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Abstract—Explosive detection is crucial for public safety
and confidence. Among various solutions for this purpose,
hyperspectral imaging differs from its alternatives with its
detection capability from standoff distances. However, the
state-of-the-art for such a technology is still significantly
missing a complete technical and experimental framework for
surveillance applications. In this article, an end-to-end technical
framework, which involves capturing, preprocessing, reflectance
conversion, target detection, and performance evaluation
stages, is proposed to reveal the potential of a ground-based
hyperspectral image (HSI) surveillance system for the detection
of explosive traces. The proposed framework utilizes a short-wave
infrared region (0.9–1.7 µm), which covers the distinctive
absorption characteristics of different explosives. Three classes of
detection methods, namely index, signature, and learning-based
methods are adapted to the proposed surveillance system. Their
performances are compared over various experiments, which are
specifically designed for granular and sprayed residues, fingerprint
residues, and explosive traces on vehicles. The experiments reveal
that the best method in terms of precision and recall performances
is hybrid structure detector, which effectively combines signature-
based detection with unmixing. While deep-learning-based
methods have also achieved satisfactory precision values, their
low recall values for the moment have comparatively limited their
usage for the high-risk cases. Although one of the main reasons for
the current performances of deep-learning methods is less data for
learning, these performances for HSIs can be increased with more
data in the future as in other image applications.

Index Terms—Deep learning, explosive detection, hybrid
structure detection (HSD), hyperspectral image (HSI) surveillance,
index-based methods, learning-based methods, signature-based
target detection algorithms.
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I. INTRODUCTION

D ETECTION of explosive materials and their traces [1], [2],
[3], [4], [5] has been an increasingly important research

field for long years due to the endless conflicts on a global scale
in many different parts of the world. Hyperspectral imaging
(HSI) is one of the potential solutions for such an aim with
its distinctive capability for standoff detection in contrary to the
commonly utilized techniques in state-controlled points, such as
X-ray diffraction imaging and differential mobility spectrometry
[6], [7]. However, the widespread utilization of this developing
technology for public safety with broader surveillance appli-
cations still involves various research challenges regarding the
target detection methods, design of the experiments, registration
and regulation of spectral bands for the construction of hyper-
spectral cubes in dynamic scenes, and acquisition speeds for
moving targets including vehicles and people. Among these
challenges, this article focuses on the detection methods for
explosive materials and the design of experiments for varying
real case scenarios to reveal the performance of these methods.

The HSI studies for explosive detection are mainly based on
the comparison of the reflectance or emissivity spectrum of the
tested HSI pixel and the reference spectrum of the target explo-
sive. These studies first capture the reflected radiance spectra in a
scene in multiple successive frequency bands. The source of the
reflected radiance can be the sunlight or an active illumination
source which is explicitly placed in the scene. While the active
systems with illumination sources [8], [9], [10], [11], [12], [13],
[14], [15], [16], [17], [18], [19], [20] might offer better detection
performances, the passive systems [21], [22], [23], [24], [25],
[26] using only sunlight provide a wider range of applications
in practical scenarios. The captured radiance is converted to
reflectance spectra, if the utilized region is a reflection dominant
region, such as visible near-infrared (VNIR) and short-wave
infrared (SWIR) bands. If the utilized region is the thermal dom-
inant region including the middle-wave infrared (MWIR) and
long-wave infrared (LWIR) spectrum, the radiance is then con-
verted to emissivity spectra. The resulting reflectance/emissivity
spectra for the pixels are visually inspected in comparison with
the reference explosive spectrum for manual judgment [10],
[11], [12], [13]. The similarity between the tested and reference
spectra can be further evaluated with automatic signal detection
methods based on target and background statistics [11].
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TABLE I
OVERVIEW OF THE GROUND-BASED HYPERSPECTRAL IMAGING SYSTEMS PROPOSED FOR DETECTION OF EXPLOSIVES AND THEIR TRACES

Table I gives an overview of the present HSI studies for
explosive detection. Although the table does not cover all the
methods, it presents the main aspects of the proposed solutions
in the existing literature, such as the type of the explosives,
utilized source for the illumination, the spectral region of the
proposed systems, the adopted algorithms for detection, and the
main merits of performance evaluation. The present HSI studies
for explosive detection have mainly targeted the detection of
ammonium nitrate (AN), ammonium nitrate-fuel oil (ANFO),
trinitrotoluene (TNT), hexahydro-trinitro-triazine (RDX), and
their variants as they form the main components of improvised
explosive devices. In addition, there are also studies for more
sophisticated explosives, such as C4 [20].

The proposed systems utilize the emissivity characteristics
of these explosives in LWIR range (6–11 μm) for detec-
tion [11], [13], [16], [17], [18] or the reflectance characteris-
tics in the VNIR (0.6–1 μm) and SWIR (1.4–1.7 μm) range
[19], [20], [21], [26]. The main illumination source for the
active detection systems in LWIR spectrum [16], [17], [18]
are selected as quantum cascade lasers to generate radiation at
the desired wavelengths. More conventional sources, such as
broadband illumination sources with their wider spectral char-
acteristics, are also preferred in VNIR, SWIR, and MWIR
systems [20], [21], [28]. The current status of all these studies is
however still at the experimental validation stage in controlled or
laboratory environments. Therefore, their usage for surveillance

applications is not possible yet in the current state-of-the-art of
this technology.

While surveillance systems with conventional red, green and
blue (RGB) and thermal cameras have recently enabled exten-
sive intelligent applications, such as automatic person identi-
fication [29], anomaly detection [30], face recognition [31],
[32], and crowd analysis [33], HSI-based surveillance systems
for dynamic scenes with moving vehicles and people imposes
different requirements than the existing laboratory based HSI
systems [1], [2]. First of all, the existing HSI studies for explosive
detection are realized by using a limited number of test images
in indoor or outdoor environments. An HSI surveillance system
requires a more complete evaluation procedure covering the
performances for different times and days depending on the
orientation between the sun and the scene. Second, reported
durations in current systems for the capturing of the scene are
mostly dependent on the acquisition times of the snapshot HSI
sensors, which are not sufficient for a real-time construction
of spectral cubes for moving vehicles. Therefore, effective solu-
tions should be developed to register the spectral bands captured
at different instants of a moving object. Third, an HSI-based
surveillance system requires white references in a scene for
reflectance conversions different from the conventional CCTV
surveillance cameras. While the usage of white references in
temporary setups is feasible for the performance evaluations,
an HSI surveillance system should have more sustainable and
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secure solutions for the reflectance conversions with no require-
ment for white references in the targeted scene.

Another aspect of the current HSI studies for explosive de-
tection is the lack of a full exploitation and analysis of the
current state-of-the-art of hyperspectral detection algorithms.
As indicated in Table I, the utilized algorithms for explosive
detection are mostly limited to ratio based, correlation based, or
matched-filter-based methods without providing detailed anal-
ysis for comparisons. The performances of main classes of
methods in hyperspectral detection literature, such as orthogonal
subspace methods and hybrid methods, were not completely
addressed for explosive detection. In addition, learning- and
deep-learning-based methods are another aspect to be explored
for a ground-based HSI-based surveillance system designed for
explosive detection.

Finally, the performance analysis of the current HSI sys-
tems for explosive detection is mostly performed by visually
examining the similarities of the pixel spectra to the reference
spectrum as well as the contrast at ground truth (GT) locations
on the resulting score image after the detection. However, per-
formance evaluation of these systems by using precision and
recall (P-R) curves is not widely utilized, except for a few
works on synthetically generated data. This situation can be
explained by the low number of images for real case scenarios
and the difficulties to form the GT masks as the solutions of
explosive materials prepared for the experiments do not indicate
a uniform distribution after they dry. As a final reason, most of the
past research on this topic was mostly initiated by government
and defense institutions, while the signal processing research
community has later focused on the topic after HSI systems
become more available in the market. Within the scope of the
given state-of-the-art, the presented research on HSI surveil-
lance system for explosive detection was triggered in 2017 after
the successive bombing events with the car bombs in the capital
of Turkey. After those events, HSI surveillance systems were
adopted as a potential solution for standoff detection of such
threats. In this regard, our aim in the related research was
to develop a complete HSI surveillance system including the
main parts such as setup, capture, reflectance conversion, and
detection. The ultimate application for the proposed system is
to be able to track the car bombs by locating the developed
surveillance system on some specific points on high ways and
at static control points in front of public buildings.

An HSI surveillance system for such an application on high-
ways and control points should explicitly address the following
challenges:

1) The reflectance conversions should be independent from
the white references, as it is not possible to expose the
position of the white references in a practical sustainable
system.

2) The detection performances should be independent from
time and date as much as possible. In contrary to the
related literature using only a few test images in laboratory
environment, the performances should be reported for a
wider range of images covering real scenes in daily light.

3) The system should address the detection of different forms
of explosives including granular or residual forms by

designing necessary experimental setup with proper GT
information, which is a challenging problem for residual
explosives due to the difficulties to determine the exact
pixels of the GT.

4) The main classes of target detection methods developed
in the HSI literature should be properly adapted to the
proposed surveillance system by deciding on the necessary
selections and modifications regarding the method param-
eters, target signatures, and background information.

The first two parts of this article, which are previously pub-
lished in a special issue of IEEE JSTARS in December 2019,
were on the state-of-the-art [1] and reflectance conversions [2]
for such a surveillance system. This article is therefore structured
as a follow-up and final part of this complete surveillance
system, which focuses on the detection of different forms of
explosives and the design of related experiments. To the best of
our knowledge as authors, the presented work is the first work
on an HSI surveillance system for explosive detection, which
holds the following conditions:

1) It proposes a complete technical framework from capture
and reflectance conversion to the target detection.

2) It designs various experiments for different cases of explo-
sives in real environment including granular and sprayed
residues, fingerprint residues, and explosive traces on
vehicles.

3) It develops an index-based method by utilizing the infor-
mation of various spectral bands of the targeted explosive
and reveals the most crucial spectral bands for detection.

4) It adapts and implements the signature-based and deep-
learning-based methods to the given surveillance frame-
work by using the spectral characteristics of the explosive
materials and the fixed background scene.

5) It presents and compares their detection performances by
means of the main merit of evaluation in target detection,
namely, P-R curves, which is not performed in the previous
literature.

The rest of the article is organized as follows. Section II
describes the details of the proposed framework. The adaptation
and implementation details of the main classes of target detection
methods to the proposed surveillance framework for explosive
detection are also presented in this section. Then, the designed
experiments are presented in Section III, which is followed by
the experimental results and comparisons in Section IV. The
discussions are given in Section V. Finally, Section VI concludes
this article.

II. PROPOSED HYPERSPECTRAL IMAGING SYSTEM AND

TARGET DETECTION METHODS

Fig. 1 illustrates the main stages of the proposed HSI system
for explosive detection [2]. The reflected light from the scene
illuminated by the sunlight first passes through the liquid crystal
tunable filter (LCTF). The spectral range between 900 and 1700
nm is scanned by the filter with a step size of 10 nm. The filtered
light at each frequency is captured by a broadband SWIR sensor.
The captured images at each frequency are then cascaded to form
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Fig. 1. General scheme of the proposed hyperspectral imaging system.

the spectral cube. This is followed by a preprocessing stage for
noise removal.

The captured radiance is transformed to reflectance values.
This conversion can be performed by using an incident radiance
of a white Spectralon in the scene, by using the previously
recorded radiances of the white Spectralon, or by using the
recorded reflectance values of the background in a surveillance
system with a fixed camera. All these options are discussed
and compared in [2]. The present article performs the standard
reflectance conversion by using the radiance of the white Spec-
tralon and black reference to compare the performance of the
proposed target detection method for the prepared experimental
setups for different conditions. Given the radiance of a pixel,
R(λ), the reflection conversion is realized as

r (λ) =
R (λ)−B (λ)

W (λ)−B (λ)
(1)

where r(λ) is the resulting reflectance, and W and B
are the spectral radiances of white and black references,
respectively.

The detection is performed on the reflectance cube at the last
stage. Inspired by state-of-the-art of hyperspectral target detec-
tion and classification methods, three approaches are adopted
for explosive detection on HSIs in the SWIR range. First of all,
in accordance with the widely utilized indexes in land cover
classification and mineral identification, such as water, vegeta-
tion, and hydrocarbon indexes, the absorption bands of explosive
chemicals are investigated for detection. Second, the widely
utilized spectral signature-based methods ranging from covari-
ance methods using background distribution to hybrid meth-
ods combining spectral matching with unmixing are adapted
and analyzed for explosive detection. Finally, the current trend
of deep-learning-based classification is explored for explosive

detection in addition to the conventional methods, such as sup-
port vector machines (SVMs).

The details of each detection approach are presented in the
following subsections by the following notation:

r = [r(λ1) r(λ2) . . . r(λp)]
T

s = [s(λ1) s(λ2) . . . s(λp)]
T (2)

where r and s denote the p-dimensional vectors corresponding
to the spectrum of a pixel and the reference spectrum of the
target, p is the number of spectral bands, and T is the transpose
operation.

A. Index-Based Methods

Index-based methods use specific bands where the spec-
tral characteristics of the target materials indicate significant
changes for identification. Typical examples of such methods
include normalized difference vegetation index [34], which
is defined in terms of the near-infrared band and the visible
red band, normalized difference water index [35], modifica-
tion of normalized difference water index [36], normalized soil
moisture index [37], and normalized soil difference [38]. Such
indexes are generally used for land cover and land use mapping
on the investigated regions.

Index-based methods are also considered in hyperspectral
explosive detection literature. As typical examples, an index-
based system operating in the LWIR range for detecting TNT
traces on car paints and aluminum is proposed by Fuchs et al.
[10]. The detection of TNT in the proposed model is achieved
by taking the ratio of the broadband images obtained for the two
tuned wavelengths of the laser source. One of these bands is
chosen in the TNT absorption band at about 1360 cm−1 and the
other outside this absorption band at about 1320 cm−1. Another
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Fig. 2. Spectral signature of ammonium nitrate recorded with ASD
spectrometer.

method is presented by Bernacki and Ho [12] for the detection
of RDX and Tetryl in the LWIR range. The proposed system
utilizes a pair of CO2 lasers, which are set to the absorption and
nonabsorption bands of RDX (∼9600 and ∼9250 nm). Similar
indexes are also proposed for passive identification of explosives
in the SWIR range [24].

Our proposed index-based method is based on the utilization
of not only a single ratio, but more than one ratio of the specific
bands of the target material. The method is tailored for the
detection of AN as one of the frequently encountered explosives
around the globe. The reflectance of AN is presented in Fig. 2.
The selected bands for the ratios are λb1= 1030 nm, λb2= 1060
nm, λb3= 1280 nm, λb4= 1350 nm, and λb5= 1550 nm. These
bands correspond to reflection or absorption bands where AN
exhibit its characteristic chemical properties. The model works
with the assumption that the ratios between different bands
should be similar on different occasions.

The algorithm is based on whether the following ratios of
the bands for each pixel of the HSI is within a predetermined
interval of the ratios of the AN spectrum recorded with an ASD
spectrometer:

th1a <
r(λb2)

r(λb1)
< th1b, th2a <

r(λb2)

r(λb3)
< th2b (3)

th3a <
r(λb4)

r(λb3)
< th3b, th4a <

r(λb4)

r(λb5)
< th4b.

Given the HSI, the algorithm first computes the ratios
given in (3) for each pixel. The ratio image for each of
the given four cases is binarized by simply assigning one
to the pixels whose ratios are between the given thresholds,
and assigning zero to the other pixels. For each threshold
combination given in (3), the final image is obtained by
applying AND operator to all resulting binary images. In order
to generate the P-R curve for the given algorithm, the thresh-
olds (th1a, th1b, th2a, th2b, th3a, th3b, th4a, th4b) are swept
between a minimum and maximum interval in the neighborhood
of the GT ratios calculated from the AN spectrum.

B. Signature-Based Methods

Rather than the ratios of specific bands as in index-based
methods, signature-based target detection methods use the ad-
vantage of the whole spectrum for detection. Until now, the
signature-based methods have not been extensively utilized for
the practical application of explosive detection in the outside
environments. This article, therefore, focuses on the potential
of different classes of signature-based detection methods for
the purpose of explosive detection in ground-based surveillance
systems.

Signature-based target detection methods can be classified
into four classes [39], [40]. The similarity of the vectors is
investigated in the first class of methods, which involves cross-
correlation, normalized cross-correlation, and spectral angle
mapper (SAM) [40]. Matched filter [41], adaptive coherence
estimator (ACE) [42], and constrained energy minimization [43]
can be categorized in the second class, which applies the corre-
lation operation by suppressing the outputs for the background.
The main difference between these methods is the different
usage of mean and covariance matrices for the background
modeling. The orthogonal subspace, which eliminates the effects
of the endmembers forming the background during the matching
operation, is used in the third-class methods [39], [44]. As a
final class, hybrid methods [45] combine the outputs of the
unmixing algorithms with the results of the correlation-based
detection methods. In order to utilize these methods during
the experiments, one representative is selected for each class,
namely SAM, ACE, orthogonal subspace detector (OSP), and
hybrid structured detector (HSD), for the mentioned four class,
respectively. The selected algorithms can be briefly described as
follows.

Let r and s denote the p-dimensional vectors corresponding
to the spectrum of a pixel and the reference spectrum of the
target as defined in (2). The angle between two spectral vectors
is obtained as

θ = arccos

(
rTs

|r| |s|
)

(4)

which gives the SAM metric [28]. The similarity between the
two vectors is high when the angle is small in (4). SAM metric
ensures a more robust evaluation due to its invariance to scaling
compared to the mean square error metric. On the other hand,
the background information is not utilized during the detection
as one of its lacks.

The background information is exploited in the ACE algo-
rithm [29] while assigning a score to each pixel

TACE (r) =
(sTC−1r)(

sTC−1s
)
(rTC−1r)

(5)

where C represents the covariance matrix of the background.
Such a formulation suppresses the effect of the background
pixels while maximizing the output for the target s.

The suppression of the background is also achieved in the
OSP detector [39] by transforming the spectra of the pixels to
an orthogonal subspace of the background components. If the
matrix containing the background spectral signatures is denoted
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as b, then the projection matrix, P⊥
b , which is used to map the

spectral pixels to the orthogonal subspace, is defined as

P⊥
b = I − b(bT b)

−1
bT . (6)

To obtain the OSP score for each pixel, this projection matrix is
applied to the spectrum of each pixel, as

TOSP (r) =
sTP⊥

b r

sTP⊥
b s

. (7)

As it can be seen from (6) and (7), if r is one of the background
components, then the result of the OSP would converge to zero.

For the HSD algorithm [45], the analysis of the scene
is performed both physically and statistically by combining
the unmixing with the signature-based methods to achieve a
more robust detection performance. The unmixing method and
detection algorithm are selected as fully constrained least
squares [46] and adaptive matched subspace detector [45] in
this method, respectively. The HSD method can be formulated
as

THSD (r) =
(r− α̂bb)

TΣ−1 (r− α̂bb)

(r− α̂e)TΣ−1 (r− α̂e)
(8)

where e matrix contains the background and target signatures,
α̂ is the vector containing the abundances of all endmembers,
and α̂b is the abundance vector of background signatures. The
subtraction of the background components from the test pixels
after modulation with the found abundances using unmixing is
the main idea of the HSD method.

In the implementation of the abovementioned algorithms,
the reference spectrum of the target, s, is measured with the
ASD spectrometer before the experimental setup is constructed.
After the capturing and reflectance conversion of the HSIs, the
covariance matrix, C, is computed over all the pixel spectra of
the HSI. The background matrix, b, is formed by selecting a
number of representative pixel spectra from the background of
the captured scene. Depending on the scene and located position
of the surveillance camera, these could be asphalt, concrete, soil,
metal board, and other typical components.

C. Learning-Based Methods

The third group of methods investigated in this article is the
learning-based methods for the purpose of explosive detection.
While the signature-based methods use the spectral signatures of
the target materials captured by a spectrometer, learning-based
methods aim to detect the target materials by learning a model
from the previously captured controlled data in the same scene.
To this end, the performances of both conventional and state-of-
the-art methods are investigated.

Support vector machine (SVM) is selected as the well-known
conventional machine-learning method since it has better per-
formance with its learning capability by using a small number of
samples compared to the other statistical classification methods.
SVM has been applied to different HSI analysis tasks, such as
land cover classification [47], target detection [48], unmixing
[49], and physical parameter estimation, such as temperature

[50] and emissivity [51]. In this article, SVM is utilized for
explosive detection as a two-class classification method.

The second method is selected from the state-of-the-art deep-
learning-based methods. This recent trend of HSI classification
uses hyperspectral pixels individually or as a patch, which cor-
responds to 3-D cubes. The performance of this latter approach,
which is generally treated under the convolution neural network
(CNN) structure, has been proved to be more successful than
the algorithms using only pixel spectra [52], [53], [54]. As an
example, Li et al. [52] proposed to use a CNN-based classifi-
cation method obtained by a fully connected layer behind two
3-D convolution layers. Similar to these methods, Lee and Kwon
[53] and Hamida et al. [54] also utilize CNN-based models for
hyperspectral classification.

Different from these studies on the application of CNNs and
graph convolutional networks (GCNs) for HSI classification,
there are also studies which investigate fusion strategies be-
tween CNNs and GCNs to address the limitations of single
models in HS image classification [55]. Another study, referred
as general multimodal deep-learning (MDL) framework [56],
aims pixel-level classification by combining pixel-based and
spatial–spectral classification. Various modules are examined
for fusion within the proposed MDL–RS Framework [56].

Finally, a target-detection-based method, UIU-Net, which is a
novel framework for detecting small objects in infrared images,
is introduced by Wu et al. [57]. UIU-Net incorporates a small
U-Net into a larger U-Net backbone, allowing for multilevel and
multiscale representation learning. The proposed method estab-
lished promising results in small object detection, demonstrating
its effectiveness and generalization capabilities.

By considering both speed and performance comparisons
in the experiments, the Hamida model [54] is chosen to be
employed in the proposed HSI surveillance system for explosive
detection. Without loss of generality, the other networks can also
be adapted to the given framework after necessary modifications.
The training and testing of the utilized methods are performed
by considering the main characteristics of a surveillance system
such that the camera is fixed and records the same scene at
different times. More particularly, an experimental setup involv-
ing a target explosive is constructed for capturing. The scene
is then captured at different days from the same position. The
data captured on one day are used for training and the data on
the other day for testing. In order to form the labeled data for
the target class, the GT positions of the granular explosives are
determined delicately by using a higher resolution RGB camera.
The labeled data for the background class is randomly selected
from different positions.

Radial basis function (RBF) kernel is utilized in the imple-
mentation of SVM. In order to adapt the Hamida deep-learning
model [54] to the given framework, a 3 × 3 × N cube is
generated for each hyperspectral pixel by using its spatial 3
× 3 neighborhood. The label information of the middle pixel
is preserved for the generated cubes used for training. Then,
the training is performed with a deep-learning model formed of
four 3-D convolution layers, two pooling layers, and one fully
connected layer. The parameters of the model for each layer
are given in Table II. The number of parameters in the given
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TABLE II
PARAMETERS OF THE UTILIZED DEEP-LEARNING MODEL

network varies according to the number of spectral bands in the
hyperspectral cube. In this relatively small network structure, an
81-band hyperspectral cube has 68 962 parameters. Considering
that the 3 × 3 neighborhood of each pixel is taken into account,
the total number of computations increases depending on the
number of pixels. The optimization algorithm in the implemen-
tation is selected as Adam’s optimizer. The parameters of the
training process are decided as 256 for the batch size, 0.001
for the learning rate, and 0 for weight decay. The process is
performed over 10.000 epochs and no learning scheduler was
used. The trained model is then tested with the hyperspectral
data captured on a different day.

III. EXPERIMENTAL SETUP

Four different experiments are constructed for the perfor-
mance evaluation of the proposed explosive detection methods
for varying conditions including granular explosives, sprayed
explosive residues, fingerprints, and real case scenarios for
vehicles.

A. Experiments With Granular Explosives

The experimental setup for the performance evaluation on
granular explosives is illustrated in Fig. 3(a) [2]. A broadband
SWIR sensor (900–1700 nm) is utilized for the acquisition,
which is cascaded with a VariSpec LCTF. The hyperspectral
cubes are formed as described in Section II. The size of the
hyperspectral cubes is 322 × 640 × 81, where the dimensions
refer to the width, height, and number of spectral bands, respec-
tively. The spectral step size is 10 nm during capturing. Solid
AN samples are used in the scene as the target explosives. The
number of AN pixels in the GT position is about 1900. The same
number of background pixels are utilized during the training of
utilized deep-learning model for a balanced training between
two classes.

The scene also includes a white Teflon, a standard Spectralon
of 90° orientation with respect to the horizontal axis of the
camera, another Spectralon with an orientation of 45°, and black
object, which are utilized for reflectance conversion. Among dif-
ferent methods for reflection conversions [2], the conventional

Fig. 3. (a) Experimental setup for solid explosives, and sample broadband
SWIR images captured on (b) 13th October, (c) 18th October, (d) 3rd November,
and (e) 16th November [2].

TABLE III
TIMES AND DATES OF THE IMAGE ACQUISITIONS AND WEATHER CONDITIONS

[2]

one which uses the white Spectralon and black object in the
incident scene is adopted in the experiments as described in (1).
The acquisition of the HSIs is performed at different times and
dates in a period of about one month as illustrated in Table III
[2]. The acquisition was begun at about 10:30 and continued at
every hour until 15:30. The camera distance was about 8 m. The
weather was clear or slightly cloudy.

B. Experiments for Sprayed Explosive Residues

The next experiment is designed to investigate detection per-
formances for sprayed explosive residues on the metallic body of
a vehicle. Different aspects, such as the performances of different
algorithms for sprayed explosives and the effect of the color
paint and density, are considered for the investigation. Therefore,
the metal plates are painted with five different car paints. The
liquid AN solution, which is simply prepared as mixing solid
AN with alcohol at a rate of 250 g/L, is sprayed homogeneously
onto the colored metal plates in different amounts. Then, the
performances are evaluated after the solution residues dry.
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Fig. 4. (a) Experimental setup for sprayed explosive residues which are
densely sprayed (upper left side), sparsely sprayed (upper right side), and
nonsprayed regions (bottom side), and (b) sample broadband SWIR image.

Fig. 5. (a) Designed template to determine the location of fingerprint residues
on the metal plate as ground truth. (b) Sample broadband SWIR image of the
prepared setup for fingerprint experiment.

Fig. 4 illustrates the setup for the experiments. Three regions
on each metal plate, namely, dense sprayed (upper left side),
the sparse sprayed (upper right side), and nonsprayed regions
(bottom side), are utilized for the comparisons. One important
challenge during the experiments for the sprayed explosive
residues is to determine the GT locations as the chemicals are
accumulated nonuniformly after they dry. Therefore, the detec-
tion performances are inspected visually instead of P-R curves.
This challenge for the quantitative performance evaluation of
explosive residues is handled by designing a more rigorous
experiment in the next section for fingerprint residues.

C. Experiments With Fingerprint Residues on Metal Surfaces

The scope of the proposed experiment covers the detection
of fingerprint residues since fingers contacted with explosive
materials can leave traces on the transported vehicles. The
usage of P-R curves is challenging to evaluate the detection
performances for fingerprints as it is difficult to determine the
exact pixels in the GT. Therefore, a suitable setup as a 2-D array
of fingerprints on a metal surface is prepared and a methodology
for proper measurement of detection rates and false-positive
rates is developed over the number of found fingerprints and
the total number of fingerprints.

The experimental setup for the fingerprints on metal plates is
illustrated in Fig. 5(a) and (b). First, a template which constitutes
50 rectangles is prepared using black tape. The template is
attached to the white metal plate in order to determine the
exact location of the fingerprints. The fingers that are exposed
to the AN solution are then contacted to the metal plate inside

Fig. 6. Experimental setups for sprayed explosive residues with (a) distance
(∼7 m) and (b) distance (∼15 m).

Fig. 7. Experimental setups for two different solid explosives (AN, RDX) on
the same scene. The distance to the vehicle is about 7 m.

every rectangle. After they dry, the resulting fingerprints inside
each rectangle are used together instead of individual pixels to
determine detection performance.

For this purpose, the approximate size of the fingerprints is
determined. The number of detected pixels at a threshold value
is counted inside a sliding window, whose size is determined
according to the approximate size of the fingerprints. If the rate
of the detected pixels is greater than the predetermined value,
then it is accepted that the target is present. If the detected areas
are inside the rectangles (Fig. 5), then they are assumed as true
positives. If not, they are assumed as false positives. The P-R
or receiver operating characteristics curves can then be obtained
by applying these operations for each threshold value.

D. Real Case Scenarios on Vehicles

The detection of explosive residuals on vehicles was one of
the main targets of the performed research. Therefore, some
example setups from those tests are also presented here. The
first case, which is illustrated in Fig. 6(a) and (b), is designed by
touching the hands with the AN solution and then pressing hands
onto the car’s trunk. The performances of different algorithms
for two different distances are evaluated. As the second case, the
solid AN and RDX are applied onto the car’s trunk as shown
in Fig. 7. The capability of different algorithms for a scene
composed of different explosives is investigated.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

The performances of the index-based, signature-based, and
learning-based target detection methods are compared for the
designed experiments both visually and in terms of P-R curves.



KÜTÜK et al.: GROUND-BASED HYPERSPECTRAL IMAGE SURVEILLANCE SYSTEM FOR EXPLOSIVE DETECTION 8755

Fig. 8. (a) Sample broadband SWIR image, (b) ground truth image for the experiment of solid explosives, (c), (d), (e), and (f) score images obtained for SAM,
OSP, ACE, and HSD algorithms, respectively.

In order to obtain the P-R curves, the score image for a de-
tection algorithm is thresholded and the pixels greater than the
threshold are labeled as target pixels. The precision is computed
by dividing the number of correctly found pixels by the total
number of labeled pixels. The recall is computed as the ratio of
the correctly found pixels to the total number of pixels in the
GT. The ultimate P-R curve is obtained by calculating the P-R
values by changing the threshold value between the minimum
and maximum in the score image.

Without loss of generality, the adopted strategy, namely P-R
curves over pixels, is the baseline and standard performance
evaluation to assess the performance of the methods and overall
system. This is applied to all the detection methods for a fair
comparison. After the detection over pixel levels, the false-
positive rates can be decreased with the decision over more
pixels depending on the targeted application. These selections
are dependent on the targeted application and the risk of missed
detection and cost of false detection. The next subsections
present the results for each of the designed experiments.

A. Experiments and Comparisons for Solid Explosives

The algorithm comparisons are first presented in this sec-
tion beginning with the signature-based methods. Fig. 8 shows
the GT and the results of the signature-based target detection
algorithms for the dataset prepared for the detection of solid
explosives. The target detection performances for the four rep-
resentatives of different signature-based detection algorithms
(Section II-B), which are selected as SAM, OSP, ACE, and HSD,
are presented in the figure. It should be noted that the scores for
the algorithms OSP, ACE, and HSD are directly proportional
with the similarity between the pixel spectrum and target spec-
trum while it is inversely proportional in the case of SAM. The
SAM algorithm separates the target pixels from other materials
as illustrated in Fig. 8(c) with black regions. However, there are
also some false alarms in the background. The score map of the

Fig. 9. Precision–recall curves for different algorithms. Average precision
values are 0.825, 0.757, 0.712, 0.598, and 0.268 for HSD, ACE, OSP, index-
based, and SAM, respectively.

OSP algorithm shows that the background is suppressed and the
false alarms are lower than the ones in the case of SAM. The
false positives are also apparent in some background regions on
the score map of the ACE algorithm. On the other hand, the HSD
algorithm performs the background suppression better than the
other algorithms due to the combination of unmixing and the
signature-based target detection algorithms.

In order to evaluate the quantitative performances of these al-
gorithms, P-R curves which are obtained by using the GT image
are presented in Fig. 9. The best performance while interpreting
P-R curves is accepted as the closest point to the right-top side of
the curve, which gives the high precision and high recall values.
The average precision over all recall values is regarded as another
indicator of the detection performance. In this context, we have
observed that the HSD algorithm gives the best performance
in terms of both indicators. The HSD algorithm is followed by
the ACE algorithm especially with the lower precision values
at higher recall values. Another observation is the degradation
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Fig. 10. Resulting score image for index-based method.

TABLE IV
SPECIFIC PRECISION AND RECALL VALUES FOR DIFFERENT ALGORITHMS

in the performance of the SAM algorithm due to the lack of
background modeling producing a high number of false alarms
in the background. The remaining tests are presented for only
the HSD and ACE algorithms due to their better performances.

Another aspect of the experiments is the performance of
index-based methods given in Section II-A. Index-based meth-
ods aim to determine the target using the ratios in different
bands. The band ratios obtained from the spectral signature
captured with the ASD spectrometer are used as the GT ratios
in order to form the P-R curve in Fig. 9. Compared to the other
signature-based and learning-based methods, the performance of
index-based method is lower, in particular, for the cases where
high precision is required. However, the proposed index-based
method is still quite efficient when recall values higher than 90%
are required.

Fig. 10 shows the final image which is obtained by the multi-
plication of the pixels that satisfy four different ratio information
given in Section II-A. The AN regions are quite prominent in the
final image. When the ratio information is examined separately
in our visual analysis, it is observed that the fourth ratio in the
index-based method has a higher effect than the others. In regard
to the utilized bands for the fourth ratio in (4), the spectral range
of (1350–1550 nm) is the most distinctive region of AN with
respect to the background. The detection performance for each
ratio information is quite low. However, when ratio information
is fused together, their performance is getting higher.

Table IV presents the P-R values returned by the (deep)
learning-based algorithms. In order to have a consistent compar-
ison with learning-based algorithms which detect targets with
high precision values, the results for the index and signature-
based methods are also presented in Table IV for the case where
precision values are higher than 90%.

Although it is generally desired to reach high P-R values
in target detection algorithms, it might also be necessary to
make a choice between P-R values. For instance, if the target is
highly risky as in the case of bombings, it is desirable to have a
quite high recall value or inversely, a very low missed detection
rate. Therefore, the performances where the recall values are
higher than 90% are also included in Table IV. The final images
obtained with the algorithms for the given P-R values in Table IV
are shown in Fig. 11. While presenting the resulting binary
images, the threshold is selected as the value, which gives the
closest precision value to 0.9 in Fig. 9.

As can be revealed from the table, the recall values of learning-
based methods (SVM, Hamida, fully connected network) are
quite low. However, the ultimate precision values are in the range
of 84%–98%. While the fully connected network achieves 84%
of the precision rate, the recall value is as low as 17%. On the
other hand, Hamida and SVM methods give similar P-R perfor-
mances. When these learning-based methods are compared with
the HSD algorithm, the HSD algorithm obtains much higher
recall values in similar precision values. HSD algorithm first
applies unmixing to the data to eliminate the background com-
ponents. These background components are subtracted from the
hyperspectral pixels with respect to their abundances. Therefore,
the separation of background components from hyperspectral
pixels provides a better correlation with the GT target signature.

B. Experimental Results for Sprayed Explosive Residues

The results of the experiment designed for the sprayed
explosive residues are shown in Fig. 12. As it is not possible
to precisely determine the GT pixels after they dry, the results
are only evaluated visually. It can be inferred from the results
that the algorithms are compatible with the results of solid ex-
plosives. Although the ACE algorithm returns the higher values
for the target pixels, there are a lot of noisy pixels from the
background. HSD algorithm suppresses the background noise
more successfully. In particular, it indicates noticeable results to
detect the mixed pixels which consist of metal plates and sprayed
explosive residues. The dense sprayed parts are detected better
in all algorithms than the sparse sprayed parts, as expected.

C. Experimental Results for Fingerprints

The experimental results for fingerprints are crucial to evalu-
ate the detection performances for the proposed system.

The main effort in these experiments is to overcome the
problem of creating GT data. Although we have designed a
regional pattern to bound the GT, the fingerprints do not fill the
regions. Therefore, we have decided to apply postprocessing
as explained in Section III-C. In more detail, if the number
of positive pixels in a sliding window is greater than 20% of
the 8 × 8 area, then the target is assumed as present. The true
positive, recall, and false-positive values are computed by using
the GT information by repeating this windowing operation for
each threshold level. The false-positive rates, when the recall
value is maximum, are given in Table V. Fig. 13 gives also the
visual results for the detected fingerprints along with the GT.
Accordingly, HSD and ACE algorithms reveal high detection
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Fig. 11. (a) Ground truth and detection results for (b) Hamida, (c) fully connected neural network, (d) SVM, (e–f) index-based method (precision > 0.9 and
recall > 0.9, respectively), and (g–h) HSD (precision > 0.9 and recall > 0.9, respectively).

Fig. 12. (a) Sample broadband SWIR image for the experiment of sprayed
explosive residues, (b) and (c) score images obtained for ACE, and HSD
algorithms, respectively, and (d) thresholded HSD score image.

TABLE V
FALSE-POSITIVE RATE WHEN THE RECALL VALUE IS 100% FOR ACE AND

HSD FOR FINGERPRINT EXPERIMENT

performances with low false-positive rates, as expected due to
their successful background modeling.

As another aspect of the experiments, we investigate the
effect of the number of the used bands on the target detection
performance in Fig. 14. The numbers of the utilized bands are

Fig. 13. (a) Ground truth image, (b) HSD score image, and (c) postprocessed
HSD score image.

Fig. 14. False positive-recall graph for different number of bands.
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Fig. 15. (a), (d) Sample broadband SWIR images for the captured hyperspectral image of the vehicle with explosive residues on its trunk from about 7 and 15
m, respectively, (b) and (e) score images obtained for the ACE algorithm, (c) and (f) score images obtained for HSD algorithm, and (g) and (h) thresholded HSD
score images for both scenes, respectively. The dashed regions indicate the positions where the hands with the ammonium nitrate solution are touched.

selected as 5 and 11 in the same wavelength interval, in addition
to the original number of bands, which is 21 in the previous tests.
The experiment reveals that 11 bands give comparable results
to the case of 21 bands by reaching the maximum recall value
with the same false-positive rate, which is at a very low level
around 0.005%. On the other hand, when five bands are used,
the detection performance drastically decreases. According to
these results, at least 11 bands are necessary to achieve sufficient
detection performances.

D. Experimental Results for Real Case Scenarios

The last experiments in the performed research are to
investigate the performance of the proposed algorithms in two
different real case scenarios. Fig. 15 shows the detection results
for ACE and HSD for the case when hands with the sprayed
explosive residues are pressed on the trunk of the car. Compared
to the ACE, the HSD algorithm is quite successful in detecting
residuals on the trunk of the car. However, there are some false
positives as individual pixels in the results. As also indicated
in the results for different distances, the false-positive rate
decreases when the car is getting closer to the hyperspectral
sensor.

Fig. 16 shows the detection results for the other case where
solid explosive residuals are pasted on the car trunk. AN and
RDX are selected as explosives for this experiment. Both of the
algorithms detect the AN and RDX residuals successfully as
indicated in the figure.

Fig. 16. (a) Sample broadband SWIR images for the experiment of real case
scenario, (b) and (c) ACE score images obtained for AN and RDX, respectively,
and (d) and (e) HSD score images obtained for AN and RDX, respectively. The
dashed regions indicate the positions of AN and RDX in the figures.

V. DISCUSSIONS

We have investigated different aspects of the proposed HSI
surveillance system in the discussions. As there is not end-
to-end HSI surveillance system proposed for explosive detec-
tion until now, we have encountered various challenges to be
addressed from the beginning to the end of the performed
research. One of the first concerns for the success of the
system was to design the correct experimental setups for the
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detection of explosives, which can be found in bulk, granu-
lar, or residual forms depending on the targeted application.
For this purpose, we prepared four different experimental se-
tups for the detection of granular explosives, residual explo-
sives, fingerprints residues on metal surfaces, and residues on
vehicles.

While the previous literature on explosive detection mainly
concentrates on laboratory solutions, they were mostly
analyzing the detection performances by visually checking the
score images and/or comparing the pixel spectra at GTs with
the spectral signatures of the targeted explosives. However,
our main aim in this article was to adapt and compare the
detection performances of the three main class of hyperspec-
tral target detection methods for explosive detection and to
reveal the best one in the context of a surveillance system.
Therefore, we have preferred to realize the performance evalua-
tion by means of P-R curves as the standard evaluation in signal
detection.

While comparing the performance comparison of three main
classes of methods, a successive approach was adopted to arrive
concise conclusions without losing the main focus among many
possibilities. To this end, we have first revealed the choices for
the selected bands in index-based methods. Then, the perfor-
mances of index-based methods and the main signature based
methods, namely SAM, ACE, OSP, and HSD, are compared
in terms of P-R-curves. After revealing that HSD is the best
method among signature-based methods, the comparison is fur-
ther performed with the learning-based methods over specific
P-R values in the last analysis. As indicated in Table IV, the
hybrid detector has provided better performance in terms of
P-R than the learning-based methods. The lower performances
of the deep-learning-based methods can be linked with the
insufficient data for learning at the current stage. However, these
performances can be improved with the more data for HSI-based
systems as in other detection and classification applications in
future.

During the development of the performed research on hy-
perspectal image surveillance system for explosive detection,
the first stage was to collect a spectral library of the targeted
explosives with an ASD spectrometer. The list includes about
25 explosives, such as AN, ANFO, TNT, RDX, A4, C3, C4,
and others. We observed that most of the spectral signatures
of explosives can be categorized into two classes as AN class
and RDX class explosives, due to their similar characteristics,
especially in the spectral range of 1500–1700 nm. While there is
only one dip around 1550 nm for the AN class (AN, NitroMac,
and AN compounds, such as ANFO and AN–sugar compound),
there are two dips around 1650 nm for the RDX class (RDX, A4,
C3, C4, and TNT). Therefore, we selected two representatives
as AN and RDX from these explosive materials and designed an
experiment that includes both of these explosives. In addition,
we should also mention that we have given priority to AN-based
explosives in the other experiments, as AN and ANFO was the
most frequent explosives encountered in the related events in
Turkey.

A question for a general deployment of the proposed system
was to reveal the minimum number of bands and the important

spectral regions for the performance of detection. Fig. 14 has re-
vealed that the number of bands can be decreased down without
a significant loss in recall values. In addition, our experiments
on index-based and signature-based methods have indicated that
the spectral range of 1500–1700 nm is the most important region
that discriminates the explosive, such as AN and RDX, from the
background spectra.

A complementary aspect of all the comparisons is the com-
putational complexities of the proposed approaches. Table VI
gives the implementation times of the proposed algorithms at a
computer with 16 GB RAM and Intel i7-6700 CPU 3.4 GHz.
Without loss of generality, the complexity of the index-based
method can be regarded as O(N × k), where N is the number
of pixels in the captured HSIs and k is the number of ratios
computed for each pixel. The number of ratios is 4 in the pro-
posed algorithm. The computation of the covariance matrix of
size p× p in ACE algorithm has the complexity of O(N × p2),
where p is the number of spectral bands. Note that the given time
in the table also includes the inverse operation for covariance
matrix during the implementation. The complexity of matching
operation in ACE involves a multiplication of a row vector
(1× p), a matrix (p× p), and a column vector (p× 1) for
each pixel. Therefore, its complexity is O(N × (p2 + p)). The
unmixing stage of HSD is computationally the most demand-
ing part among all the algorithms with its complexity O(N3)
[58]. This can also be verified with the given duration in the
table. The complexity analysis of deep-learning-based solutions
is a challenging task and newly being handled in the related
literature [59], [60]. Therefore, we have only sufficed with the
number of parameters for the utilized network (as stated in
Section II-C) and the duration for the testing of a query HSI in
Table VI.

Given the implementation times of the proposed algorithms
in Table VI, the index-based method can provide near real-time
performances in its current state. However, its detection per-
formances are behind the ACE and HSD. On the other hand,
although HSD is the best algorithm in terms of detection perfor-
mance, it requires further improvement by means of implemen-
tation on field programmable gate array (FPGA) and graphics
processing units (GPU). The duration of the deep-learning-based
method is also not suitable for a practical surveillance system in
present form. Considering the ultimate application, the proposed
system can be used at static control points to track car bombs for
the moment. However, there is still a room for a more generic
surveillance system to track the dynamic traffic on specific points
of highways.

As the final aspect, considering that the HSD, which combines
unmixing and signature-based detection, is the best method
among the compared methods, we have also explored whether
it can be further improved by means of improving the unmixing
part. For this purpose, we have adapted a new unmixing model,
namely, augmented linear mixing model (ALMM), to the un-
mixing part of HSD by means of utilizing the open code shared
by the authors of ALMM [61] and then, compared the results.
The thresholded score images and the P-R curves presented in
Fig. 17 have revealed that the conventional HSD with LMM is
giving better results than the ALMM-based solution. While the



8760 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE VI
IMPLEMENTATION TIMES OF THE PROPOSED ALGORITHMS

Fig. 17. Thresholded scoremaps for HSD with (a) LMM, (b) ALMM, and (c) precision–recall graphs for both cases.

precision values are very close to each other up to a recall value
of about 0.65, the precision of HSD with the ALMM algorithm is
getting worse than the one with LMM after this point. The results
have emphasized the importance of the unmixing part for the pro-
posed system, which requires more sophisticated analysis in the
future. In particular, the best mixing model among alternatives,
such as linear mixing model, ALMM, and nonlinear mixing
models [62], should be further investigated in future articles.

VI. CONCLUSION

Observing that current methods on HSI methods for explosive
detection are mostly tailored for laboratory environments, we
first present the challenges for HSI surveillance systems for
explosive detection in dynamic scenes in this article. Then, the
details of the proposed technical framework from capturing to
target detection are given along with the discussions on the
performances of different classes of detection methods for var-
ious experimental setups including granular explosives, liquid
sprayed explosives, and fingerprint residues on vehicle surfaces.
The experiments first indicate that the signature-based target de-
tection algorithms yield the best detection performances among
three main approaches including index-based and learning-
based methods. Considering that the hyperspectral-learning-
based methods are still in their initial phase, in particular, for
explosive detection, their performances can be improved by
further focusing more on training data, new learning strategies,
models, and tuning parameters. The index-based methods on the
other hand reveal the significance of some specific bands for the
detection depending on the chemical structures of the targeted
explosives.

Among signature-based target detection methods, the HSD is
found superior to its counterparts during the experiments as it
first applies unmixing on the pixel spectra and suppresses the
effects of the other components during the matching operation
in the detector side. The same conclusion has been observed in
all designed experiments including solid and sprayed explosive

residues. The last experiments on real cases have also indicated
that the two explosives on the same surface can be successfully
identified from standoff distances by the proposed system. In
addition, we have also observed that only 11 short-wave spectral
bands are necessary to achieve sufficient detection performances
in the tests.

The complexity analysis of the proposed methods has revealed
that index-based detection can achieve real-time performances.
ACE and HSD methods can also be used for practical systems
including static control points. However, the learning-based
method requires significant improvements in implementation
times. One of the future aspects of the performed research
will be the complexity reduction of the utilized approaches.
The usage of active sources at control points, the investigation
of bidirectional reflectance distribution functions for improved
detection, and the extension of the designed experiments for
other explosives will be the other aspects that we are planning to
focus in further stages of the proposed HSI surveillance system.
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