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Multiscale Context Deep Hashing for Remote
Sensing Image Retrieval

Dongjie Zhao , Yaxiong Chen , and Shengwu Xiong

Abstract—With the advancement of remote sensing satellites and
sensor technology, the quantity and diversity of remote sensing
imagery have exhibited a sustained trend of growth. Remote sensing
image retrieval has gained significant attention in the realm of
remote sensing. Hashing methods have been widely applied in
remote sensing image retrieval due to their high computational
efficiency, low storage cost, and effective performance. However,
existing remote sensing image retrieval methods often struggle
to accurately capture the intricate information of remote sensing
images. They often lack high attention to key features. The neglect
of multiscale and saliency information in remote sensing images
can result in feature loss and difficulties in maintaining the balance
of hash codes. In response to the issues, we introduce a multiscale
context deep hashing network (MSCDH). First, we can obtain finer-
grained multi-scale features and achieve a larger receptive field by
incorporating the proposed multiscale residual blocks. Then, the
proposed multicontext attention modules can increase the percep-
tual field and suppress the interference from irrelevant information
by aggregating contextual information along channels and spatial
dimensions. The experimental results on the UCMerced dataset and
WHU-RS dataset demonstrate that the proposed method achieves
state-of-the-art retrieval performance.

Index Terms—Attention mechanism, deep hash, multiscale
context information.
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I. INTRODUCTION

A S SATELLITE observation technology advances rapidly,
we can collect a large volume of high-resolution, accurate

remote sensing (RS) data from Earth observation satellites every
day. The huge RS image database contains rich geographic
information, which plays an important role in many fields such
as environmental monitoring, disaster rescue, meteorological
analysis, economic evaluation, and ecological prediction. RS
image retrieval technology refers to finding RS images in a
dataset that are identical or similar to its content based on a spec-
ified query image [1], [2]. Due to the massive amount of data,
researchers focus on utilizing computer technology for efficient
storage, management, and analysis of these huge volumes of
RS imagery. There are two categories based on how the images
are processed. First, the text-based image retrieval (TBIR) [3]
technology utilizes text annotations to describe the content of im-
ages. Although easy to implement, manual annotation is limited
by the cognitive level, linguistic expression, and subjective judg-
ment, and requires a significant amount of time and labor cost,
making it impractical for large-scale applications. Second, the
content-based image retrieval (CBIR) [4] only requires tagging
image categories and includes two modules: 1) image feature ex-
traction and 2) image retrieval. The features of feature extraction
can be divided into three levels: 1) low-level; 2) middle-level;
and 3) high-level semantic features. Low-level feature repre-
sentation is a feature description method of RS images, which
is constructed by color features [5], [6], spectral features [7],
texture features [8], [9], [10], and shape features [11], [12] of
RS images. Color features can provide a visual representation
of the objects present in an image, with minimal dependence
on image size, orientation, and viewpoint. Texture features are
independent of color or brightness and exhibit properties such
as hierarchical structure, scale, and translation invariance. It
is more sensitive to the spatial variation of pixel intensity in
RS images and pays more attention to the surface properties
of image regions, and a single point cannot calculate texture
features. Compared to low-level features, middle-level features
carry more abundant information and exhibit greater expressive
power. For example, the Bag of Visual Words (BOVW) [13]
model obtains the visual dictionary by clustering based on
local features. A feature encoding technique called Vector of
Locally Aggregated Descriptors [14] builds a dictionary us-
ing techniques for clustering and encodes features by keeping
track of the distances between local features and cluster cen-
ters. Scale-Invariant Feature Transform has the advantages of
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Fig. 1. Remote sensing images have multi-scale features. (a) Larger scale
airplane image. (b) Smaller scale airplane image.

robustness to occlusion and invariance to viewpoint and illumi-
nation conditions.

Manual feature extraction is too expensive and impractical for
large-scale datasets. As deep learning techniques evolve, con-
volutional neural networks [15] use a multilayer convolutional
architecture to perform a high-dimensional nonlinear mapping
of the image and obtain high-level semantic features of the
image. The image features generated using the CNNs method
encompass richer and more abstract semantic information. In
comparison to manual feature extraction methods, CNNs often
achieve superior performance in retrieval and classification [16]
tasks with higher accuracy. When dealing with large-scale RS
images, the massive amount of data requires increased storage
space, and the computational complexity of the retrieval process
grows with the increase in data. Approximate nearest neighbor
(ANN) [17] methods have been shown to effectively address
the challenges of dimensionality explosion and high storage
space, as demonstrated in previous studies. In many ANN search
methods, hash algorithms [18], [19], [20] have demonstrated
notable advantages in terms of feature storage and retrieval
speed by mapping high-dimensional image features into shorter
binary codes. The hashing algorithm learns to compare the
hash codes of images in the Hamming space, and then sorts
similar images in ascending order of Hamming distance based
on the hash codes to output the results. The combination of deep
learning and hash learning in deep hashing methods has achieved
encouraging retrieval results in image retrieval tasks [21], [22],
[23], [24]. The RS images in Fig. 1 exhibit diverse scale vari-
ations; the performance of convolutional neural networks may
be suboptimal. Owing to the difficulty in accurately capturing
the characteristics of important objects that occupy a small area
in complex scenes, it is easy to confuse the background with
the main body of the image. In addition, RS images still exhibit
high interclass similarity. For instance, as depicted in Fig. 2,
the target features of highways and overpasses in RS images
are similar. The prominent features are vehicles and roads, with
low discriminability. During retrieval, it is prone to put the two
into different categories. Moreover, there is significant intraclass
variation also, as evident in Fig. 4 where all images belong to the
commercial category but exhibit substantial visual differences.
Therefore, we designed an effective feature extraction method
that tackles a crucial issue in remote RS retrieval. We propose
a multiscale context deep hashing network (MSCDH) for RS
image retrieval.

Fig. 2. Remote sensing images with high interclass similarity. (a) Overpass.
(b) Freeway.

1) We propose a new hashing network that leverages the
multiscale features of RS images, obtaining multiscale
contextual information. This enhances the intragroup cor-
relation of hash codes by incorporating multiscale contex-
tual information and category semantics.

2) In order to obtain more discriminative RS image features
and mitigate the degradation of the network due to deep-
ening, we propose multiscale residual blocks (MSRBs).
By utilizing multiple channel groups, the MSRBs aim to
extract multiscale image features in a more fine-grained
manner.

3) The proposed multicontext attention (MCA) module ag-
gregates contextual information to enhance perception and
suppress irrelevant interference. Meanwhile the attention
map can highlight the distinguishability of the acquired
features.

II. RELATED WORK

A. RS Image Retrieval Methods

Traditional RS image retrieval methods rely on handcrafted
features to express the content of an image. Deep learning
methods have the capability to establish low-level feature infor-
mation and deep semantic information in remote sensing images,
enabling abstract representation of RS images. As a result,
these methods are more effective in RS image retrieval tasks.
Liu et al. [25] proposed an unsupervised RS image retrieval
method, which transforms similarity learning into deep ordinal
classification results. The problem of relying on a vast number
of tagged samples in traditional RS image retrieval is addressed.
Xiao et al. [26] proposed a deep compression coding method to
learn low-dimensional features in CNN, which better preserves
the global information and spatial structural information of
images.

Although deep learning based methods can yield favorable
outcomes in the context of dealing with large-scale RS images,
optimizing retrieval efficiency and storage space utilization are
basic factors to consider. Hashing methods are widely used in
remote sensing image retrieval because of their compact storage
space and efficient processing speed. The supervised hashing
algorithm learns the hash function by projecting the samples
into Hamming space using label information. The unsupervised
deep hashing approach is to generate compact and efficient
hash codes without label or category information. Li et al. [27]
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Fig. 3. Framework of MSCDH.

Fig. 4. RS images with large intraclass variation. (a) (b) Both belong to the
commercial category but exhibit substantial visual differences.

introduced a deep hash approach for RS image retrieval. They
used pretrained CNN and hash networks, and experiments on
datasets of different magnitudes. Roy et al. [28] introduced a
hash network based on metric learning by learning semantic-
based metric spaces for generating compact hash codes to enable
fast and accurate retrieval tasks. Tang et al. [29] incorporated
hash learning in a generative adversarial framework to make
hash codes more balanced. The performance of hash codes is
optimized by optimizing the aggregation density loss function
within the residual hash network. Shan et al. [30] enhanced the
retrieval results by combining deep hashing methods with hard
probabilistic sampling. The approach to remote sensing image
retrieval called FAH [31] is proposed, which combines gener-
ative adversarial networks (GAN) with hashing methods. The
entire network is divided into two modules: 1) DFLM module
for extracting deep features from remote sensing images, and 2)
AHLM for obtaining compact hash codes. Song et al. [32] re-
defined the image retrieval task as visual and semantic retrieval.

They proposed a meta-hashing method [33] that utilized only a
small number of labeled samples in a new category, therefore,
reducing the requirement for labeled samples and improving the
generalization ability of the trained hash model. Sun et al. [34]
addressed the issue of traditional multiview hashing methods
failing to effectively explore the latent similarity between RS im-
ages by integrating GIST features and SIFT-based BOW features
of the RS images. Shen et al. [35] investigated the significance of
interlabel dependencies in multilabel image retrieval tasks. They
proposed a deep joint image-label hashing method called Deep
Co-Image-Label Hashing (DCILH), which has outperformed
existing deep learning methods in the context of multilabel tasks.

B. RS Image Retrieval Based on Attention Mechanisms

Compared with natural images, RS images are character-
ized by complex contents and variable scales. The attention
mechanism [36], [37] can acquire the weight distribution of
diverse regions through learning. Focus on the key information
of interest and ignore other nonkey information. The salient
information of RS images can be highlighted. To solve the
problem of inaccurate extraction of target features from remote
sensing images due to complex backgrounds, Wang et al. [38]
refined the features from the last convolutional layer using a
dual attention mechanism and input Compact Bilinear Pooling,
in combination with PCA downscaling, to suppress the inter-
ference of background. Liu et al. [31] completed the feature
extraction of RS images from two aspects. Attention branching
is used to highlight the category features belonging to different
scenarios to ensure retrieval accuracy. Xiong et al. [39] added
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Fig. 5. Examples of the UCMerced dataset.

attention mechanisms to suppress irrelevant features. And in-
troducing central loss in the training phase is more suitable
for remote sensing image retrieval. Imbriaco et al. [40] used
attention-focused local convolutional features and aggregated
them using a vector of local aggregation descriptors to generate
global descriptors. Therefore, our proposed MCA module com-
bines channel attention with spatial attention to assign feature
weights in a supervised manner improving the discriminative
power of features on RS images.

III. PROPOSED METHOD

A. Problem We Want to Solve

With the advancement of earth observation technology and
the exponential growth of RS datasets, the demands for RS
image retrieval have progressively escalated. RS image content
is complex and rich in detailed information. RS images are
characterized by low interclass variability and low intraclass
similarity. Therefore, this article proposes the MSCDH algo-
rithm, which introduces new MSRBs. It leverages multiscale
information to obtain discriminative features from RS images.
We fully consider the intraclass, interclass relationships of the
RS images achieving the minimization of feature distances
between similar image pairs and the maximization of feature
distances between dissimilar image pairs. Fig. 3 illustrates the
network framework.

B. Multiscale Residual Blocks

The multiscale representation capability in convolutional neu-
ral networks is crucial. RS images manifest diverse spatial infor-
mation and small-sized feature targets. Leveraging information
from RS images at different scales is used to eliminate the
reduction of intragroup correlation caused by insufficient local
information in hash codes. We have designed a multiscale con-
text deep hashing method addressing these issues. We adopted

ResNet50 [41] as the backbone network and designed MSRBs
to extract multiscale features. MSRBs can express multiscale
features at a finer granularity level by grouping and merging.
Fig. 7(b) shows the residual structure of ResNet, by adding
a residual structure of ResNet, which incorporates a residual
connection between the input and output to facilitate the prop-
agation of information across layers and mitigate the degra-
dation problem associated with increasing network depth. We
decoupled ResNet 3× 3 convolutional to make a multiscale.
The structure of the MSRBs is illustrated in Fig. 7(a). The
feature map of the input after 1× 1 convolution is divided into
s subsets, denoted by Xi ∈ RW×H×C(i = 1, 2, · · · s), W ×H
is the spatial dimension size, and C represents the number of
channels. Xi has the same spatial dimension as the input X ,
the channel dimension is 1

s of the original. The parameter s is
used to control the scale dimension, and a larger s provides more
different scales of perceptual fields. Except for X1, each of the
other feature map subsets undergoes a 3× 3 convolutional layer,
indicated by Qi. The feature map subset Xi is added with Yi−1

and Yi−2 and input to Qi to obtain the output Y . The expression
defining is as follows:

Y =

⎧⎨
⎩
Xi i = 1
Qi (Xi + Yi−1) i = 2
Qi (Xi + Yi−1 + Yi−2) 3 ≤ i ≤ s

. (1)

As a result of the connection operation between subsets, each
3× 3 convolution layer receives information from all its previ-
ous feature map subsets. This allows the expansion of the feeling
field for each subset of the previous feature maps. This structure
is better suited to the characteristics of RS images and inherits
the advantages of ResNet model.

C. MCA Module

Compared to ordinary images, RS images are characterized
by complex content, including rich background information and
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Fig. 6. Examples of the WHU-RS dataset.

Fig. 7. The structure of MSRBs and the Residual Block in ResNet. (a)
Structure of MSRBs. (b) Structure of Residual Block.

diverse foreground details. These factors can affect the discrimi-
native power of convolutional neural networks in capturing high-
level features. Attention mechanisms, which focus on important
regions of an image, are commonly used to compensate for
this limitation of CNNs. Currently, attention methods typically
sample the entire region of an image. However, considering that
the features extracted by CNNs from remote sensing images
predominantly capture local information, we take into account
the relationships among different local structures and combine
the global and local features on the channel dimension to estab-
lish both global and local attention mechanisms. This approach
allows for better aggregation of contextual information. Addi-
tionally, we focus on salient regions in the spatial dimension to
enhance the expressive power of features. The main idea of the

Fig. 8. Structure of the MCA module.

MCA module is to focus on the target in the region. The structure
of MCA is illustrated in Fig. 8, which consists of the following
two main components: 1) channel attention (left branch) and
2) spatial attention (right branch). In the channel dimension,
GlobalAvgPooling and two consecutive pointwise convolutions
are used to extract global feature attention. Then, the channel
attention is obtained by integrating local channel attention and
global attention. Finally, it can achieve aggregation of local and
global contextual information. Local channel context La(X)
and the global channel context Ga(X) can be expressed as

La(X) = BN (F2 (δ (BN (F1 (GAP (X)))))) , (2)

Ga(X) = BN (F2 (δ (BN (F1(X))))) (3)

where the input feature map X ∈ RW×H×C , F1, F2 are point-
wise convolution, GAP denotes GlobalAvgPooling, BN is
Batch Norm [42], and δ denotes the sigmoid function. In the spa-
tial dimension, the input features pass through both max pooling
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and average pooling. Obtain the feature map with constant width
and height and one channel number. The spatial information
of the location is integrated by the information from different
channels. The expression for spatial attention is

S(X) = δ (F3 ([AvgPool(X);MaxPool(X)])) (4)

where F3 denotes 7× 7 convolution. Output feature map Xa

can be formulated as

Xa = X ⊗ σ ((La(X)⊕Ga(X))⊗ S(X)) . (5)

The ⊗ symbol indicates elementwise multiplication. The ⊕
denotes broadcasting addition.

D. Objective Function

Our objective in deep hashing methods is to encode images
into compact hash codes while preserving the category labels and
RS images consistent in Hamming space. The existing hashing
methods based on pairs [43] or triples [44], [45] achieve the hash
code approximation of similar images but ignore the long-tail
problem of images.

To enhance the accuracy of deep hashing RS image retrieval,
we use polarization loss [46] for remote sensing images with
high interclass similarity and low intraclass similarity. It is a
minimizable loss that can make the generated hash code have
the minimum hamming distance between images of the same
class while ensuring the maximum feature distance between
images of different classes. Thus, the problem that the hamming
distance is inconvenient to optimize is solved [47]. In MSCDH,
the continuous real value H(X) is obtained through the hash
layer. The binary hash code bεRK is obtained by binarizing
with the following sign function. It can be defined as

b = sign(H(x)) (6)

where sign() is the sign function. V = H(X) is output vector.
In order to learn the better hash function, the polarization loss
is as follows:

Lp(V,T) :=

K∑
i=1

max (M − Vi · Ti, 0) . (7)

The magnitudes of each MSCDH output channel are induced
over the threshold M while corresponding signs are aligned to
the target vector T to minimize the polarization loss (7) during
the learning phase. Since the inner product Vi · Ti of a hash
code is inversely proportional to the hamming distance of the
hash code, it maximizes the interclass hamming distance while
simultaneously minimizing the intraclass hamming distance.

IV. EXPERIMENTS

A. Dataset

This study employed the following two scene-specific remote
sensing image datasets.

1) UCMerced dataset [48] was manually extracted from the
USGS National Map Urban Area Imagery series of large
images for urban areas across the country. It contains 2100
aerial images from 21 different land cover categories, in

fact each category includes 100 images, each with a pixel
size of 256× 256 and a spatial resolution of 0.3 meters.
Fig. 5 examples the UCMerced dataset.

2) WHU-RS [49] dataset was obtained from Google Earth.
This data include 19 types of common RS images, such
as airports, beaches, rivers, etc. Each image is 600× 600
pixels in size. Some of the samples are shown in Fig. 6.

These dataset images are rich in variability in translation,
spatial resolution, viewpoint than other datasets.

B. Evaluation Metrics

1) Precision@k in image retrieval tasks is defined as the
proportion of retrieved results that are relevant to the
query result [50], [51], [52]. The calculation formula is
as follows:

Precision@ K =
N

K
(8)

where N denotes the quantity of similar samples, and K
denotes the count of images ranked in the top K list.

2) Mean Average Precision (MAP) [53], [54] is a compre-
hensive metric employed to assess the effectiveness of RS
image retrieval. The calculation formula is as follows:

MAP =
1

|Q|
|Q|∑
i=1

1

ni

ni∑
j=1

precision(Rij) (9)

where qi ∈ Q is a query image, and ni is the number of
image related to images qi in the database. Suppose that
the images related to samples are ranked {r1, r2, . . . , rni

}
according to the correlation degree. Rij is a collection of
sorted search results from the top result to rj .

These assessments, MAP and Precision@k, quantitatively
evaluate the performance of RS image retrieval. It reflects the
overall ranking of relevant images in the retrieval results. If the
numerical values are larger, it indicates that the retrieval results
of the method are better [55], [56].

C. Detailed Implementation of MSCDH

The proposed algorithm is implemented under the MindSpore
and Pytorch framework. To assess the validity of the MSCDH
method employed in this article, it is compared with various
deep hashing methods. The learning rate is tuned to 0.001
and the batch size is specified as 32 for the model. We have
experimentally validated that setting the value of s to 8 yields
favorable results. We randomly selected the UCMerced and
WHU-RS datasets for training and all the samples were set
between 0.8 and 0.5. The value of epochs was set to 500 and we
evaluated the performance of 16, 32, and 64-bit hash codes. We
have set the preset target binary codeT using random assignment
to ensure sufficient interclass distance [57], [58].

D. Evaluation of Different Parts

We evaluate MSCDH by the analysis of the following:
1) MSRBs; 2) MCA module; and 3) Polarization loss. The
experiment was conducted in the following three aspects.
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TABLE I
MAP OF MSCDHSC, RESNET50 ON UCMERCED DATASET WITH DIFFERENT

HASH BITS

TABLE II
TOP K RESULTS OF THE UCMERCED DATASET USING DIFFERENT ATTENTION

MODULES

TABLE III
MAP OF THE UCMERCED DATASET USING DIFFERENT ATTENTION MODULES

First, MSDCH is named MSCDHSC without using MCA. The
MSCDHSC using the residual structure was compared to the
original ResNet50. The hash learning processes all use polar-
ization loss, where the hyperparameter M is set to 0.5. Table I
shows the experimental results on the UCMerced and WHU-
RS datasets using MSCDHSC and ResNet50 as the backbone
network. Our proposed method improves MAP from 0.9651 to
0.9870 on the UCMerced dataset, an improvement of 2.19%.
The WHU-RS dataset has also been enhanced in terms of MAP.
Table I illustrates that the fine-grained features of remotely
sensed images can be better obtained by using a network with
MSRBs. It indicates that the MSRBs are more suitable for the
information-rich RS images.

Furthermore, to validate the effectiveness of our multiscale
attention mechanism, we compared it with several commonly
used attention modules, including CBAM [59], GCBlock [60],
and CCNet [61]. CBAM is a lightweight attention module that
employs channel attention and spatial attention in a sequential
manner. GCBlock combines NL block and SE block attention
structures. CCNet utilizes Criss-Cross Attention modules to
capture contextual information. The MSCDH network without
the attention module is named as MSCDHSC. Table II provides
the precision@K (K=10, 20, 50) retrieval results for the UCMD
dataset. It can be observed that our proposed attention module
is more effective in retrieving RS images. Tables III and IV
present the mean average precision results of the WHU-RS
dataset and UCMD dataset. Table IV presents a comparison
of mean precision at different bit lengths for different attention
mechanisms. Similar retrieval performance can be observed, and
our proposed attention mechanism achieves better performance
compared to the other attention mechanisms. The MAP of our
method improved by 3.35% compared to CBAM on UCMerced

TABLE IV
MAP OF THE WHU-RS DATASET USING DIFFERENT ATTENTION MODULES

TABLE V
RETRIEVAL RESULTS OF THE UCMERCED DATASET

TABLE VI
RETRIEVAL RESULTS OF THE WHU-RS DATASET

dataset. MSCDH retrieval results show a 0.93% improvement
compared to MSCDHSC on UCMerced dataset. Our attention
mechanism weights feature from both channel and spatial per-
spectives, enhancing the discriminative ability of features and
yielding more accurate retrieval results.

According to the objective function, parameter M is utilized
to restrict the distance among hash codes. We investigated the
impact of parameter M on retrieval performance while setting
the hash code length to 16, 32, and 64 b. Specifically, we varied
the values of m from 0.1 to 3 in our experiments. The retrieval
MAP for the UCMerced dataset is shown in Fig. 9 illustrates
MAP for the WHU-RS dataset. It can be observed that when m
is set to 0.5, the best retrieval performance is achieved on both
datasets.

E. Results

To assess the validity of hash codes in our proposed MSCDH,
we compared it with six nearest deep hashing methods, including
AHCL [62], ADSH [63], DPSH [43], FAH [31], DHCNNs-
L2 [27], and DHCNN [32]. Tables V and VI present the retrieval
results of different algorithms on UCMerced, WHU-RS datasets
with varying hash code lengths. On the UCMerced dataset, our
method achieved a 1.09% improvement in MAP compared to
the state-of-the-art AHCL method on 64-b hash codes. It can
be observed that different lengths and hash codes have varying
effects on the representation of features. Short hash codes have
limited expressive power, while longer hash codes result in better
representation performance.
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Fig. 9. Comparing hashing accuracy with different margin M settings in terms of MAP on Dataset. (a) UCMerced Dataset. (b) WHU-RS Dataset.

Fig. 10. 2-D scatter plot obtained by t-sne on the UCMerced dataset.

Fig. 11. 2-D scatter plot obtained by t-sne on the WHU-RS dataset.

In addition, we also analyze the clustering properties of hash
codes using the t-SNE dimensionality reduction algorithm. It
projects the original high-level data into a 2-D space for visu-
alization, while the low-dimensional features processed by it
can better reflect the distance distribution of the original data in
high-dimensional space. Fig. 10 shows the t-SNE visualization
of the 64-bit hash codes of the UCMerced dataset using the
MSCDH method. Fig. 11 shows the t-SNE visualization of the
64-bit hash codes generated from the WHU-RS dataset. It can

be observed that the hash codes learned by MSCDH have an
easily discriminable distribution, and the hash codes of similar
images are clustered together. Each class can be well separated
to achieve the effect of minimizing the intraclass distance.

V. CONCLUSION

RS image retrieval technology is the foundation and prerequi-
site for many applications in the field of remote sensing. There-
fore, this article addresses the problems of RS image retrieval
field such as large-scale variation and large differences of similar
targets. We propose the multiscale context deep hashing RS
retrieval method. First, we used multiscale residual blocks to
extract the multiscale features of RS images. Then, MCA mech-
anism is proposed to capture contextual information to weight
salience features in channel and spatial dimensions. Further, a
microscopic polarizable loss is used to maintain the balance and
differentiation of hash codes during hash learning improving
the robustness of the model in the case of complex background
of remote sensing images. Experiments were conducted on
the UCMerced and WHU-RS datasets to verify the validity of
MSCDH.

In practical applications, supervised hashing methods may be
constrained by large data volumes or limited label quantities.
Moreover, they demand high accuracy and consistency in label-
ing. The presence of noise or errors in the labels can directly
impact the learning and retrieval performance of the hashing
function. Our next research goal is to develop a deep hashing
model to address the supervised RS image retrieval problem.
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