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Self-Constrained Baseline 3-D Correction Approach
for Mobile Laser Scanning Point Cloud in

Complex Urban Road Environments
Youyuan Li , Chun Liu , Hangbin Wu , and Yuanfan Qi

Abstract—Mobile laser scanning (MLS) can provide urban road
spatial information, which gained increasing attention in various
urban applications. However, the MLS platform position estima-
tion is often inaccurate because the positioning observations tend
to be interfered with or blocked out by surroundings in complex
urban regions, resulting in the degraded quality of captured point
cloud data. Instead of correcting inaccurate MLS platform posi-
tions directly, this article proposed a baseline to extract intrinsic
characteristics from raw point clouds, which can be used for 3-D
correction without additional reference information. Furthermore,
this article designed a data-driven 3-D correction approach called
self-constrained baseline correction model. First, baselines were
generated from raw MLS data by extracting and connecting road
markings. Next, intrinsic features information from raw data were
extracted by calculating the baselines’ horizontal curvature and
longitudinal gradient. Then, the problematic MLS point cloud can
be located by abnormal feature information of baseline accordingly,
dividing raw point cloud into reference and problematic data.
Finally, nonrigid correction processing was performed by building
a consistent expression and iteratively minimizing the discrepancy
between problematic and reference data, enhancing the accuracy
consistency of the MLS road point cloud. Experiments were con-
ducted with six typical problematic scenes collected in Shanghai,
China. We demonstrated that the 2-D and 3-D average deviation of
problematic data was reduced by 1.06 and 1.10 dm. The accuracy
inconsistency of corrected data was also evaluated by analyzing the
standard deviation of feature information. The results showed that
the data quality can be improved significantly.

Index Terms—Baseline, mobile laser scanning (MLS), point
cloud, 3-D correction.

I. INTRODUCTION

A. Background

W ITH the rapid progress and development of urban areas,
the demand for accurate 3-D information about cities,

such as light detection and ranging (LiDAR) point clouds, is
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steadily increasing [1]. Mobile laser scanning (MLS) is an
emerging technology for accurate LiDAR point clouds in urban
areas [2]. An MLS system mainly comprises a data acquisi-
tion sensor (e.g., laser scanner) providing captured point cloud
information and a navigation sensor [e.g., global navigation
satellite system (GNSS) and inertial measurement unit (IMU)],
which provides georeferencing coordinate information. The
MLS system is often mounted on a moving platform (e.g., a
vehicle) and can collect 3-D road information along driving
paths. When a good GNSS signal is received, MLS can provide
high-quality point cloud data with centimeter-level accuracy and
a point density of a few thousand points/m2, which has gained
increasing attention in various urban applications, such as urban
modeling [3], road infrastructure mapping [4], and autonomous
vehicle driving [5].

For these practical applications, the data quality of MLS must
be guaranteed. However, MLS data quality tends to degrade in
a complex environment. In these complex environments, such
as dense urban areas with tall buildings and street canyons,
the MLS struggles to obtain good positioning results, although
navigation is not completely blocked. Distortion or malposition
occurs among the collected MLS point clouds. The inconsis-
tency in data accuracy decreases the quality of MLS data in
both vertical and horizontal directions, as shown in Fig. 1, where
yellow and blue are MLS point clouds with different accuracies.
Such inconsistency in MLS accuracy reduces data accuracy and
seriously damages the structure of the road point cloud. Thus,
the relative measurements of the points of interest in the point
cloud cannot be guaranteed. In addition, point clouds are a very
useful data type for 3-D visualization and immersive experiences
[6], the degraded point cloud quality caused by inconsistency
in data accuracy will affect the application of point cloud
visualization.

The main cause of MLS’ degraded performance is the inac-
curate position estimation of the MLS platform, which is the
GNSS/IMU. In dense urban areas with tall buildings and street
canyons, the GNSS satellite signal is blocked by its surroundings
and affected by tall buildings’ multipath effect [7]. Moreover,
IMU errors tend to increase very quickly over time when the
navigation is of the IMU standalone solution [8], which results
in a loss of accuracy and reliability of the MLS positioning
trajectory. Accordingly, the MLS point cloud data quality is
affected and reduced because the 3-D measurements acquired
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Fig. 1. Accuracy inconsistency among MLS point clouds. (a) Problematic data in horizontal. (b) Problematic data in vertical.

by the vehicle-mounted laser scanners are georeferenced to the
global coordinate system based on the position data. It has been
demonstrated that the shifts in the point cloud generated by
MLS can reach up to meters in a complex environment [9].
Consequently, the availability and accuracy of the MLS point
cloud are not always guaranteed. Unfortunately, most position-
ing demands are requested from urban areas, where problems
frequently occur [7]. Therefore, correction solutions to improve
the quality of erroneous MLS point clouds are needed, and it is
essential to ensure that MLS point cloud data are corrected to
the same accuracy level in a complex environment [10], [11].

The inaccurate position of the MLS platform is the major
contributor to MLS’ degraded performance. Unfortunately, it is
difficult to improve the MLS data quality by correcting inac-
curate MLS platform positions directly because the observation
data for positioning the MLS platform are unstable and difficult
to correct. The deviations in MLS platform positioning are often
caused by various factors (such as signal block and multipath
effect) in a complex environment, making establishing a gen-
eral correction model intricate and arduous. More severely, the
positioning observation data required for correction usually are
not provided for users. This difficulty raises the challenge of
improving the quality of the MLS data in a complex urban road
environment.

B. Literature Review

Numerous studies have focused on enhancing MLS data qual-
ity, and the main approaches can be summarized into: ground
control points (GCPs)-based technologies, model-based tech-
nologies, and data-based technologies. GCP-based technologies
set GCPs along the MLS route to correct MLS data. Model-based
technologies establish an MLS trajectory correction model and
regenerate the MLS point cloud using an improved navigation

trajectory. Data-based technologies directly correct MLS point
cloud data without MLS positioning trajectory data.

GCP-based technologies are typically used to manually sur-
vey GCPs using conventional methods to improve the quality of
the MLS point cloud [12]. The raw MLS data were corrected
by manually finding the corresponding target locations between
the point cloud and GCPs, and then shifting the MLS point
cloud position to match the surveyed GCPs. This approach can
improve the trajectory position of the MLS platform and produce
better overall accuracy of the corrected MLS point cloud. Local
errors can be reduced, especially when errors are inconsistent
within a dataset [10]. However, the procedure requires many
control points (at least every 50 m), which is labor-intensive and
time-consuming because it must be performed manually [9],
[10], [13], [14].

Model-based technologies focus on point cloud improvement
from the error sources of MLS by using raw platform positioning
observations. For example, Liu et al. [11] established an MLS
mathematical model, followed by a detailed analysis of the ef-
fects of the individual error source, and compensated for the poor
positioning performance of the MLS trajectory in a complex
environment. Han et al. [8] designed a time-variant reference
transformation model to eliminate MLS positioning errors due
to the loss of satellite signals. The MLS trajectory and collected
point clouds can then be corrected with a few calibration points.
Hussnain et al. [14] and [15] proposed an extraction method
for 3-D corresponding points between the MLS point cloud
and aerial images. According to them, the MLS trajectory was
enhanced by integrating the corresponding points and IMU
observations of the MLS platform in a complex environment.
Jing et al. [10] presented an MLS trajectory correction method
by combining the feature information extracted from the raw
MLS point cloud. They reprocessed the navigation trajectory to
produce an MLS point cloud with better quality. UAV images
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[12], [16] and terrain-referenced navigation [17] were also ap-
plied to correct the MLS trajectory to improve the MLS point
cloud. Although the above approaches have achieved MLS data
correction by improving the MLS trajectory, the trajectory data
stored independently usually are not provided as point cloud
data for users, making the correction solution unavailable for
relevant models [18]. Thus, the abovementioned model-based
algorithms are not a universal MLS correction solution because
the trajectory file is probably not given.

Comparatively, data-based technologies use data character-
istics for MLS improvement, which can be directly used for
MLS correction. Given that deviations often occur among MLS
point clouds when the same areas are scanned several times,
data-based technologies are mainly accomplished by registra-
tion between overlapping point clouds. For instance, Yu et al.
[19] introduced an automatic algorithm for the global registra-
tion of MLS point clouds. Different “semantic features” scales
were extracted with object detectors and selected for different
iterations of an iterative closest point algorithm. Shiratori et al.
[20] designed a loop-based alignment method to improve the
MLS’s accuracy and data quality, and loop closure was used to
accurately register large numbers of dense 3-D point clouds.
Yang et al. [21] developed a marker-free calibration method
using an overlapped MLS point cloud to address the position
inconsistency of raw MLS data, where the data features of
overlapping regions were applied for the coarse-to-fine pairwise
point cloud alignment. Then, the position deviations of overlap-
ping areas were minimized to register global MLS point clouds.
Data-based technologies are accomplished without any external
reference or MLS trajectory data. The quality of the MLS
point cloud can be improved if there is sufficient data overlap.
However, current data-based correction methods require strict
data acquisition conditions for overlapping, which increases the
cost of the MLS data. In addition, the registration can only be
matched to minimize the global differences between the two
datasets, which makes it challenging to eliminate local nonrigid
distortion owing to inconsistent errors within a dataset [10].

Although current approaches have achieved promising results
for MLS data correction in specific scenes, these methods rely
heavily on additional reference information provided by trajec-
tory data or strict acquisition conditions. The corresponding
limitation can be amplified as the amount of MLS data in-
creases. Hence, this article attempts to determine the intrinsic
characteristics of raw urban road point clouds and proposes
a data-driven 3-D correction method that takes advantage of
reference information from attainable data only and enhances
MLS data quality in a complex environment.

II. SELF-CONSTRAINED BASELINE CORRECTION MODEL

(SCBCM)

To enhance the MLS data quality of urban road point clouds,
this article attempts to make full use of intrinsic feature infor-
mation among urban raw point clouds and propose a data-driven
3-D correction approach. In the practical postprocessing of the
urban road MLS point cloud, we found apparent characteristics
among the problematic MLS data. Even though the raw MLS

point cloud has unstable data quality in a complex environ-
ment, general rules exist within some 3-D lines among the
raw MLS data, as shown by the yellow lines in Fig. 2. These
3-D lines are the edges of the road markings, reflecting the
3-D distortion of the problematic urban MLS point cloud in
a complex environment. It is remarkable that the road markings
of the MLS point cloud with inconsistent accuracy demonstrate
significant deformations, which do not conform to the code
for design (such as the People’s Republic of China National
Standards: Road Traffic Marking GB5768.3-2009 and Technical
Standard of Highway Engineering JTG B01-2014). Thus, the
characteristics of road markings can reflect the MLS data quality,
both vertically and horizontally, because road markings are
designed without sharp swerves and surface collapse for guiding
vehicles to drive in an orderly and safe manner. In addition,
the characteristics of point clouds in and out of problematic
urban areas should be consistent. On this basis, the portion out
of the problematic urban areas can provide a corrective reference
for those in the problematic urban areas. A self-constraint can
be established as a correction reference without extra reference
information.

Therefore, we propose a baseline for urban MLS point cloud
3-D correction. The baseline is defined as a scattered 3-D point
set formed by the edge lines of road markings in the road
direction, mainly composed of solid and dashed road markings.

Based on this idea, there are two main baseline functions.
First, the data quality of the urban MLS point cloud, which the
baseline can quantify. The horizontal curvature of the baselines
can indicate the inconsistency in the accuracy of the MLS data
in the horizontal direction. The problematic vertical data are
reflected by the longitudinal gradient of the baselines, which
can be calculated from their elevations. Therefore, the intrinsic
characteristics of an urban road point cloud can be extracted
to locate problematic data. The other baseline function is that,
problematic data can be corrected in 3-D using the feature infor-
mation of the baselines. By integrating the feature information
extracted from baselines, both horizontal and vertical (horizontal
curvature and longitudinal gradients), the constraint of baselines
can be built to adjust the MLS data with inconsistent accuracy to
the same accuracy level. Thus, we propose an urban road point
cloud 3-D correction method using self-constrained baselines in
a complex environment.

This article proposes a self-constrained baseline correction
model (ScBCM) to improve MLS data acquired in a complex
environment. ScBCM is a data-driven correction approach that
takes advantage of the intrinsic feature information of urban
raw point clouds. The workflow of the proposed procedure is
illustrated in Fig. 3. The first step is the generation of baselines
from the raw MLS data by converting 3-D points to 2-D intensity
images. In the second step, we extract the intrinsic characteristics
of the baseline to locate problematic MLS point clouds in a
complex environment. The final step is the nonrigid correction
processing of the MLS data with a consistent expression.

Two key difficulties to overcome in improving the data quality
without extra reference information are extracting the intrinsic
characteristics of raw MLS data and processing point clouds
with data-driven nonrigid correction in a complex environment.
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Fig. 2. Baselines among problematic raw point cloud.

Fig. 3. Workflow of the proposed self-constrained baselines correction model
for MLS data.

The section below will explain the computational details of the
proposed model.

III. COMPUTATION OF THE PROPOSED 3-D CORRECTION

MODEL

A. Baselines Generation Based on Point Cloud Intensity
Images

As mentioned above, the baseline is a scattered 3-D point
set formed by the edge line of the road markings in the road
direction, mainly composed of solid and dashed road markings.
Much information was contained in the baselines along the road
mileage direction, reflecting the MLS data quality of urban
roads. It is challenging to express road information directly
using raw point clouds. Thus, generating accurate baselines is

critical for road information expressions and MLS data correc-
tion. Recently, many MLS studies have been conducted on road
marking extraction and classification [22], [23], [24], [25], [26],
[27], [28]. Owing to the large number of road-marking extrac-
tion algorithms, baseline generation is feasible and uncomplex.
To generate baselines, inverse distance weighted (IDW) [29]
was used to generate road intensity images, and the maximum
entropy method [30] was applied for the extraction of road
markings. In addition, the active contour model (snake) [31]
was used for edge extraction of road markings.

Because baselines mainly comprise edge lines of road mark-
ings, identifying and extracting road markings is the basis of
baseline generation. Furthermore, given that road markings are
highly retroreflective materials painted on asphalt concrete pave-
ments, the relatively high-intensity value is considered a unique
characteristic for road marking extraction from raw point clouds
[32].

Converting MLS point clouds into 2-D intensity images is
effective for overcoming intensity and density variance issues
[22]. Thus, 2-D intensity images interpreted from 3-D points
are employed for MLS data with inconsistent accuracy obtained
in a complex environment. First, IDW is employed to generate
intensity images (grid size R is 5 cm for each pixel) from the
3-D raw point cloud, which is represented as follows:

d2k =

(
Xk −

(
Xmin +

(2M − 1)R

2

))2

+

(
Yk −

(
Ymin +

(2N − 1)R

2

))2

(1)

I(M,N) =

∑n
k=1WkIk∑n
k=1Wk

(2)

where I(M,N) denotes the gray value of the grid (M,N) inter-
polated by IDW, Wk = 1

d2
k

denotes the weight of the kth point
within the grid, and n is the number of points in a grid.

Subsequently, the max entropy method [30] was applied for
image binarization. The binarization thresholdkwas determined
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Fig. 4. Graphical illustration of the line association procedure for baseline generation.

as follows:

k = max
t

(
−

t∑
i=0

Pi

Pn
log

Pi

Pn
−

255∑
i=t+1

Pi

1− Pn
log

Pi

1− Pn

)

(3)

Pn =
t∑

i=0

Pi (4)

where Pi represents the probability of pixel gray value i.
After image binarization, the road-marking region was identi-

fied from the background. Then, connected component analysis
was employed for road marking segmentation, and road marking
regions of solid and dashed road markings were saved according
to semantic knowledge (e.g., shape and size) [29]. Next, the
Sobel edge detection algorithm was used for the edge detection
of separated road markings. However, void or disconnected lane
markings would affect edge detection. A snake is used to solve
the problem, the snake is an energy-minimizing spline guided
by external constraint forces and influenced by image forces that
pull it toward features, such as lines and edges, which can be
expressed as follows:

E∗
snake=

∫ 1

0

[Eint(v(s))+Eimage(v(s))+Econ(v(s))] ds (5)

where Eint denotes the internal energy of the spline due to
bending;Eimage gives rise to the image forces;Econ represents the
rise to the external constraint forces, and v (s) = (x(s), y(s))
is the position of the snake.

The edge of the extracted road markings may be discrete as
segments because of dashed road markings. Line association is
crucial in generating baselines by linking the discrete corners
of road marking edges that topologically lie in the same lane.
First, the Harris corner detector yields corner points for each
road marking segment, as shown in orange in Fig. 4. Each road
marking segment is divided by corner points into four parts,
and the two extended parts (approximately along the milage

direction) are saved as baseline segments for baseline genera-
tion. An association process is then performed to determine the
corners connected based on the orientation and distance. For
each connected corner point, the orientations θ and distance ρ
are computed as follows:

ρ =

√
(Xj −Xi)

2 + (Yj − Yi)
2 (6)

θ = arccos
(Xj −Xi, Yj − Yi) · v

ρ
(7)

where Pcj (Xj , Yj) and Pci(Xi, Yi) are two corner points dis-
tributed on different baseline segments, and v is a unit vector
representing the mileage direction along the road. In the case of
pointPcj , pointPch with the minimal distance ρ fromPcj is first
removed, because point Pch and point Pcj are not on the same
side of the road marking. Then, the point Pci is determined and
linked to point Pcj , because both of distance ρ and orientation
θ between Pci and Pcj is minimal.

The two candidate corner points of the road-marking edge
satisfying the above condition are connected, and the baseline
segments of each candidate corner point are integrated into the
same segment. Thus, baselines were generated by integrating
the baseline segments and road points on the line of the two
candidate corner points. Fig. 4 shows a graphical illustration of
the line association procedure with the corner points of road
markings. Finally, the 3-D laser points of the baseline can
be extracted from the 2-D intensity images. In practice, the
image resolution can be increased or manually adjusted to avoid
“jagged” and obtain more accurate baseline 3-D points, thereby
reducing the processing efficiency of ScBCM.

B. Road MLS Data Feature Information Extraction From
Baselines

After generating the baselines, the feature information of the
road point cloud should be extracted to reflect the MLS data
quality. Accurately extracting road feature information is key
to improving the quality of MLS point cloud data. Horizontal
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Fig. 5. Graphical illustration of curvature and gradient at Pfj
.

curvature (from now on referred to as curvature) and longitudinal
gradient (from now on referred to as gradient) are the major ge-
ometric elements of urban roads [33]. Therefore, curvature and
gradient are essential feature information for road data analysis,
which can be used to express the MLS data quality. In a complex
environment, the instability of MLS positioning accuracy will
distort the point cloud in 3-D, causing the road baselines to show
abnormally high local curvature or gradient values. According to
the characteristics of problematic road clouds, the MLS data with
accuracy inconsistency can be located using the feature informa-
tion of the baselines. Thus, for each baseline composed of fea-
ture points {(xf0 , yf0 , zf0), (xf1 , yf1 , zf1), . . . , (xfi , yfi , zfi)},
F (x, y) and G(x, y, z) are designed to extract the feature infor-
mation of each baseline horizontally and vertically.

As for problematic data reflected in the horizontal direction,
the baseline curvature is calculated to locate the horizontal
deformation. Because the baselines comprise discrete feature
points, their curvature information cannot be acquired directly.
Therefore, the curvature was calculated by local polynomial
curve fitting (i.e., quadratic polynomial), as shown in Fig. 5.
The fitting curve at the feature point Pfj (xfj , yfj , zfj ) of the
baselines can be expressed as

ϕ2 (x) = a3x
2 + a2x

1 + a1 = y (8)

where ai(i = 1, 2, 3) denote the polynomial parameter and can
be determined by the local feature points in the neighborhood
(radius r = 0.5 m) of Pfj .

The baseline curvature kfj at feature point Pfj (xfj , yfj , zfj )
can be formulated as

kfj =
|2a3|(

1 +
(
2a3xfj + a2

)2) 3
2

. (9)

The longitudinal gradient is the elevation rate with respect to
the distance in the direction of travel flow [34]. Therefore, the
gradient of baselines can be used to locate problematic data with
accuracy inconsistency in the vertical direction. The baseline
gradient sfj at feature pointPfj (xfj , yfj , zfj ) can be formulated
as follows:

sfj =

∣∣zfj−r
− zfj+r

∣∣√(
yfj−r

− yfj+r

)2
+
(
xfj−r

− xfj+r

)2 (10)

where Pfj+r
(xfj+r

, yfj+r
, zfj+r

)and Pfj−r
(xfj−r

, yfj−r
, zfj−r

)
denote the points with the maximum and minimum time dif-
ferences of point Pfj , respectively, in the neighborhood.

Before 3-D correction processing, problematic MLS data
should be located according to the extracted feature information.
Considering that the curvature and gradient of feature points
are abnormally high in the problematic MLS data (accuracy
inconsistency), the curvature thresholdk0 and gradient threshold
s0 are predefined for locating problematic data, and ψ(F,G) is
designed for locating problematic data, if the curvature kfj and
gradient sfj of feature pointPfj comply with the comprehensive
threshold {(kfj < k0) ∧ (sfj < s0)}, the feature point Pfj is
saved as a reference point, which is used for reference line
computation. Otherwise, Pfj is saved as a corrective point,
which is used for self-constrained correction.

As illustrated in Fig. 6, the baseline’s spatial position is shown
in the upper part of Fig. 6, and the overall feature information of
the baseline is shown below. The orange dotted lines in Fig. 6(a)
and (b) represent the curvature threshold k0 and gradient thresh-
old s0, respectively. The first and last feature points failing
to comply with the comprehensive threshold are marked with
red circles in Fig. 6, corresponding to the problematic points
on the baseline. Therefore, problematic points can be located
successfully according to ψ(F,G).

Some problematic points may be too subtle to be detected,
such as the feature point at a local mileage of 50 m in Fig. 6.
Thus, we extended the problematic field length along the mileage
direction to lc, which ensured all problematic feature points
were included in the corrective points. Consequently, some
feature points can be correctly classified as corrective points,
even though the feature information appears abnormal. After
the extending processing, the join points of the nonproblematic
region and extended problematic field are Ps and Pe. They
denote the feature point just before the problem starts and the
feature point just after the problem ends, respectively, which will
be used for nonrigid 3-D correction in Section III-C.

The location of problematic data is designed based on the
assumption that the accuracy inconsistency is reflected by the
abnormally high curvature and high gradient of the baselines.
However, it is recognized that a high curvature value or high
gradient value of a single baseline does not fully represent
the accuracy inconsistency owing to traffic diversion lines,
road patches, and road markings painted incorrectly. There-
fore, the optimized scheme ψ(F,G) is employed, which de-
termines the inconsistency in accuracy when all baselines fail
to comply with the comprehensive threshold at that period,
such as Fig. 7(a). As shown in the red dotted box in Fig. 7(b),
there is only one generated baseline failure to comply with
the comprehensive threshold, which is not determined to be
inconsistent in accuracy according to the optimized scheme.
The optimized scheme ψ(F,G) avoids incorrectly locating
the correct MLS data and allows for an exceptional baseline
case.

This generated baseline information will be integrated into
the nonrigid correction processing in the next section, which
improves the accuracy and consistency among problematic MLS
data captured in a complex environment.
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Fig. 6. Graphical illustration for locating problematic data from baselines.

Fig. 7. (a) Positive example of problematic data locating using baseline feature information. (b) Negative example of problematic data locating using baseline
feature information.
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Fig. 8. Graphical illustration of nonrigid 3-D correction.

C. Nonrigid 3-D Correction Processing With Self-Constrained
Baseline

Nonrigid correction processing is the core process of ScBCM,
which plays a crucial role in MLS point cloud improvement
in a complex environment. As shown in Fig. 2, there is
nonrigid deformation and distortion among the point clouds
captured in a complex environment due to the instability
of the GNSS position signal and the nonlinear behavior of
the INS position errors. Thus, nonrigid correction processing
is designed for MLS data in a complex environment, and
{x, y, z, intensity, acquisition time} information on the point
cloud are used for this section.

As outlined in Section III-B, the inconsistency in the accuracy
of the captured MLS point cloud is located when the curvature
or gradient of the baselines is abnormally high. The feature
information of the baselines divides the feature points into
reference and corrective points, which are distributed in different
regions. As shown in Fig. 8, the accuracy inconsistency problem
occurs in the region (dotted box) over which the MLS vehicle is
driven in the acquisition time of the corrective points. The lower
right illustration of Fig. 8 is the front view 1© and top view 2©
of the baseline. The region before and after the problem occurs
denotes the area where MLS data are captured in the acquisition
time of the reference points. As mentioned in Section III-B, the
feature points in the extended field (the field length along the
mileage is expressed as lc in Fig. 8) are considered problematic
data and are used for nonrigid correction. According to the
above information, nonrigid correction processing is described
as follows:

As discussed above, the data quality of the MLS point cloud is
reflected by the baselines. For MLS data without inconsistencies,
the extracted feature points of the baselines should remain stable
and consistent in accuracy. Each baseline among the MLS data
with consistent accuracy can establish a consistent expression
(the direction of which is extremely close to the road direction)
using feature points on the baselines. Therefore, to ensure that

the point cloud is corrected to the same level of accuracy, the
feature points on the baselines must match a consistent baseline
expression. For baselines with inconsistencies in accuracy, the
feature points are divided into corrective and reference points,
as mentioned in Section III-B. Because reference points are
considered reliable in the region before and after the problem
occurs, a reference expression of the baseline with consistent
accuracy can be established by reference points. The reference
expression is shown as the reference line in Fig. 8.

For baseline consistency, the reference points on the baseline
must constrain the corrective points. The self-constraint for
baselines is built to control the corrective points on the baseline
to match the reference expression established by the reference
points on the baseline. Thus, the accuracy of the baselines was
consistent under the principle of self-constraint.

According to the Technical Standard of Highway Engineering
JTG B01-2014 in China, urban roads and road markings are de-
signed as straight lines, circular curves, and transitional curves.
Therefore, to get closer to the designed form of urban roads, we
used a kth degree polynomial for the reference line to adapt to
straight and curved roads. The reference line is the expression
of the reference points on the baselines, which can be expressed
by a polynomial of degree k

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕk (x) = y = ak+1 x
k + akx

k−1 + · · ·+ a1
ωk (x) = z = bk+1 x

k + bkx
k−1 + · · ·+ b1

ϕk (xs) = ys
ϕk (xe) = ye
ωk (xs) = zs
ωk (xe) = ze

(11)

where Ps(xs, ys, zs) and Pe(xe, ye, ze) denote the feature point
just before the problem starts and immediately after the problem
ends, respectively.

The reference points Pi(xi, yi, zi) can determine the refer-
ence line in the region before and after the problem occurs,
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which can be formulated as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
Vy
Vz

)
=

(
xki x

k−1
i · · · 1 0 0 · · · 0

0 0 · · · 0 xki x
k−1
i · · · 1

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak+1

ak
...
a1
bk+1

bk
...
b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
−
(
yi
zi

)

⎛
⎜⎜⎝
xks x

k−1
s · · · 1 0 0 · · · 0

xke x
k−1
e · · · 1 0 0 · · · 0

0 0 · · · 0 xks x
k−1
s · · · 1

0 0 · · · 0 x2e x
k−1
e · · · 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ak+1

ak
...
a1
bk+1

bk
...
b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎝
−ys
−ye
−zs
−ze

⎞
⎟⎟⎠=0.

(12)

The standard matrix form is given{
V = BX̂ − L

CX̂ + Wx = 0.
(13)

The polynomial parameter of the reference line can be

X̂ =
(
N−1 −N−1CTN−1

c CN−1
)
W −N−1CTN−1

c Wx

(14)
where Nc = CN−1CT , N = BT B, and W = BT L.

Nonrigid correction can be expressed as follows:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(xe − xs)x+ (ye − ys) y + (ze − zs) z
− (xe − xs)xj − (ye − ys) yj − (ze − zs) zj = 0

y = ak+1 x
k + akx

k−1 + · · ·+ a1
z = bk+1 x

k + bkx
k−1 + · · ·+ b1

xe < x < xs

(15)

where Pj(xj , yj , zj) is corrective point in the region where
the problem occurs. Correspondingly, the nonrigid corrected
P

′
j(x

′
j , y

′
j , z

′
j) can be determined by (15).

The correction value (V xjj , V yj , V zj) of feature point Pj

can be obtained as follows:⎧⎨
⎩
V xj = x′j − xj
V yj = y′j − yj
V zj = z′j − zj .

(16)

Subsequently, the MLS point cloud can be corrected as fol-
lows: ⎧⎪⎨

⎪⎩
X ′

(t) = X(t) + V x(t)
Y ′
(t) = Y(t) + V y(t)
Z ′
(t) = Z(t) + V z(t)

(17)

where (V x(t), V y(t), V z(t)) denotes the correction value ob-
tained by feature point, which is collected at time t.P(t) andP

′
(t)

are MLS points before and after correction, respectively. In terms
of a problematic scene, multiple baselines can be extracted to
use for the proposed correction model, each baseline can provide

a correction value, and thus, the average value of each baseline
at the same acquisition time is used for the MLS laser point
accordingly.

Subsequently, the corrected feature points of the baselines are
obtained in the problematic region, and the correction value of
the new baselines is updated. Section III-B was repeated until
each feature point of the baseline complied with the compre-
hensive threshold. By the iterations described in Section III-B,
a 3-D updated correction value can be determined and used to
correct the MLS point cloud data of the area where accuracy
inconsistency occurs. Finally, corrected MLS point cloud data
can be generated using ScBCM correction.

IV. CASE STUDY

To verify the effectiveness of the proposed method, a series
of experiments were carried out on MLS datasets. Next, the
experimental data and parameter settings are described in detail.
The experimental results of the proposed approach are presented
at the end of this section.

A. Data Description of Experimental Scenes

The MLS point cloud data were acquired in the urban area
of Shanghai, China, which were collected by a mobile survey
vehicle for a single time at a relatively constant speed of approxi-
mately 30 km/h, with a length of 33.1 km and a collection time of
116 min. The MLS collection route, which is located in typical
urban areas, is shown in the middle of Fig. 9. There were two
areas in which the problem was likely to occur, and the quality
of the MLS road point cloud was unstable, as shown by the red
box in Fig. 9. According to the photos in Fig. 9, the MLS data
acquisition environment of Areas I and II was quite complex,
containing dense trees, tall buildings, and large overpasses. In
addition, there were mainly straight roads in Area I, while some
curved roads were in Area II.

Fig. 10 shows the raw MLS road point cloud in Areas I
and II, which accounts for the degraded data quality. There
were high-rise and densely distributed buildings in Area I. This
environment may make GNSS positioning difficult because the
window glass of many buildings’ exacerbates the multipath ef-
fect, resulting in an inaccurate MLS trajectory. The environment
in Area II includes dense street trees with a large canopy and
overpass covering roads, which may lead to long-term GNSS
signal outages. The trajectory error continuously accumulates
over time because the IMU estimates the position of the MLS
platform in this environment as prone to drift errors.

Owing to the road environment of the areas, the captured MLS
point cloud data showed accuracy inconsistency phenomena
(such as distortion or malposition) both vertically and horizon-
tally. Table I lists the characteristics of the experimental data,
including six representative problematic scenes.

In this article, raw MLS point clouds were sliced into segments
for computational efficiency, each with a length of approxi-
mately 100 m. Moreover, the point cloud coordinates of the east,
north, and up acquired by the GNSS receiver were normalized
to the local coordinates of each segment which can be easily
achieved by Burse–Wolf model [35]. Specifically, the X-axis is



LI et al.: SELF-CONSTRAINED BASELINE 3-D CORRECTION APPROACH FOR MOBILE LASER SCANNING POINT CLOUD 7941

Fig. 9. MLS route plot and photos of typical scenes (the street photos are derived from Baidu Map).

TABLE I
CHARACTERISTICS OF EXPERIMENTAL DATA

approximately along the road direction, which reduces the cal-
culation error caused by excessively large coordinate values. In
addition, point clouds around urban roads are removed to avoid
the influence of ground objects such as buildings, vegetation,
and traffic facilities. A cloth simulation filtering algorithm [36]
filters the vehicles and pedestrians on the road surface, and the
preprocessed point cloud data is shown in Fig. 11.

B. Data Collection

The experiments were conducted using a mobile laser-
scanning system manufactured by CHCNAV (see Fig. 12),
which has a vehicle-mounted laser scanner, IMU, and GNSS
receiver. The details of the MLS employed for the experi-
ments are listed in Table II. The accuracy of the MLS point
cloud can reach the centimeter level when the GNSS sig-
nal is available. Each point captured by the MLS contains
{x, y, z, intensity, acquisition time}, which are the geometry
coordinates, intensity value, and time stamp, respectively.

C. Experimental Settings

Several parameters and their values used in the experiments
are listed in Table III. Among these parameters, the threshold

TABLE II
DETAILS OF MLS EMPLOYED FOR THE EXPERIMENTS

TABLE III
PARAMETERS IN THE EXPERIMENT FOR SCBCM

of the baseline curvature and gradient is the prior knowledge
according to the topography. The straighter and flatter the urban
road, the smaller the k0 and s0 values should be. Therefore, we
choosek0 = 0.2m−1 for nearly straight roads, and we increased
it to k0 = 0.3 m−1 for the curved road. It should be noted that
some hilly topographies with natural slopes might have influ-
enced the parameter setting of s0. However, hilly topography
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Fig. 10. (a) MLS point cloud of three problematic scenes in area Ⅰ, colored by elevation. (b) MLS point cloud of three problematic scenes in area Ⅱ, colored by
elevation.
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Fig. 11. (a) MLS point cloud of three problematic scenes in area Ⅰ, colored by intensity. (b) MLS point cloud of three problematic scenes in area Ⅱ, colored by
intensity.
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Fig. 12. Mobile laser scanning system.

Fig. 13. Baseline generation for problematic scenes. (a)–(f) are results of baseline generation for the six problematic scenes, respectively.

is mainly located in spacious suburbs or rural areas, in which
MLS can receive a robust GNSS signal, and the phenomenon of
data accuracy inconsistency rarely arises. Therefore, we expect
almost flat terrain (no sharp collapse and sinking) for urban
areas; 0.1% and 0.4% are predefined for flat urban roads and
urban roads with slight slopes.
lc refers to length of problematic field, which is used to

classify the feature points into corrective points. The longer
the problem of inconsistency in MLS data accuracy persists,
the larger lc needs to be set. r refers to neighborhood radius
for curvature and gradient. The more sparse the point cloud
density, the larger r should be set to ensure accurate curvature
and gradient. Meanwhile, larger value of neighborhood radius
will consume more computational power and time, 0.5 is adapted
to most of scenes.

With these parameters, the self-constrained condition of road
point cloud baselines was constructed without additional ref-
erence information, and problematic data could be corrected
accordingly.

D. Experimental Results of ScBCM

In this section, we present the results of the experiments
described in the previous section, starting with the baseline
generation of ScBCM. The baseline generation results of our ap-
proach are illustrated in Fig. 13 (yellow represents the baselines).
The results show a significant inconsistency in the baselines’
accuracy, which reflect the MLS data quality.

The ScBCM-corrected results of our approach and their im-
pact on the point cloud are illustrated in Fig. 14, and the red
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Fig. 14. (a) ScBCM results for three problematic scenes in area Ⅰ. (b) ScBCM results for three problematic scenes in area Ⅱ.
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Fig. 15. Evaluation of road cliff points using Hausdorff distance.

dotted boxes indicate problematic region. The inconsistency in
the accuracy of the MLS point cloud in a complex environment
was significantly improved by the ScBCM. The vertical dis-
jointed collapse and horizontal malposition are eliminated in the
ScBCM-corrected results, the point clouds of which are closer
to the ground truth given by the GCP-corrected point cloud. The
results show that the proposed method can enhance the road
point cloud’s accuracy and consistency and improve the point
cloud’s quality after correction.

V. EVALUATION AND ANALYSIS

To assess the effectiveness of the ScBCM, a verification exper-
iment for the correction processing of the point cloud was carried
out. Subsequently, evaluation criteria were used to perform
quantitative analysis and determine the optimal experimental
settings.

A. Evaluation Criteria

Numerous GCPs were surveyed using RTK along the experi-
mental MLS route to assess the proposed method’s performance.
The raw MLS data can be manually precorrected with GCPs
using the Copre software suite. The precorrected MLS point
clouds were saved as the ground truth to evaluate the accuracy
and consistency of the experimental results. The accuracy of
point cloud data corrected by control points was significantly
higher than that of the point cloud data directly captured by
MLS. Data consistency was reliable after intensive GCP-based
precorrection, which met the requirements of urban road map-
ping.

After the ground truth was acquired and determined, the
performance of the proposed method was evaluated using the
Hausdorff distance, which expresses the dissimilarity between
two point cloud sets. The Hausdorff distance of the point cloud

set A = {a1, a2, a3, . . .} and B = {b1, b2, b3, . . .} in Eu-
clidean space can be calculated as follows [37]:

H(A,B) = max {h (A,B) , h (B,A)} (18)

h (A,B) = max
a∈A

min
b∈B

‖a− b‖ (19)

h (B,A) = max
a∈A

min
b∈B

‖b− a‖ (20)

where ‖a− b‖ represents the distance between Point Sets A
and B.

To conduct experimental verification specifically, linear road
cliff point clouds are selected from the ScBCM-corrected and
ground truth point clouds accordingly. Their Hausdorff distance
is the deviation compared to the ground truth, as shown in
Fig. 15.

B. Accuracy Analysis for ScBCM Results

To verify the validity of the proposed method, linear road
cliff point clouds were selected from the point clouds corrected
by ScBCM and ground truth point clouds in six problematic
scenes. The road cliff point cloud’s scattered plots of the raw
and corrected laser-scanning points are shown in Fig. 16, the red
dotted boxes indicate problematic region. The blue dots are laser
scanning points precorrected by GCPs, the laser scanning points
from the raw MLS are shown by red crosses, and orange stars
indicate the corresponding corrected laser scanning coordinates
using ScBCM.

According to the results, the coordinates of the point cloud
corrected by ScBCM (orange stars) are closer to those corrected
by the GCPs (blue dots) than the raw laser ones (red crosses).
This proves that the accuracy can be enhanced by the proposed
method for the MLS data. Furthermore, according to the linear
characteristics of the selected road cliff point cloud, the laser
point cloud corrected by ScBCM eliminates noticeable distor-
tion. It improves the quality of the MLS data vertically and
horizontally.
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Fig. 16. Scatter plots of raw and corrected laser scanning points for six problematic scenes.

TABLE IV
DEVIATIONS OF RAW AND CORRECTED LASER SCANNING POINTS DATA USING SCBCM

In addition, the Hausdorff distance between the ScBCM-
corrected point cloud and the GCP-corrected point cloud was
calculated to quantitatively evaluate the problematic scenes’ 3-D
and 2-D data deviations, as shown in Table IV. The results show
that the 3-D and 2-D average deviations of the ScBCM corrected
point cloud are reduced by 1.10 and 1.06 dm, respectively. The
results also verify that the self-constrained baseline method can
effectively improve the accuracy of MLS point cloud data.

Although the deviation of corrected data has difficulties
reaching the centimeter level because the data-driven correction
approach faces limitations on the correction reference, only a few
GCPs are needed for ScBCM-corrected data to further improve
the data quality. This article can still significantly reduce the
cost of manual labor for problematic MLS data, which avoids
intensive GCPs surveyed in nonrigid deformation areas.

C. Accuracy Consistency Analysis for ScBCM Results

The linear road cliff point cloud in the problematic scenario
was selected to further evaluate the accuracy and consistency
of the ScBCM correction results. The curvature and gradient
of the linear road cliff point cloud were calculated, as shown
in Table V. Owing to traffic safety, urban road construction
requires that the curvature and gradient of the road change gently.
Considering that the selected linear road cliff point cloud has a

short length, each scene should have a small standard deviation
of the curvature and gradient.

The results in Table V show that the curvature and gradient of
the MLS point cloud in the problematic scene exhibit significant
and drastic changes before correction, particularly for Scenes Ⅰ-3
and Ⅱ-2. These drastic changes indicate that the MLS accuracy
is inconsistent, resulting in poor quality in the six scenes. After
the ScBCM correction, the standard deviation of the curvature
and gradient in each problematic scene were significantly re-
duced, which is consistent with the road characteristics of gentle
changes.

D. Impact of Problematic Field Length for ScBCM

Because the field length of problematic data determines the
field of corrective points for nonrigid 3-D correction processing,
the problematic field length lc is one of the critical parameters for
ScBCM. To explore the impact of the problematic field length
lc for ScBCM, we tested the value from 5 to 35 m with 5 m
increments for lc, while keeping other parameters fixed. Fig. 17
shows the results of the average deviation for problematic scenes
using different field length values.

The results of the different lc values demonstrate that all
average deviations decreased in 2-D and 3-D after ScBCM
processing. Note that the graph shows a significant decrease in
3-D, while the lc value increased from 5 to 25 m. The main reason
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TABLE V
CURVATURE AND GRADIENT OF RAW AND CORRECTED LASER SCANNING POINTS DATA USING SCBCM
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Fig. 17. Parameter influence of problematic field length for ScBCM in problematic scenes.

Fig. 18. Influence of different baseline expressions for ScBCM.

for this is that some slightly problematic data may be divided
into reference points when lc is set as a small value. The 3-D
deviations show an upward trend when the lc value is greater than
25 m, which is probably because the reference point is far away
from the problem location, reducing the self-constraint ability
of the baselines, while a large lc value is applied. The best value
of the problematic field length was determined at lc = 25 m, as
shown in the red box of Fig. 17 because the average deviation
at lc = 25 m is the best result in 3-D and acceptable in 2-D.

E. Impact of Baseline Expression for ScBCM

With the optimal parameters, the performance of the proposed
ScBCM was further evaluated to check its robustness to differ-
ent baseline expressions, including linear, quadratic, and cubic

polynomial fitting. Fig. 18 summarizes the 2-D and 3-D results
for the problematic scenes.

According to the 2-D deviation of different baseline expres-
sions in Fig. 18, the deviation of the quadratic polynomial is
smaller than that of the others in Scene II-2, potentially because
the baseline expression of the quadratic polynomial is more
adaptable to curved roads. The 2-D deviation of most scene
data corrected by linear polynomials is the best for straight
roads, except Scene II-1. As for Scene II-1, though the quadratic
polynomial results are a little bit better, the 2-D deviation of
quadratic polynomial corrected data is very close to one of the
linear polynomial corrected data. The reason might be that the
vertex of the curved reference line expressed by the quadratic
polynomial is closer to the ground truth, even though the refer-
ence line should be straight for straight roads. This effect can be
effectively weakened by introducing a few GCPs for the point
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cloud already corrected by ScBCM, to further acquire higher
data quality.

In addition, most deviations of 2-D are similar to the results
of 3-D, the reason for which might be that the slope is gentle in
urban terrain. Compared to the raw point cloud in Fig. 18, all
the point cloud deviations of the different baseline expressions
corrected by ScBCM are significantly reduced. The results
indicate that the proposed ScBCM provides a corrected point
cloud with less deviation, achieving the desired comprehensive
performance regardless of baseline expression and dimensions.

VI. DISCUSSION

A. Applicability of the Proposed Method

This research’s method can be applied to roads with different
curvature conditions, regardless of whether the road is straight or
curve, because the reference line is constructed by polynomials
for nonrigid correction. Besides, snakes are active contour mod-
els guided by external constraint forces and influenced by image
forces, they can lock on nearby edges and locate them accurately,
and thus the baseline generation method in this article can be
applied to problem scenes with distortions. However, it should be
noted that different topographies might affect the performance of
the proposed method. For example, some hilly topography might
have natural slopes, influencing the parameter setting. However,
hilly topography is mainly located in spacious suburbs or rural
areas, in which MLS can receive a robust GNSS signal, and
the phenomenon of data accuracy inconsistency rarely arises.
Therefore, we expect a nearly flat terrain for experimental scenes
to apply hilly topography in urban areas.

Regarding hilly topography in urban areas, road construc-
tion and marking with paints are designed according to certain
technical standards because of the safety of urban traffic. This
implies that the gradient of most roads changes moderately to
ensure traffic safety, even in the hilly topography of urban areas.
This gentle gradient change significantly differs from the drastic
gradient change in problematic data. Consequently, our method
theoretically applies to hilly urban areas, where the process is
similar to the flat terrain investigated here. The key requirement
for ScBCM is parameter setting; fortunately, it can be done by
referring to some technical standards for road construction (e.g.,
Technical Standard of Highway Engineering JTG B01-2014 in
China).

B. Uncertainty in Baselines

The quality of baseline generation is crucial to the reliability
of the proposed 3-D correction model. In reality, however, it
is impractical to perfectly extract road markings to generate
baselines because symbolic road markings (such as arrows)
and some worn road markings are difficult to use for baseline
generation. A practical strategy is to extract solid or dotted road
markings, the feature of which is more robust information, and
use multiple road markings for the correction model to reduce
the impact of single-worn road markings, as in this article.
However, the influence of wear on the marking extraction cannot
be completely eliminated. In other words, some baselines cannot

perfectly reflect the data quality of the MLS point cloud. In future
article, developing a more comprehensive strategy for baseline
selection and reducing the uncertainty introduced by baseline
generation will be necessary.

Concerning the baselines generated by road markings, ensur-
ing that the extracted road markings correctly reflect the prob-
lematic point cloud is critical. Road markings are designed and
painted according to specifications, and adjacent road markings
have similar spatial structures; the left and right road markings
on the same lane are in the same direction. Thus, the more similar
the structure of the extracted adjacent road markings in the same
lane, the better the quality of the generated baselines. Developing
effective metrics (e.g., structural similarity of adjacent baselines)
to identify useful baselines would be interesting.

C. Other Choices of Baselines Generation

In this article, road markings were used to generate baselines.
It would be interesting to examine whether other baseline gen-
eration choices (e.g., curbside) are suitable for an ScBCM. This
can be an important consideration when there are no effective
road markings owing to newly constructed or dilapidated roads.
Hence, effective road markings may not be painted promptly,
or large wear may exist. However, much curbside is designed
and built according to some specifications, providing feature
information of the road point cloud. These curbsides can help
generate baselines when road markings are struggling to be
extracted. Therefore, it is worthwhile to develop solutions to
fill the gaps introduced by the lack of road markings, maximize
these data, and distill useful feature information for baseline
generation.

VII. CONCLUSION

We developed a self-constrained baseline 3-D correction ap-
proach for MLS point clouds in a complex urban road environ-
ment. Instead of directly correcting inaccurate MLS platform
positions, the proposed method extracts intrinsic road charac-
teristics from raw MLS. Hence, it enhances the data accuracy
consistency without additional reference information, which
effectively improves the quality of the urban road point cloud.
The main contributions of the proposed approach are as follows:

1) Baselines of MLS point clouds are proposed to reflect data
accuracy inconsistency quantificationally in areas where
MLS positioning is inaccurate owing to the loss of the
GNSS signal, which can effectively locate problematic
MLS data vertically and horizontally.

2) An ScBCM is designed according to the intrinsic char-
acteristics of road information extracted from raw point
clouds and nonrigid correction processing. The ScBCM
is devised to correct the MLS point cloud to the same
accuracy level, especially in a complex environment.

3) The proposed method’s performance evaluation and anal-
ysis are demonstrated for six experimental scenarios. The
experimental results showed that the 3-D average devia-
tion of problematic data was reduced by 1.10 dm, demon-
strating that ScBCM significantly improved the quality of
the MLS point cloud.
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Although this article is satisfactory for most roads, the model
parameters can be further optimized to meet the higher-precision
data requirements. Therefore, future article will focus on de-
veloping more detailed processing steps to adjust the model
parameters adaptively according to the scene. In addition, more
advanced road marking algorithms may be integrated and ap-
plied to ScBCM in future article to improve performance.
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