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Abstract—While various methods have been developed to esti-
mate the age of impact craters, such as the crater size frequency
distribution and morphology methods. Accurately and efficiently
estimating the ages of lunar craters using traditional techniques
is challenging due to their complex morphology and large number.
As a result, the accuracy of age estimation algorithms for meteorite
craters based on deep learning is restricted by factors such as a
scarcity of age-labeled data and the complex morphology of these
craters. To address these issues, this article presents an enhanced
double-branch network for estimating crater ages via semisuper-
vised learning and multisource lunar data. The algorithm con-
sists of three steps: semisupervised training data augmentation,
adaptive two-branch feature extraction, and a two-stage crater age
classification process. The effectiveness of the improved approach
was validated through ablation experiments, resulting in an overall
accuracy of 83.7% on the test set of meteorite craters. This is 5.2%
higher than the accuracy achieved by the previous deep learning
method.

Index Terms—Crater-age classification, double-branch network,
multisource lunar data, semisupervised learning.

I. INTRODUCTION

IMPACT craters dominate much of the lunar landscape and
represent the most ubiquitous surface feature on the Moon.

An accurate delineation of lunar crater chronology is paramount
to determining the absolute age model of the lunar surface
and the wider solar system. Furthermore, it holds significant
implications for both lunar exploration and the prospect of future
lunar resource utilization. In lunar chronology, one approach to
determine the geological age of a crater is through the crater
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size frequency distribution (CSFD), which reveals the relation-
ship between the number of impact craters per unit area and
their respective diameters. To estimate the surface age of a
given cell, the statistical frequency distribution of impact crater
size is compared against the known impact crater generation
function using either the cumulative distribution method or the
relative distribution method [1], [2], [3]. However, the presence
of secondary impact craters and degraded impact craters may
lead to fluctuations in the number of impact craters and biased
measurement results. The degradation state of the crater rim
can be used as an alternative method for estimating the age of
meteorite craters. Pohn and Offield [4] classified lunar craters
into three categories based on the initial rim top’s shape and
established corresponding freshness categories for each cate-
gory. Trang et al. [5] developed regression equations between
the three levels of crater freshness and absolute model age. He
calibrated the classification of the three freshness levels defined
by Pohn and Offield [4] to the absolute model age and derived
a transformation equation from crater freshness to the absolute
model age. Although the impact crater morphology method has
its merits, it is influenced by factors such as the uniformity of
impact crater size distribution, the geological process of the lunar
surface, and the solar incidence angle of the research base map,
which results in considerable labor. Because of the complexity of
the formation mechanisms of meteorite craters and the difficulty
of obtaining lunar samples, traditional methods or approaches
based on a single type of data to predict the age of these craters
may not yield accurate and timely results.

In recent years, deep learning techniques have been widely
applied in remote sensing image processing [6], [7], [8]. Con-
volutional neural networks (CNN) have gained widespread
recognition as a preferred choice in deep learning networks
for a range of applications [9], [10], [11]. The utilization of
ResNet50 by Firat and Hanbay [12] has proved effective in
the field of multispectral image classification. Similarly, Ye
et al. [13] introduced a remote sensing image classification
methodology that capitalizes on the lightweight VGG-16 model.
In a related study, Li et al. [14] presented a novel approach to
enhance multispectral remote sensing images affected by cloud
pollution, making use of the MobileNet architecture. In the
processing of sequence-based remote sensing data, recurrent
neural networks are frequently utilized to extract time series
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features [15]. In addition, graph convolutional networks can
capture the spatial relationship among image pixels, thus the
precision of node and graph classification can be improved
[16]. Fully connected networks consist entirely of convolutional
layers, which are able to preserve enough spatial information
and are suitable for pixel-level classification tasks [17], [18].
Multimodal deep learning methods can effectively solve the
problem of insufficient information in single-modal data, by
utilizing multiple remote sensing data sources such as optical,
spectral, and radar data, providing rich information pertaining to
ground objects [15]. Traditional deep-learning methods require a
substantial number of labeled training samples to extract sample
features. However, transfer learning has emerged as a promising
technique that reduces the cost of model training by leveraging
a pretrained model to solve a different but related problem.
Meanwhile, semisupervised learning has also gained attention
as a viable approach for pattern recognition tasks, as it utilizes a
significant amount of unlabeled data in conjunction with labeled
data to improve overall accuracy (OA). Transfer learning and
semisupervised learning have been successfully applied in the
absence of labeled samples [19], [20], [21] and achieved high
accuracy in predicting the age of lunar craters. Yang et al. [22]
proposed an innovative method that combines transfer learning
and deep learning for lunar crater age classification. First, they
effectively transformed the age estimation problem into a classi-
fication problem. Second, a dual-channel classification network
was constructed, in which one channel extracted features from
the lunar digital orthophoto map (DOM) data and the other chan-
nel extracted features from other attribute data. The extracted
features from both channels were then fused for classification.
Third, to address the issue of limited labeled samples, the authors
adopted a transfer learning strategy by utilizing the pretrained
weights obtained from ImageNet as the initial weights to prevent
random initialization. Moreover, Mean-Teacher semisupervised
learning was employed to utilize a large amount of unlabeled
data for preventing overfitting during training. The resulting
classification model achieved an average accuracy of 85.44%.
To the best of the authors’ knowledge, this is the first and only
study that has applied deep learning techniques to the task of
predicting the age of meteorite craters. The achieved accuracy
is considerable, marking a significant milestone in this research
field. Despite the notable progress achieved, there remain several
outstanding issues that warrant further investigation.

First, Mean-Teacher semisupervised approach, which intro-
duces varying perturbations to identical unlabeled data during
training to attain consistent predictions on the same sample
with distinct perturbations, utilizing unlabeled data to curb
overfitting during training and boost accuracy. With the advent
of additional semisupervised strategies in recent times, the uti-
lization of a significant quantity of unlabeled crater data has
become a crucial focal point for the advancement of crater age
estimation.

Second, as human exploration of the Moon continues, the vol-
ume of available lunar data is rapidly increasing. For example,
the Chang’e-1 (CE-1) and Chang’e-2 (CE-2) mission, which
launched in 2007 and 2010, utilized images from their CCD
cameras to produce high-resolution DOM of the full Moon at

500, 120, 50, 20, and 7 m scales [23], [24]. The clementine
probe’s ultraviolet-visible (UVVIS) camera, equipped with three
spectral filters, can be used to generate a color-scale mineral
map of the Moon [25]. The U.S. Geological Survey (USGS)
combined data from six Apollo missions to create a compre-
hensive geological map of the Moon [26]. These datasets offer
significant insights into the lunar surface, including the ability
to estimate the age of lunar craters, yet few studies have fully
exploited their potential. How to effectively use the multisource
data to improve the accuracy of lunar crater’s age prediction still
needs to be further investigated.

Therefore, this study aims to design a semisupervised learning
method that can leverage a large amount of unlabeled data and
a meteorite crater age classification model that can integrate
multiple sources of data. The main contributions of this work
are as follows.

1) We present an adaptive dual-channel classification net-
work to extract features based on multisource data. In the
feature layer, different from existing studies that fuse the
features directly, an adaptive strategy is adopted. At the
decision level, the crater classification process is initially
partitioned into two stages, and then the Dempster-Shafer
(D-S) theory is employed to combine the classification
results of different networks.

2) This study first integrates multiple sources data, such as
DOMs, multispectral images, as well as other morpho-
logical and geological feature data, for the purpose of
estimating crater ages.

3) A labeled data augmentation algorithm based on a semisu-
pervised learning strategy is presented. Unlabeled data
with high confidence is selected to incorporate pseudola-
bels for training purposes. The confidence of the unlabeled
data is determined by measuring the similarity between the
unlabeled eigenvector and the eigenvector of the labeled
data.

The rest of this article is organized as follows. In the Section II
“Data,” we present an overview of the experimental data that
we utilized in our study. Section III “Methodology” outlines
the method framework. In Section IV “Experiment and Anal-
ysis,” we present the experimental framework. In Section V
“Discussion,” we compare and analyze the prediction results of
individual samples. In Section VI “Conclusion,” we summarize
the proposed method and the key findings of our study and
outlined potential avenues for future research.

II. DATA

This study utilized data from multiple sources, including
DOMs generated by the Chang’E1 and Chang’E2 cameras, as
well as five-band spectral image data obtained from the Clemen-
tine UVVIS camera. In addition, we obtained 1675 labeled lunar
crater data and 6953 unlabeled lunar crater data from the Lunar
and Planetary Institute’s (LPI) 2015 data release [27]. The lunar
geological data employed in this study were sourced from the
USGS 1:5000000-scale geological map of the Moon published
in 2013. For a more comprehensive description of the data
sources used in this research, please refer to Table I.
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TABLE I
DETAILED INFORMATION OF THE DATA

Fig. 1. Crater data processing process.

The data processing procedure is illustrated in Fig. 1. The
longitude, latitude, and radius information of the craters in the
crater database released by LPI is used to obtain the labeled
and unlabeled crater locations and their ranges. Subsequently,
the DOM and the multispectral image for each impact crater
are separately extracted from the full Moon DOM and full
Moon multispectral image based on the boundary range of
each impact crater. The crater was fused with the multispectral
images. Additionally, 40 crater-shape information attributes,
including diameter, rim-to-interior depth, and interior volume,
that cannot be extracted from the DOM were obtained from LPI.
Furthermore, the content ratio of each lunar crater was derived
from 1:500000 Lunar Geological Restoration map published by
the USGS for 38 geological objects.

III. METHODOLOGY

Fig. 2 depicts the CNN-based algorithm for estimating the age
of lunar craters using semisupervised learning. The algorithm
consists of three parts: data augmentation via pseudolabeling of
unlabeled data using nearest neighbor method in semisupervised
learning, an adaptive dual-channel feature fusion module, and a
two-stage crater classification algorithm.

Fig. 2. Network structure diagram.

A. Data Augmentation Based on Semisupervised Strategies

The labeled data augmentation method, based on a semisu-
pervised learning strategy, involves incorporating pseudolabeled
data during training [28], [29], [30], [31], [32]. Craters sharing
similar morphology and geology are typically indicative of the
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Fig. 3. Data expansion strategy.

same period. To assess the similarity in morphology and geo-
logical material content between unlabeled and labeled data, we
define image feature confidence and attribute feature confidence
for the unlabeled crater data. We select unlabeled data with
high confidence and assign them pseudolabels. The similarity
between samples is computed using the Hierarchical Navigable
Small World Networks algorithm [33]. This algorithm constructs
a hierarchical graph using skip lists composed of linked lists.
The initial layer is created using a random subset of nodes, and
subsequent layers establish connections with the nodes from
the previous layer by incorporating a subset of nodes from the
remaining pool until the final layer encompasses all nodes.

A total of 1337 lunar impact craters, including those with age
labels, and 6953 craters without age labels, were selected from
the Lunar Planetary Institute (LPI) crater database. Fig. 3 depicts
the process of the label data augmentation technique. The pro-
posed algorithm utilizes both lunar impact crater image data and
attribute data. The image data consists of fused DOMs and mul-
tispectral images. The crater attribute data includes general at-
tributes and geological information. The ResNet50 and the CNN
network proposed by Zhang et al. [34] are utilized to extract
image feature vectors and attribute feature vectors from image

data and attribute data, respectively. Feature centroid vectors for
both image and attribute features are obtained based on labeled
crater feature vectors. The feature vectors of the unlabeled data
are then used to construct nearest neighbor graphs for both image
and attribute features. In these graphs, the vertices represent the
feature vectors of unlabeled samples, and the edges represent
the distances between these vertices. The distances between the
unlabeled image feature vectors and the image feature centroid
vectors are computed to obtain image feature confidence scores.
Similarly, the distances between the unlabeled attribute feature
vectors and the attribute feature centroid vectors are computed
to obtain attribute feature confidence scores. The fusion feature
confidence score is obtained by combining the image feature
confidence score and the attribute feature confidence score.
Unlabeled samples with high fusion feature confidence scores
are selected and assigned labels. To improve the reliability of
the sample selection process, a dual-constraint approach is em-
ployed, giving priority to samples with high confidence scores
for both image and attribute features.

B. Feature Extraction Network

This study employed two types of data: lunar crater image
data and lunar crater attribute data. The CNN model proposed by
Zhao et al. [36] was used to extract lunar crater attribute features.
By leveraging end-to-end learning, CNN can automatically
learn optimal feature representations, which is advantageous
for handling complex textual data. In addition to the standard
CNN architecture, dropout layers were incorporated to mitigate
overfitting by temporarily discarding certain neural network
units during training.

Given the diverse and intricate nature of lunar crater images,
we aimed to capture more comprehensive feature representa-
tions by leveraging the strengths of different networks. There-
fore, we selected ResNet50, MobileNet, and VGG16 to extract
lunar crater image features. ResNet50 is a deep residual network
that effectively addresses the problems of gradient vanishing
and information loss, enabling better capture of fine-grained
image details. MobileNet is a lightweight network that pri-
marily focuses on learning low-level and fine-grained image
features, demonstrating good perception capabilities for edges,
textures, and colors. VGG16, on the other hand, primarily learns
high-level and abstract image features, allowing for the capture
of more complex image characteristics such as shape, texture,
parts, and contextual information. By leveraging networks with
distinct characteristics, our approach aims to capture features at
different levels and perspectives, thereby enhancing the accuracy
and robustness of classification. The network structures of some
of the networks are presented in Fig. 4.

C. Adaptive Two-Channel Feature Extraction Model

The current study presents a novel self-adaptive dual-channel
feature fusion model, which is developed to extract distinctive
features from varied types of lunar crater data and subsequently
integrate them. The first channel utilizes multiple CNNs to
extract features from lunar crater image data, while the second
channel uses the CNN to extract features from the lunar crater



7116 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Fig. 4. Network structure diagram.

attribute data. To improve the efficacy of different data in differ-
ent classification tasks and extract more informative features for
lunar crater age classification, Huang et al. [35] and Zhao et al.
[36] incorporate an adaptive feature fusion weight for each of the
two feature extraction channels,. The coefficients for adaptive
feature fusion are adjusted based on the impact of the features
from each channel on the network. Initially, the adaptive feature
fusion weight for each channel is set to 1. The features from the
two channels are then merged based on their respective adaptive
feature fusion weights. The implementation of the adaptive
dual-channel feature extraction module is illustrated in Fig. 5.

The adaptive feature fusion weights determine the relative
importance of the features extracted from each channel and are
updated during training to optimize the network’s performance.
Specifically, the adaptive feature fusion weight for the image
channel is denoted by α2 and the adaptive feature fusion weight
for the attribute channel is denoted byα1. The formula of feature
fusion is as follows:

Fff = α1 × Fattr + α2 × Fimg

ai =
ewi

Σjewj
(i = 1, 2; j = 1, 2) (1)

where Fimg and Fattr are the feature vectors extracted from
the image and attribute channels, respectively. The values of
α1 and α2 are updated during training using an optimizer, such
as stochastic gradient descent, to minimize the network’s loss
function. The weights are updated based on the gradients of the
loss function with respect to the weights, and the learning rate
determines the step size of the weight updates. By adaptively
adjusting the feature fusion weights, the network can effectively
utilize the information from both types of crater data to improve
classification performance.

D. Two-Stage Crater Age Classification Model

The distinct features of pre-Imbrain and post-Imbrain crater
image data are identified in this study. Furthermore, we observe

Fig. 5. Adaptive feature processing module.

that in the adaptive two-channel feature extraction stage, the
image features hold greater weight when the crater category is
bifurcated into pre-Imbrain and post-Imbrain periods. However,
when the crater age is divided into five categories, the crater
attribute features occupy greater feature weight. To optimize
the performance of multisource data in the crater classification
task, we bifurcate the crater age classification process into two
stages. In the first stage, we initially classify the craters into two
categories, and in the second stage, based on the results of the
first stage, we further classify the craters into five categories.

Subsequently, a decision-level fusion was performed based
on the confidence scores obtained from the predictions. The
utilization of multiple networks for image feature extraction
aimed to reduce overall bias and enhance the robustness of the
classification process. In Fig. 6, the three distinct classification
networks are represented by a, b, and c. The classification
confidence for each class of the crater is calculated for every
model (A, B, C, D, and E are the five classes of craters). The
final prediction results are then fused using the D-S theory [37],
[38].

Following D-S theory, the predicted category of a given crater
is weighted by probability, with the category having the highest
calculated value determined as the age category of the crater
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Fig. 6. Decision fusion model.

(where A, B, C, D, and E represent five categories of age periods
for lunar craters, a, b, and c represent different classification
networks, and i denotes the ith target). The fusion formula is
expressed as follows: (2) shown at the bottom of this page.

IV. EXPERIMENT AND ANALYSIS

A. Experimental Environment and Model Training

All the experiments were performed on Intel(R) Core (TM)
i9-10920X CPU at 3.50 GHz with 64 GB RAM and NVIDIA
GeForce RTX2080Ti with 11 GB GDDR6X memory, CUDA
10.0 edition, Python 3.6, torch 1.2.

The training of the impact crater data is conducted in two
stages, namely the freezing stage and the unfreezing stage.
During the freezing stage, the feature extraction network is fine-
tuned while preventing the weights from being destroyed in the
initial phase of training to avoid the randomness of the backbone
network’s feature extraction effect. At the commencement of the
training process, the learning rate is initialized to 0.001, while
the weight decay coefficient and batch size are set to 0.0005
and 32, respectively, for a duration of 30 epochs. Upon entering
the unfreezing stage, the learning rate is subsequently reduced
to 0.0001, while the weight decay coefficient remains at 0.0005
and the batch size is reduced to 16, for an additional 30 epochs.

In this study, five experiments were conducted, where the
available data was randomly divided into training, test, and
validation sets in an 8:1:1 ratio for each experimental group.
The training set data was utilized for label data augmentation.
The distribution of the training, test, and validation sets for each
experiment is presented in Table II.

The impact crater classification results were analyzed with
OA. The confusion matrix is used to show the classification of
different age periods. OA is defined as follows:

OA =
1

N

C∑

i=1

xii. (3)

TABLE II
EXPERIMENT DATA DISTRIBUTION

B. Result Analysis

This section presents a summary of the experimental method-
ology and findings presented in this article, which were carried
out to assess the effectiveness of the improved techniques de-
scribed in the previous section. The experiments are primarily
divided into the following aspects.

1) Comparison of prediction results of different networks
including image feature extraction network and attribute
feature extraction network.

2) Multispectral image fusion and label data augmentation.
3) The improved adaptive dual-channel feature extraction

and two-stage age classification network.
4) Our method’s predictive performance for complex lunar

craters.
To evaluate the effectiveness of the proposed method, the

proposed method is compared with the state-of-the-art networks.
Considering that there is only one network customized for
crater’s age prediction, three state-of-the-art commonly used
networks and two classic machine learning algorithms are se-
lected for comparison purpose, which are MobileNet, Vgg16,
and ResNet50, support vector machine (SVM), and random
forest.

The results presented in the table indicate that when utilizing
fused image data of impact craters as input, the initial stage of
binary classification based on crater age demonstrates compa-
rable accuracy among the MobileNet, VGG16, and ResNet50
networks. However, when the craters are divided into five age
categories, the ResNet50 network exhibits notably higher OA
compared to the other networks. On the other hand, when at-
tribute data of the impact craters are used as input, the initial stage
of classification for two classes based on attribute data shows
lower accuracy compared to the classification achieved using
image data. Furthermore, the OA of the CNN surpasses that

Aa(i) +
(
1−Aa(i)

)
Ab(i) +

(
1− (

Aa(i) +
(
1−Aa(i)

)
Ab(i)

))
Ac(i) = A(i)

Ba(i) +
(
1−Ba(i)

)
Bb(i) +

(
1− (

Ba(i) +
(
1−Ba(i)

)
Bb(i)

))
Bc(i) = B(i)

Ca(i) +
(
1− Ca(i)

)
Cb(i) +

(
1− (

Ca(i) +
(
1− Ca(i)

)
Cb(i)

))
Cc(i) = C(i)

Da(i) +
(
1−Da(i)

)
Db(i) +

(
1− (

Da(i) +
(
1−Da(i)

)
Db(i)

))
Dc(i) = D(i)

Ea(i) +
(
1− Ea(i)

)
Eb(i) +

(
1− (

Ea(i) +
(
1− Ea(i)

)
Eb(i)

))
Ec(i) = E(i)

. (2)
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TABLE III
RESULTS OF EACH NETWORK EXPERIMENT

of the SVM and Random Forest methods when the craters are
divided into five age categories. This study proposes a two-stage
adaptive dual-channel feature fusion method, achieving an OA
of 81.4%, surpassing other networks. Additionally, the study
compared the time cost of different methods. The results, as
depicted in Table III, reveal that machine learning methods
exhibit significantly higher time efficiency compared to deep
learning methods. Among the five deep learning methods, CNN
showcases the lowest time cost, requiring only 14 s. The time
costs of MobileNet, ResNet50, and the proposed method are
similar, all of which are faster than VGG16.

Table IV presents the results of five experiments: in experi-
ment A, we exclusively utilized DOM data and employed the
ResNet50 network for predicting the age of impact craters.
Experiment B is based on Experiment A and adds the fusion
of multispectral images. Experiment C employs CNN for age
classification using the lunar crater attribute data. Experiment
D refers to the semisupervised double-channel crater age clas-
sification (SSDC-LCC) method proposed by Yang et al. [22].
Experiment E is an adaptive double-channel lunar crater age
classification method based on multisource data fusion, which
is an extension of Experiments B and C. Experiment F is based
on Experiment E and uses the idea of semisupervised learning
by assigning labels to unlabeled data using labeled data and
incorporating them into training.

The experiments were conducted in five trials for each ex-
periment, and in each trial, the labeled experimental data were
randomly divided into training set, testing set, and validation set
with a ratio of 8:1:1. The average testing accuracy was calculated
from the five trials for each experiment. The results of each
experiment are presented in Table IV. Experiment A uses lunar
crater DOM data and achieves an average testing accuracy of
67.3%. After fusing multispectral data in Experiment B, the
accuracy improves to 71.2%. Experiment C uses only 78 lunar
crater attributes and achieves an average classification accuracy
of 73.6%. Moreover, Experiment E proposes an adaptive dual
channel classification network based on multisource data fusion,

Fig. 7. Confusion matrix for each experiment. (a) ResNet50 image data age
classification. (b) CNN attribute data crater age classification. (c) Improving
network crater age classification. (d) Tag augmented crater age classification.

which achieves an average testing accuracy of 81.4%, a 5.2%
improvement over the SSDC crater age classification method
in Experiment D. To further improve model performance, Ex-
periment F incorporates a semisupervised learning-based label
expansion module into Experiment E. The average testing ac-
curacy is improved by 1.8% to 83.2%. The effectiveness of the
proposed method is demonstrated by the experimental results,
and the confusion matrices for each experiment are shown in
Fig. 7.

As depicted in Fig. 7, when using crater image data, the
classification accuracy for distinguishing craters before and
after the Imbrain period is notably high, with an average test
accuracy of 95.2%. Conversely, the average test accuracy for
age classification of craters, before or after the Imbrain period,
using crater attribute features is merely 90.5%. Nonetheless,
the average accuracy of the crater attributes was 82.7% for the
Pre-Nectarian or Nectarian period, 82% for the post-Imbrain
period, and only 75.4% for the image data. The results of the
experiments agree with the proposed adaptive feature weight
changes in different classification stages discussed in the method
section. This indicates the significance of lunar crater image data
in distinguishing the pre-Imbrian and post-Imbrian periods in
the first stage, as well as the importance of lunar crater attribute
data in the specific classification of the second stage. The results
presented in this article add to the body of evidence supporting
the effectiveness of the two-stage classification method.

In Fig. 8, we demonstrate the fusion effect of the lunar crater
DOM and multispectral data. The left side is DOM crater, the
middle is multispectral image, and the right side is the fusion
image of orthophoto and multispectral image.

Fig. 9 illustrates the test results obtained after the label
expansion. The results indicate that the impact of the label
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TABLE IV
COMPARISON OF EXPERIMENTAL RESULTS

Fig. 8. Image data of craters. (a) Pre-Nectarian period crater. (b) Nectarian
period crater. (c) Imbrian period crater. (d) Eratosonian period crater. (e) Coper-
nican period crater.

Fig. 9. Tag expansion experiment.

expansion on the experimental accuracy is mainly observed
in the first stage, where the accuracy improved from 95.6%
before expansion to 97.8% after expansion. Moreover, the final
prediction accuracy increased from 81.3% before expansion to
83.7%. These experiments demonstrate the effectiveness of the
semisupervised label expansion algorithm in improving the age
classification accuracy, especially in the first stage as the num-
ber of labels increased. The results also highlight the efficient
utilization of the unlabeled data in the process.

Complex craters exhibit intricate features, such as larger
craters containing multiple smaller craters or adjacent craters.
Accurately determining the age of these complex craters poses
a significant challenge for deep learning methods. To assess the
performance of the proposed network in estimating the age of
complex craters, a carefully selected set of 196 complex craters
was manually chosen. Fig. 10 presents the confusion matrix de-
picting the results. The findings demonstrate that when initially
classifying the craters into pre-Imbrian and post-Imbrian periods
during the first stage, the classification accuracy for complex
craters reached 94.8%. When the craters were further divided
into five categories, the OA achieved was 80.5%.

Notably, the accuracy of age classification for complex craters
was primarily affected when initially dividing the craters into
two categories, resulting in a 2.95% decrease in accuracy com-
pared to the randomly selected test set. This decline in accuracy
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Fig. 10. Complex crater test set confusion matrix.

can be mainly attributed to the predominant influence of image
features in the first stage of classification. Despite the highly
challenging nature of predicting the age of complex craters,
our approach has achieved satisfactory testing accuracy, further
attesting to the robustness of our method.

V. DISCUSSION

The Chang’e-4 mission, comprising of the lander and rover,
successfully landed within the Vonkam crater situated in the
South Pole-Aitken, Basin. Finsen crater, located around 135 km
northeast of the CE-4 landing site at coordinates 42.29° S,
177.72° W, and with a radius of 73 km, is a well-preserved
complex that possesses a conspicuous central peak. According
to Gou et al. [39], Finsen Crater was identified as an Imbrain
crater through the crater Size-Frequency Distribution method.
These findings agree with the results obtained by Wang and Wu
[40].

Chang’e-5 successfully landed in the northeastern region
of the Moon’s Ocean of Storms at coordinates 43.06°N and
51.92°W. This region is mainly covered by Eratosonian basalts,
and the lunar soil is predominantly formed by local basalts.
Utilizing high-resolution lunar surface images acquired through
remote sensing exploration, the planetary science team at Shan-
dong University [41] identified small impact craters distributed
on the bottom of each impact crater, sputtering blanket, and
impact melting pool. The CSFD method was used to estimate
the ages of Pythagoras, Sharp B, and Harpalus. Pythagoras is
an Eratosonian impact crater, while Sharp B and Harpalus are
relatively young Copernican impact craters.

Table V presents the results of predicting the age of Finsen
crater using a deep learning method, indicating that it is a Coper-
nican period crater, consistent with the LPI results but different
from the previous analysis due to Finsen being a complex crater
comprising multiple craters from different periods. Additionally,
the results for Pythagoras, Sharp B, and Harpalus are consis-
tent with Hou et al.’s [41] predictions, further validating the

TABLE V
LANDING AREA PREDICTED IMPACT CRATERS

Fig. 11. LIME interpreter results. (a) Pythagoras. (b) Sharp B. (c) Harpalus.
(d) Finsen. (e) Tycho. (f) NorthRay.

reliability of the deep learning method for predicting crater
ages.

Moreover, we utilized the LIME (Local Interpretable Model-
Agnostic Explanations) image classification interpreter to
scrutinize the lunar craters listed in Table V. The LIME in-
terpreter annotated the parts of the image that contributed the
most to the prediction, as shown in the right-hand side of
Fig. 11. We annotated the areas of the classification outcomes
that exhibited the highest benefit, as illustrated in Fig. 11.
Our investigation disclosed that the annotated areas primarily
appeared on the periphery of the craters, which is in accordance
with our hypothesis of utilizing characteristics such as the extent
of edge decay and brightness to differentiate the age of the
craters. These discoveries provide a roadmap for future research
that aims to improve the feature representation of the crater
edges.

This article presents the prediction of the age of the crater
situated in the vicinity of the potential landing zone for Artemis
3 mission, and the results of the predictions are presented in
Table VI, which can be used as an additional factor for consid-
eration in the selection of the landing site.
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TABLE VI
ARTEMIS 3 CANDIDATE LANDING ZONE NEAR CRATER AGE

VI. CONCLUSION

Accurately estimating the age of lunar craters is crucial for ex-
ploring lunar geological age. However, the limited availability of
age-labeled crater data, the variable shape, and wide distribution
of craters have resulted in a dearth of studies using deep learning
methods for crater age estimation. To address these challenges,
we propose an improved multibranch network model to estimate
the age of lunar craters. To augment the training set, we propose
a semisupervised learning strategy that leverages unlabeled data.
Moreover, we integrate multisource data, including lunar DOM
data, multispectral data, morphological data, and geological
data, to extract the features of craters. The DOM data and
multispectral data are fused using an image fusion algorithm. A
two-branch network extracts the features of the crater data from
different sources, and feature fusion is carried out based on the
effects of the features on the network. A series of ablation and
comparison experiments were performed to assess the proposed
method. The experimental results indicate that the enhanced
method leads to a significant improvement in the accuracy of
crater age estimation. Specifically, we predict the age of craters
near the landing areas of Chang’e-5, Chang’e-4, and Apollo 17,
and our predictions are highly consistent with existing research
results. Our conclusions are as follows.

1) Fusion of multispectral data with lunar DOM data im-
proves the accuracy of the test set by 3.9% compared to
using DOM data only, indicating the positive impact of
multispectral data on lunar crater age estimation.

2) Significant improvement in accuracy was achieved
through the semisupervised learning approach, which in-
volves using unlabeled data to expand the training data.
This suggests that the proposed algorithm is effective in
enhancing the accuracy of the model.

3) The proposed model showcases accuracy comparable to
state-of-the-art methods in experiments of lunar crater age
estimation, thereby validating the effectiveness of deep
learning techniques in this field. This finding highlights
the potential of deep learning to contribute to improved
accuracy and efficiency in the analysis of lunar data.

With the continuous advancement of lunar exploration tech-
nologies, increased deployment of lunar exploration satellites is
anticipated in the future. The National Aeronautics and Space
Administration of the United States has slated the Artemis 3
manned lunar mission for 2024. Artemis 3 will incorporate
cutting-edge scientific instruments and sensors, enabling the
acquisition of high-quality data encompassing DOM data, spec-
tral data, and geological data. These diverse data sources will

yield abundant information crucial for estimating crater ages.
Consequently, multimodal deep learning emerges as a pivotal
avenue for future development in this field.
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