble to obtain the final ground-
level ozone estimation result; the details of the model framework
are shown in Fig. 2

Pozonei = best (fij (blh, tsr, v100 . . . O3_5p))} (1)
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TABLE I
CV RESULTS OF THE FIVE REGRESSION MODELS ON THE MONTHLY SCALE

where Pozonei represents the optimal result of the model
for each month, i represents the month,j represents the four
ML models (XGB, RF, EXT, and LGBM), best represents
the optimal model corresponding to the month, fij represents
the modeling dataset, and the blh, tsr, v100 . . . O3_5p, respec-
tively, represent the boundary layer height, top net solar radi-
ation, 100 m wind speed …satellite-observed ozone column
concentration.

III. RESULTS

A. Statistical Description

This study selected the top net solar radiation (tsr), surface
latent heat flux (slhf), LST, satellite ozone column concentra-
tion (O3_5p), formaldehyde column concentration (HCHO_5p)
mean sea level pressure (msl), boundary layer height (blh), and
other 19 variables as the input of the model. The time resolution
of these variables is daily (May 14, 2018–December 31, 2020),
and the spatial resolution is 1 km2. According to Fig. S2,
different variables presented different spatial heterogeneity. The
altitude in the study area behaved the highest with a value of 1869
m, and the lowest with 33 m, which was higher in the south
and lower in the north. Meanwhile, the mean sea level and air
pressure (msl) showed a trend of higher in the north and lower in
the south, which was in line with the law of air pressure changing
with altitude. In addition, O3_5p and HCHO_5P, v100, and msl
showed similar distributions in space; the high value area of
tsr was mainly located in aquatic regions, which reflected the
real situation. In conclusion, the explanatory variables selected
above could meet the modeling requirements and be used for
estimating near-ground ozone.

B. Model Comparison

In this study, we selected four widely used single regression
models, including XGB, RF, EXT, and LGBM for model com-
parison. The fitting results and CV accuracy of different models
were shown in Fig. 3, and the sample size involved in the mod-
eling was sufficient to support the credibility of the experiment.
The R2 values of XGB, RF, EXT, LGBM, and Ensemble reached
0.87, 0.82, 0.81, 0.89, and 0.91, respectively, the corresponding
RMSE values were 10.78, 13.19, 13.30, 9.89, and 9.21 µg/m3,

Fig. 3. 10-fold CV results of each model. (a) Validation results of XGB model.
(b) Validation results of RF model. (c) Validation results of EXT model. (d)
Validation results of LGBM model. (e) Validation results of ensemble model.
The red solid line is the fitted line, and the black dotted line is the standard line.

respectively, and the corresponding MAE values were 8.01,
9.88, 9.99, 7.34, and 6.67, respectively. Overall, the five models
underestimated the true concentration of near-ground ozone, but
the slope of the predicted trend line of the ensemble model was
closest to 1, which showed a value of 0.88. Compared with other
models, the bias in the estimation had been corrected to a certain
extent. In addition, we also compared the performance of five
models in each month (see Table I). Among them, each model
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Fig. 4. Spatial distribution of R2 of the ensemble model. (a) Distribution of
the R2 in spring. (b) Distribution of the R2 in summer. (c) Distribution of the R2

in autumn. (d) Distribution of the R2 in winter. (e) Annual distribution of the R2

for the ensemble model.

had the best fitting effect in June and the worst fitting effect in
December. After the optimal results of each model, the ensemble
model also behaved less fluctuation (absolute deviation: 0.028),
second only to LGBM (absolute deviation: 0.026).

According to Fig. 4(e), 201 stations showed greater R2 than
0.85, accounting for 83.05% of all observation stations. Most
of these stations were located in urban areas, whose economy
was developed and facilities were complete. Therefore, these
areas could provide enough explanatory variable observation
data, so that the model can fully capture the nonlinear relation-
ship between explanatory variables and ozone concentration.
Furthermore, the fitting result was the best in winter, and 76.98%
of the stations had a fitting accuracy greater than 0.85 [see
Fig. 4(a)–(d)]. The season with the worst fitting effect was sum-
mer, and only 149 stations showed a fitting coefficient greater
than 0.85, accounting for 61.82% of all observed stations. The
spatial distribution of RMSE (Fig. S3) and MAE (Fig. S4) was
consistent with R2. It could be seen that the ensemble model
proposed had good adaptability in both spatial distribution and
seasonal scale.

C. Sensitivity Analysis of Model Performance

The relative importance rankings of the independent variables
of five regression models were shown in Fig. 5. Among the XGB,
RF, and EXT models, tsr had the highest importance proportion,

Fig. 5. Relative importance of explanatory variables in five regression models.

which were 30.8%, 45.1%, and 34.4%, respectively; among the
LGBM models, msl had highest proportion, which was 10.3%;
whereas in the Ensemble model, the importance of O3_5p was
the highest at 10.3%, followed by tsr at 8.4%. In general, the data
representing heat (slhf, tsr, and LST) were the most important
factors affecting each model (XGB: 39.9%, RF: 57.8%, EXT:
54.1%, LGBM: 25.3%, Ensemble: 22.7%), the effects of human
activity data (road, pop, and lc) were the least (XGB: 22.0%,
RF: 1.6%, EXT: 1.7%, LGBM: 13.9%, Ensemble: 21.3%). In
the ensemble model, except lc and time, the contribution of
other explanatory variables was about 8%, which was relatively
balanced.

The main reason why the relative importance of each explana-
tory factor in the ensemble model is different from other models
is that RF, EXT, XGB, and LGBM only focus on the contribution
of each factor in the overall data while ignoring the perfor-
mance of explanatory variables in different time periods. The
ensemble model took into account the temporal heterogeneity
of the explanatory variables from the perspective of each month.
For example, LST showed different seasonal distributions over
time. This phenomenon of showing different numerical changes
in different months was averaged in the ensemble model (see
Fig. S5), which was why the relative importance of most ex-
planatory variables showed a relatively balanced phenomenon.

D. Spatiotemporal Distribution Analysis

The distribution of ozone presented a regular distribution with
each month (see Fig. 6). It mainly presented that the ozone
concentration was high in the northeastern coastal area from
January to March, the high-value area gradually moved from the
northeast to the northwest during March to September, and ozone
with high values was mainly distributed in the southern area from
September to December. The monthly average concentration
of ozone showed a “double peak” trend (see Fig. 6). From
January to June, the ozone concentration gradually rose to a
peak of 88.52µg/m3, and from June to August, the concentration
gradually decreased to 65.42µg/m3. From August to September,
the concentration reached the second peak of 76.81 µg/m3,
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Fig. 6. Monthly distribution of estimating results.

and gradually decreased to 34.86 µg/m3 from September to
December. The concentration of ozone in the spring and summer
showed values ranged from 50 to 100 µg/m3, which is mainly
distributed in the northern Anhui and Jiangsu provinces (see
Fig. S6). The concentration and distribution area of ozone were
much higher than those in other seasons. The ozone concentra-
tion range in autumn was 48–85 µg/m3, and the distribution of
high-concentration ozone was relatively scattered. The ozone
concentration in winter was lower than 60 µg/m3, and the
high-value areas were mostly distributed in the coastal areas
of Jiangsu Province, Shanghai, and southern Zhejiang Province.
The spatial changes of ozone concentration on the monthly and
seasonal scales are consistent with the changes in temperature
and solar radiation, which also confirms the research [57] that
temperature is beneficial to production of ozone.

Fig. S7 shows the time series distribution map of the daily
average ozone concentration predicted by the ensemble model
from May 2018 to 2020. The highest value period was mainly
concentrated in May to August, and the highest daily average
concentration reached 137.76 µg/m3. The lowest value period
was mainly concentrated in November to February, and the low-
est daily average concentration reached 7.81 µg/m3. The daily
average concentration of ozone showed a “W” shape change over
time, with the concentration gradually increasing from February
and reaching a peak in June, then slowly decreasing from June
to October and reaching its lowest point in January. Overall, the
results predicted by the model are in good agreement with the
observations at ground stations, which indicates that the model
has good applicability for long-term predictions.

IV. DISCUSSION

A. Comparison of Existing Downscaling Models

Since our ensemble model takes into account the influence
of temporal correlation among explanatory variables on ozone
generation and distribution, it has better spatial and temporal
resolution and better performance. Specifically, in terms of esti-
mation accuracy, our model outperformed others. For example,
the XGB model [58] (CV R2: 0.89, RMSE: 4.75 µg/m3), the RF
model [59] (CV R2: 0.69, RMSE: 26 µg/m3), a daily-scale RF
model [60] (CV R2: 0.84, RMSE: 0.0059 ppm), the space-time
extreme random tree model [61] (CV R2: 0.87, RMSE: 21.10
µg/m3), the deep neural network model [62], the feedforward
back propagation neural network [63] (CV R2: 0.88, RMSE:
10.74 µg/m3), and the artificial neural network model [64] (CV
R2: 0.89, RMSE: 0.0066 ppm). This is because our model com-
prehensively considered that the input variables themselves are
limited by time factors, which is also reflected in the comparison
between the construction of the overall model and the ensemble
model in this article (as shown in Fig. 3).

In addition, the model is also similar to the Geoi-LGB method
[38] (CV R2: 0.91, RMSE: 10.25 µg/m3). The difference is that
Chen constructed spatiotemporal autocorrelation factors and
introduced them into the model as modeling data. In this work,
all explanatory variables were divided into different datasets
according to the time, and input into multiple base models,
respectively, to get optimal solutions. But in general, the tempo-
rally ensemble approach of explanatory variables could improve
the model’s estimation accuracy. As for spatial resolution, the
ensemble model provided ozone exposure information with a
spatial resolution of 1 km2, which could provide data support
for preventing and controlling polluted gases. And few scholars
have constructed a near-ground ozone concentration estimation
model with a spatial resolution of 1 km2. For instance, the RF
generalized additive model [65] provided ozone exposure with
a spatial resolution of 0.25°, and a statistical model obtained a
product with a spatial resolution of 0.2° [66]. The RF model
[67], the XGB model [68], and an inheritance algorithm com-
bined with multisource geographic data [69], all of the above
only provided ozone exposure information at a spatial scale of
0.1°. In contrast, our ensemble model performs better in both
spatiotemporal resolution and performance.

B. Uncertainty Evaluation of the Model

In this study, we found that the four independent ML models
(XGB, RF, EXT, and LGBM) involved in modeling showed
different results in different months, which may be due to
differences in model structure and explanatory variables driving
ozone Mechanisms are different. In terms of model structure,
RF and EXT are decision tree-based ensemble methods to
reduce the variance of the model to build a model for the
optimization goal [52], [53]. XGB and LGBM are methods
based on gradient boosting trees, which mainly generate models
by gradually reducing the residual error of the model [54], [55].
The different ways of building the model lead to differences
in the strategy of generating the tree, which may cause the



7058 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

model to show different results in different months. In terms
of explanatory variables, we observed that some explanatory
variables involved in modeling have different effects on the
generation and distribution of ozone in different time periods,
which may lead to different performances of different models
in different months. For example, in summer, the increase in air
humidity in the Yangtze River Delta area makes the moisture
content in the area skyrocket, which weakens the influence
from solar radiation to a certain extent, and then weakens the
photochemical reaction of ozone generation [70]. In addition, the
increase in air humidity also leads to an increase in precipitation
in the region. Unstable phenomena such as thunderstorms are
not conducive to the deposition of ozone [71]. In addition, the
increase in humidity will increase the concentration of OH
radicals in the atmosphere, and a large amount of OH will
combine with ozone in the atmosphere, which may lead to the
degradation and reduction of ozone [72]. Temperature is an
important factor affecting the change of ozone concentration.
In summer, higher temperature may promote the photochemical
reaction between ozone precursors. In winter, the temperature
drops, and it is accompanied by rain, snow, and strong wind,
which is not conducive to the formation and accumulation of
ozone. In addition, low temperature will reduce the activity and
metabolism rate of relevant biological enzymes in plant cells,
thereby slowing down the respiration rate of plant cells, which
hinders the production of VOCs by vegetation through respira-
tion, and then affects the chemical reactions that produce ozone
[73], [74]. Wind speed and direction also affect the generation
and distribution of ozone. In summer, the Yangtze River Delta
region of China is mostly affected by the East Asian monsoon.
The warm and humid air flow from the southeast accelerates
the photochemical reaction of ozone formation. In addition, this
region is often affected by typhoons in summer. The greater
wind speed makes the precursors of ozone transported from
the high-concentration high altitude to the near ground, and the
increase of reactants intensifies the chemical reaction to generate
ozone, thus promoting the formation of ozone [75]. In winter,
mainly affected by the dry and cold airflow from the northwest,
the lower temperature may reverse the photochemical reaction
that generates ozone, thereby reducing the ozone concentration
in the atmosphere. In addition to the above factors, boundary
layer height, air pressure, and terrain conditions [76], [77] are
also important factors affecting the formation and distribution
of ozone in the atmosphere.

C. Potential for Fine-Scale Ozone Monitoring

The refined ozone distribution was proved to be potential in
capturing the spatial heterogeneity of a small area. In the study
area, we found the fine distribution characteristics of the city
and its surroundings, which could not be reflected by satellites.

As shown in Fig. 7, the distribution of ozone mainly con-
centrated on the central in the main urban area, dominated by
Yangpu District, Putuo District, Xuhui District, and Pu dong
New Area. High-value areas are in suburban, dominated by
Chuansha Town, Zhoupu Town, Zhuqiao Town, Huinan Town,
Anting Town, Nanxiang Town, Jiading District, and Baoshan

Fig. 7. Distribution of ozone in Shanghai and Hangzhou. (a)(1) Estimated
results of model in Shanghai. (a)(2) Observation results of satellite in Shanghai.
(a)(3) Real scene of remote sensing in Shanghai. (b)(1) Estimated results of
model in Hangzhou. (b)(2) Observation results of satellite Hangzhou. (b)(3)
Real scene of remote sensing in Hangzhou.

District. Low-value areas are in farmland, dominated by the
southern part of Qingpu District, the southeastern part of Fengx-
ian District, and the central part of Songjiang District. The
distribution of ozone concentration showed a trend of “medium-
high-low” from the city center to the agricultural areas. The
ozone concentration in suburban areas was significantly higher
than that in other areas, where a large number of factories and
chemical enterprises existed. The combustion of fossil fuels and
emission of chemical gases generated a significant amount of
ozone precursors such as NOx and VOCs [78]; as a result, the
ozone concentration was higher than other areas. The ozone
concentration in the main urban area was higher than farmland
area, which was mainly because the farmland area had less
population, transportation activities than the main urban area.
Different from the distribution of ozone in the Shanghai area, the
Hangzhou area presented a “low-medium” trend from the main
urban area to away from the urban area [see Fig. 7(a)(1) and
(b)(1)]. Among them, the median area was mainly distributed
in the suburban area on the edge of the main urban area and the
mountainous area far away from the urban area. The former had
a large number of factories that produced massive ozone precur-
sors, which made the ozone concentration in this area rise. The
latter was covered with massive forest. On the one hand, plants’
respiratory processes generated a significant amount of VOCs
[79], and the photosynthesis was strong in mountainous areas,
which was conducive to the generation of ozone. On the other
hand, the ozone imported from the outside could not dissipate
with the wind and eventually accumulated in forested areas. Due
to the high altitude, low forest canopy density, and sufficient
sunlight, the reaction of photochemical to generate ozone was
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strong [80]. In addition, compared with Shanghai, the main
reason why Hangzhou does not have high ozone concentration
areas is that it has completed industrial adjustments in recent
years (see Fig. S8), the proportion of the tertiary industry has
reached half, and the GDP of the secondary industry is less
than half of that of Shanghai. In general, compared with the
interpolation results of satellite observations [see Fig. 7(a)(2)
and (b)(2)], the ensemble model exhibited more details and
provided richer information. However, the interpolation results
of satellite observations in this area were smoothed and could
not be seen that the Shanghai and Hangzhou regions presented
a “medium-high-low” and “low-medium” trend. Therefore, the
ensemble model has many advantages in the research of small
areas, and the 1 km2 spatial resolution products can offer data
support for local ozone management.

D. Study Limitations

Our research also has some limitations. First, the time scale
is not enough to analyze the evolution process of regional ozone
under long-term series. Since TROPOMI only provides ozone
column concentration data after 2018, long-term ozone moni-
toring cannot be performed. Although another satellite sensor,
OMI, can provide ozone column concentration data from 2004
to the present, the spatial resolution of this product is relatively
coarse and some data have been missing since 2013 due to
equipment aging, which affects the accuracy of estimation.
Second, meteorological conditions often exhibit a lag effect
on air pollutants. When introducing meteorological explana-
tory variables, only the data of the current day is introduced
without considering the influence of meteorological factors in
the previous and subsequent days, which would lead to certain
deviations in the model’s prediction of ozone concentration and
distribution. Third, there are large uncertainties in ensemble
explanatory variables with different spatial resolutions into a
1 km2 prediction grid using inverse distance weighted (IDW)
interpolation and bilinear interpolation resampling methods.
Due to the flaw in the IDW interpolation algorithm, which is
very sensitive to noise, it may not be possible to accurately
predict grid cell values. What is more, the bilinear interpola-
tion method only considers the influence of the gray value of
the four adjacent points around the predicted point, but does
not take into account the influence of the change rate of the
gray value between adjacent points, which leads to the loss of
high-frequency components of the image.

V. CONCLUSION

Combining with multiple data sources such as reanalysis
data, meteorological data, and human activity data, this study
proposes a temporally ensemble model based on four ML algo-
rithms: XGB, RF, EXT, and LGBM. Our aim is to address the
temporal heterogeneity issues that affect near-ground ozone con-
centration and distribution. The model successfully predicted
the near-ground ozone concentration in the Yangtze River Delta
region of China and generated a spatial distribution map of
the daily average near-ground O3 concentration with a spatial
resolution of 1 km2. The main findings are as follows.

1) Due to its ability to capture subtle variations in explanatory
variables, the temporal ensemble model exhibits higher
estimation accuracy compared to most ML models.

2) Estimation models with high spatial resolution can capture
changes in near-surface ozone concentrations over small
regions.

The excellent performance of the ensemble model in terms
of time and space would contribute to providing favorable data
support for the prevention and comprehensive management of
air pollutants in the future.
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