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Unsupervised Transformer Balanced Hashing for
Multispectral Remote Sensing Image Retrieval

Yaxiong Chen

Abstract—For remote sensing (RS) image retrieval task, hash-
ing technology have been extensively researched in recent works.
Unsupervised hashing approaches have attracted much attention
in the RS data processing field because label collection takes a lot
of time. Most of which fail to consider the interactions among the
multichannel information of multispectral RS images and the dis-
parity between the hash-like codes space and the Hamming space,
which lead to the poor performance of multispectral RS image
retrieval. In this article, we tackle these dilemmas with a novel
unsupervised hashing approach, namely Unsupervised Transformer
Balanced Hashing (UTBH), to utilize a convolutional variational
autoencoder architecture with a novel RS transformer to perform
effective hash codes learning. We first integrate a convolutional
variational autoencoder architecture with a novel RS transformer,
which can guide the interactions among the multichannel infor-
mation of multispectral RS images. Meanwhile, a new objective
function is proposed to preserve discrimination of hash codes in
the hashing learning process and reduce the disparity between the
hash-like codes space and the Hamming space effectively. Finally,
experimental results on two multispectral RS image datasets in-
dicate that UTBH approach achieves superior performance over
other unsupervised image retrieval approaches.

Index Terms—Hash codes, multichannel information, transfo-
rmer, variational autoencoder.
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1. INTRODUCTION

ITH the high progress of remote sensing (RS) tech-
W nology, RS images have shown a high-speed growth

trend [1], [2]. Unearthing serviceable information from large-
scale RS images is very critical [3], [4]. Hence, many researchers
pay attention to the research of remote sensing image retrieval
(RSIR) because RSIR can quickly find effective information
from large-scale RS images [5], [6]. The goal of RSIR tech-
nology is to automatically match the RS image with similar
semantics to the query RS image. Many content-based RSIR
approaches have been developed gradually to manage and an-
alyze RS images [7], [8], [9]. However, with the advancement
of RS image acquisition equipment, early content-based RSIR
approaches face the problems of slow retrieval speed and insuf-
ficient storage.

Hash technology is widely exploited to solve the problems
of content-based RSIR approaches due to its fast speed and
small storage space. The aim of hash technology is to map RS
image into hash codes while conserving the similarity for RS im-
age [10]. Existing hashing technology is divided into supervised
category and unsupervised category. Supervised hashing algo-
rithms learn hash function by leveraging supervised information.
For example, Li et al. [6] introduced a new large-scale RS image
retrieval algorithm, which leveraged labeled information to learn
deep hash function. However, it is time-consuming to obtain
these class labels. To solve the problem, unsupervised hash
algorithms are widely used in large-scale RS image retrieval
because they do not need the label information of datasets. For
example, Wang et al. [11] proposed an unsupervised variational
autoencoder hash algorithm, which can exploit multichannel
feature fusion to learn hash codes for multispectral RS image
retrieval.

Despite existing unsupervised image retrieval algorithms have
made some progress [5], [11], [12], there are still two obvious
shortcomings. On the one hand, existing methods [5], [11] fail
to reduce the disparity between the hash-like codes space and
the Hamming space adequately, which ultimately leads to the
poor multispectral image retrieval performance. On the other
hand, most of the existing methods [11], [12] cannot consider
the interactions among the multichannel information of multi-
spectral RS images, which will lead to the issue of insufficient
exploitation of multichannel information and eventually affects
the experimental result.

In this article, we propose a novel multispectral RS image
hashing approach, termed Unsupervised Transformer Balanced
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Fig. 1. Core idea of the proposed UTBH approach. (a) Distribution of network
outputs for the proposed UTBH approach without using the balanced term.
(b) Distribution of network outputs for the proposed UTBH approach. The
balanced term can obviously reduce the disparity between the hash-like codes
space and the Hamming space.

Hashing (UTBH), to conduct hash codes generation by guiding
the interactions of the multichannel information for multispec-
tral RS image as well as reducing the disparity between the
hash-like codes space and the Hamming space, as demonstrated
in Fig. 2. UTBH approach integrates a convolutional variational
autoencoder architecture with a novel RS transformer, which
can guide the interactions of the multichannel information of
multispectral RS image. In addition, a novel objective function
is developed by the composite of reconstruction cost, KL diver-
gence, and balanced term, which conserve the discrimination
of hash codes in the hashing learning process and reduce the
disparity between the hash-like codes space and the Hamming
space. Fig. 1(a) demonstrates the distribution of network outputs
for UTBH approach without using the balanced term. Fig. 1(b)
demonstrates the distribution of network outputs for UTBH
approach. It can be seen from Fig. 1(a) and (b) that the balanced
term can obviously reduce the disparity between the hash-like
codes space and the Hamming space. Abundant experiments on
diverse benchmark have well demonstrated the reasonableness
and effectiveness of the proposed UTBH approach.

The contributions can be summarized as follows:

1) A novel unsupervised RSIR framework is developed to
leverage the transformer for solving the issue of deficient
usage of the interactions among the multichannel informa-
tion of multispectral RS images. As far as we know, it is the
first work to conduct hash codes generation by considering
the interactions among the multichannel information of
multispectral RS images.

2) Since the disparity between the hash-like codes space
and the Hamming space is inescapable, a novel objective
function is proposed to reduce the disparity between the
hash-like codes space and the Hamming space effectively.

3) Abundant experiments on diverse benchmark for mul-
tispectral RS images demonstrate that UTBH can learn
better hash codes, which achieve more effective retrieval
performance than retrieval approaches.

II. RELATED WORKS

In this section, according to whether deep learning is adopted,
related works are divided into two aspects: traditional RSIR and
deep learning-based RSIR.
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A. Traditional RSIR

Traditional RSIR approaches exploit hand-crafted features to
perform RSIR. For example, Zhu et al. [13] leveraged Gabor
filter to extract image texture features, which can be exploited
to retrieve aerial RS images by calculating Euclidean distance.
Li et al. [14] utilized Gabor texture features to retrieve RS
images. Scott et al. [15] automatically extracted object features
of multiple scales from large-scale satellite RS images. Then,
object features were applied to retrieve objects. Shao et al. [16]
used visual attention model to obtain salient objects. The color
features and texture features of salient objects were combined for
image retrieval. Chaudhuri et al. [17] utilized the shape features
and texture features of RS images to form a new feature vector.
Then, the new feature vector was leveraged to realize multilabel
RS image retrieval by using semisupervised way.

However, the retrieval effect of shape features and texture
features is poor. For better retrieval, many researchers pro-
posed many advanced hand-crafted features such as SIFT fea-
tures, GIST features, and SURF features. For example, Douze
et al. [18] verified the rationality and accuracy of GIST features
and proposed a global feature index optimization strategy to
balance memory utilization and retrieval accuracy. An et al. [19]
developed SUREF features to retrieve RS video, which improved
the significance of image features and shortened the time of
feature generation and matching. Newsam et al. [20] extracted
the SIFT descriptor of RS images, which was leveraged to
perform RSIR. Yang et al. [21] leveraged local invariant features
to improve the RSIR performance. Zhou et al. [22] proposed a
RSIR approach, which leveraged sparse representation theory
and the topology information of features.

Many existing studies on traditional RSIR methods focus on
using hand-crafted features to perform RSIR. Different from
these methods, the proposed UTBH method leveraged deep
learning framework to perform RSIR.

B. Deep Learning-Based RSIR

With the rapid development of satellite and aircraft tech-
nology, the era of RS Big Data has come [23]. Unearthing
serviceable information from large-scale RS images is very
important. The retrieval performance of traditional RSIR mainly
depends on the sensor type, band information, and geographical
location of manually labeled RS images. These methods take a
lot of time and cannot accurately reflect the high-level semantic
information of RS images.

To solve these problems, deep learning-based RSIR are pro-
posed to utilize deep convolution neural network to learn high-
level semantic information of RS images, which can signifi-
cantly improve the accuracy and speed of RSIR. For example,
Ye et al. [24] leveraged high-level semantic information and
SIFT features of RS images to construct feature sets to match
RS images. Liu et al. [25] transformed similarity learning into
deep ordered classification learning to tackle the issue of relying
on a large number of labeled samples in traditional RSIR. Kumar
etal. [26] utilized CNN to extract high-level semantic features of
RS building images for RSIR. Imbriaco et al. [27] added saliency
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module to obtain multiscale convolution aggregation features to
perform RSIR.

Although the effect of deep learning-based RS image retrieval
is good, massive data have higher requirements for storage
space and computational complexity. Deep hashing technology
is widely applied to solve the problem of large-scale RSIR due to
its low computational complexity and small storage space. For
example, Zhu et al. [28] developed a novel hash codes learning
approach with multiple features learning for RS images. Li
et al. [5] introduced a novel partial randomness hashing method,
which mapped RS images to low-dimensional feature repre-
sentation by random projection in an unsupervised manner for
large-scale RSIR. Reato et al. [29] introduced an unsupervised
hash codes learning method for accurate and scalable RSIR.
Kang et al. [30] proposed a new deep-hashing technique based
on the class-discriminated neighborhood embedding, which can
properly capture the locality structures among the RS scenes
and distinguish images classwisely in the Hamming space. Han
et al. [31] developed a deep cohesion intensive network, which
not only improved the retrieval performance of RS images, but
also overcame the imbalance problem of RS images.

As far as we know, few works perform unsupervised RS image
retrieval by using hash codes [11], [12]. However, existing deep
learning-based RSIR methods cannot consider the interactions
among the multichannel information of multispectral RS images
and reduce the disparity between the hash-like codes space and
the Hamming space, which affect the retrieval performance.
To improve the retrieval performance, UTBH can guide the
interactions among multichannel information of multispectral
RS images and reduce the disparity between the hash-like codes
space and the Hamming space effectively.

III. PROPOSED METHOD

In this section, we first clarify the conception of RSIR in
Section III-A. Second, Section III-B presents the architecture of
UTBH. Third, Section III-C introduces the details of RS trans-
former. Finally, Section III-D provides the objective function of
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UTBH. The deep architecture of the proposed UTBH approach,
which can guide the interactions between multichannel informa-
tion of multispectral RS images and reduce the disparity between
the hash-like codes space and the Hamming space effectively,
as demonstrated in Fig. 2.

A. Notation

Given N RS images X = {z,,})_,, where x,, denotes the
nth RS image. The aim of hash codes learning is to generate
hash function H that projects RS image z,, into hash codes
by, € {—1, 1}k while preserving the similarity of RS image [32],
[33], [34]. Existing RS image retrieval approaches ignore the in-
teractions among the multichannel information of multispectral
RS images. Hence, we develop a RSIR approach called UTBH to
perform hash codes learning by guiding the interactions among
the multichannel information of multispectral RS images and
reducing the disparity between the hash-like codes space and the
Hamming space. As demonstrated in Fig. 2, the UTBH approach
consist of two components: 1) The proposed UTBH model inte-
grates a convolutional variational autoencoders architecture with
anovel RS transformer, which can guide the interactions among
the multichannel information of multispectral RS images. 2)
A novel objective function is developed by the composite of
reconstruction cost, KL divergence and balanced term, which
capture discrimination of hash codes in the hash codes learning
process and reduce the disparity between the hash-like codes
space and the Hamming space. In the following section, we first
describe the architecture of the proposed UTBH approach, and
then we present the details of RS transformer. Finally, we clarify
the objective function.

B. Model Architecture

The proposed framework of UTBH is demonstrated in Fig. 2.
The proposed framework leverages variational autoencoder as
the backbone network, which contains the inference network and
the generation network. The details are explained as follows.

Inference network: The inference network is exploited to
implement variational inference on the raw data and produces the
variational probability distribution of latent variables. Specifi-
cally, the inference network Zy (h., |xn) projects the raw data x,,
into the variational probability distribution. Then, the feature
vector h,, is sampled from the variational probability distribu-
tion. The inference network consists of RS transformer, two
parallel fully connected layer and a hashing encoding layer. The
parallel fully connected layer contains k nodes. The hashing
encoding layer leverages the reparameterization trick to connect
two parallel fully connected layer. The details of RS transformer
are introduced in Section III-C.

Generation network: The generation network is leveraged to
restore the approximate probability distribution of the raw data
from the variational probability distribution of latent variables.
Specifically, generation network G, (z), ’hn) projects feature
vector h,, to reconstruct x,. The generation network consist
of a fully connected layer, a reshape operator, four transposed
convolution layers with BN [35], and a convolutional layer [36],
[37], [38]. Four transposed convolution layers exploit 256, 128,
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64, and 32 filters with size 3x3. The stride of transposed con-
volution layers is 2 pixels. Four transposed convolution layers
utilize the LeakyReLU function as the activation function. A
convolutional layer exploits three filters with size 3x3. The
stride of convolution layer is 1 pixel. It utilizes the tanh function
as the activation function.

Accordingly, given any RS image x,,, deep hashing function
is formulated as

by = H(xn) = sign(Zy(hn|zn)) (1)
with
sign(z) = { ji i i 8 (2)

where b,, denotes k-bits hash codes for instance z,,, H denotes
deep hashing function for instance x,,. # denotes the parameters
of the inference network.

C. RS Transformer

Following [39], [40], [41], RS transformer consists of a con-
volution layer, a patch reshape operator, a position embeddings,
RGB self-attention module, and NIF self-attention module. The
convolution layer exploit 128 filters with size 8 x 8. The stride of
the convolution layer is 8 pixel. The patch reshape operator can
reshape the feature maps to 16 patch embeddings with 128 dims.
Position embeddings can be added to the patch embeddings.
Specifically, 17 standard learnable 1-D position embeddings
with 128 dims are leveraged to retain positional information
and the site of Oth position embedding is added to a standard
token, which contains 128-D learnable parameter. The resulting
sequence of embedding vectors serves as input to the RGB
self-attention module and NIF self-attention module.

NIF self-attention module: The NIF self-attention module em-
ployed six alternating stacks of eight multiheaded self-attention
and MLP layers. In other words, one alternating stack consists of
two sublayer, which applied a layer norm before each sublayer
and residual connection after each sublayer. So the output of
each sublayer can be formulated as

SubLayerOut = LayerNorm(I,, + (SubLayer(Z,,))) (3)

where SubLayerOut denotes the output of each sublayer. I,
denotes the sublayer input.

Multihead self-attention process of NIF self-attention block
can be shown in Fig. 3. inputly;; denotes the input patch
embeddings of stack i. output ;- is served as input of the i + 1
stack input} . We employ these parameter weights WN'F,
WNIE WNIF (o transfer inputly ; - to matrices Q% ;s K& 75
V1 and the attention sublayer is formulated as follows:

Qi p K T )
attentiony 7 = softmax [ ~NE_NIE )y (4)

Vdy,

where softmax(-) denotes the softmax function. To take into
account the speed and space-efficient [42], the dot products can
be scaled by v/dj,.

RGB self-attention module: The RGB module consists a stack
of six identical layers. Unlike the NIF attention sublayer in each
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Fig. 5. t-SNE visualizations of the hash-like codes of the proposed UTBH-L
approach without considering the balanced term on SAT-6 dataset.

stack, the RGB self-attention sublayer inserts a second mask
function. Multihead self-attention process of RGB self-attention
module is shown in Fig. 4. Similar to NIF attention layer, the
RGB attention sublayer is formulated as follows:

i i T
QrceKren VéGB
Vdy,

attentiongep = softmax (

; ;T
7 K'L )
+ softmax (%) Vias )

where Q% ; denotes the query matrices of RGB self-attention
module. { K }'%G 5> Vrap) denote paired key-value matrices of
RGB self-attention module.

D. Objective Function

Fig. 2 shows the brief overview of the proposed UTBH
approach. To generate effective hash codes, reconstruction cost
can be given as

N

jrl = Z Hwn - g¢(xn|bn)||2 (6)

i=1

where g¢(m"|bn) denotes the generation network of b,,. The
reconstruction cost is leveraged to constrain the input value
before coding and the output value after decoding, so that the
reconstructed data of variational autoencoder is still similar to
the original data. However, 7,1 in (6) is a nonsmooth function,
which is hard to calculate the derivative in the deep neural
network training process. Following [43], reconstruction cost
can be rewritten as

N
T =Y an = Go(@n|hn)|? (7)
=1

where 7, denotes reconstruction cost and h,, denotes hash-like
codes.

In addition, the variational autoencoder needs to keep the
variational probability distribution approximate the standard
normal distribution N (0, 1) by minimizing KL divergence. The
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KL divergence can be defined as
Tz = KL(N (ni,0:%)) | N(0,1)) ®

where 7, ,2 denotes the KL divergence, which can preserve
discrimination of hash codes in the learning process.

Since the disparity between the hash-like codes space and
the Hamming space is inescapable, a novel balanced term is
proposed to reduce the disparity between the hash-like codes
space and the Hamming space effectively. Following [44], [45],
the balance rule expects each value of the hash-like codes to
approximate —1 or 1. To conserve the balance property of hash
codes, the balanced term can be defined as

il > 1

9
—-l<p <1 ©)

0,
w={ S0
where 7, denotes the balanced term, which can reduce the dis-
parity between the hash-like codes space and the Hamming space
effectively. The balanced term can obviously encourage each
value of the network outputs of hash-like codes to approximate
—lorl.
By considering the above three parts (i.e., reconstruction cost
Jr, KL divergence J, ,2, and balanced term 7), the total
objective function can be formulated as

J = \77’ + aju,o2 + /ij (10)

where « and 8 denote the hyperparameters that evaluate the
degree of term. J denotes the total objective function, which can
preserve discrimination of hash codes in the hashing learning
process and reduce the disparity between the hash-like codes
space and the Hamming space effectively.

IV. EXPERIMENTS

In this section, we clarify two RS datasets and evalua-
tion protocols in Section IV-A. The implementation details of
UTBH in Section I'V-B. Section IV-C introduces different factors
of UTBH. Section IV-D analyzes the experiment of UTBH.
Section V presents the conclusion of UTBH.
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samples are marked with a tick.

Algorithm 1: UTBH Algorithm.

Input:
N trained samples {z; }¥ .
Qutput:
The parameters 6 and ¢ of UTBH approach.
Initialization:
The parameters 6 and ¢ are initialized by glorot _
uniform distribution.

Repeat:

1: Utilize generation network Zy (h, ‘a:n ) to obtain
hash-like codes h.,;

2:  Leverage generation network Gy (| hy) to

reconstruct x,;
3: Compute hash codes b,, according to (1);
4: Compute the objective function 7 by (10);

5: Update the parameters ¢ and ¢ by utilizing Adam.

Until: a fixed number of iterations.
Return: 6 and ¢.

Top 10 retrieval samples with 64 bits on SAT-6 dataset. (a) UTBH. (b) UTBH-T. The false retrieval samples are marked with a cross. The right retrieval

A. Dataset and Evaluation Protocols

To demonstrate the effectiveness of UTBH, three public RSI
datasets are leveraged to compare the proposed UTBH approach
with other RSIR approaches.

D

2)

SAT-4 dataset contains 500 000 multispectral RS im-
ages [46]. Each multispectral RS image has four channels,
which represent red (R), green (G), blue (B), and near
infrared (NIR). The size of each multispectral RS image
is 28 * 28. Following [11], the proposed UTBH approach
randomly conduct 1000 multispectral RS images to con-
stitute the test and retrieval set. Moreover, the remainder
multispectral RS images can be selected to constitute the
training set.

SAT-6 dataset contains 405 000 multispectral RS im-
ages [46]. Each image has four channels. The size of
multispectral RS image is 28 x 28. The SAT-6 dataset
has six categories. Following [11], the proposed UTBH
approach randomly selects 1000 RS images to constitute



CHEN et al.: UNSUPERVISED TRANSFORMER BALANCED HASHING FOR MULTISPECTRAL REMOTE SENSING IMAGE RETRIEVAL

SAT-4
0.75 ‘
0.7+
0.65 -
™ 06 ’a’:b': o 2
b
= s
S ¥
L 055F
2
Q.
L —&— UTBH
0.5 —o— VAEH
OPRH
=—P— OSH
045 —o— OKH
L._.\.\'\‘ PRH
—8— KULSH
04 1 1 1 1 U S

0 10 20 30 40 50 60 70 80 90 100
#of retrieved points

Fig. 8. Precision curves with different returned samples with 32 bits in the
SAT-4 dataset.

the test and retrieval set. The remainder RS images can be
selected to constitute the training set.

3) The AID dataset [47] contains 10 000 images with 30
classes. The size of RS image is 600 x 600. RGB channels
are used to generate NIR [48]. Then, we use NIR and
RGB to form a multispectral image. In the training stage,
20% images are randomly utilized as a test query set, and
the rest 80% images are regarded as the training. These
evaluating metrics mAP and the precision in top-m of the
ranking list are leveraged to evaluate experimental results
of the proposed UTBH approach [33], [43], [49], [50].

B. Implementation Detail

The proposed UTBH approach is carried out by leveraging the
open-source Pytorch! and Mindspore? library. The experiments
are carried out on workstation with Inter Core i17—5930 K 3.50
GHZ CPU, 64 G RAM, and GeForce GTX Titan X GPU. The
proposed UTBH network is optimized by exploiting Adam [51].
The batch size of the proposed UTBH network is fixed as 512.
To produce {32, 48, 64}-bit hash codes, hash code length £ is
fixed from 32 to 64, individually. The weight initialization of
UTBH exploit glorot _ uniform distribution. The parameter «
is fixed to 1. 3 is fixed to 5. The proposed UTBH network is
trained for five epochs, or stop training until the loss does not
decline [52].

C. Evaluation of Different Parts

To estimate the significance of the RS transformer and the
balanced term in the UTBH model, the experiments are carried
out at the following points: First, we exploit the UTBH model
without the RS transformer to learn hash function (i.e., UTBH-
T). Second, we utilize the UTBH model without leveraging the
balanced term to perform cross-modal learning (i.e., UTBH-L).
Finally, we implement the proposed approach (i.e., UTBH).

For the SAT-4 dataset, Table I presents the comparison of
mean precision of top-10 ranked results and top-100 ranked

![Online]. Available: https:/pytorch.org
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TABLE I
COMPARISON OF MEAN PRECISION OF THE TOP-10 RETRIEVED RESULTS AND
THE TOP-100 RETRIEVED RESULTS FOR UTBH-T, UTBH-L AND UTBH ON
THE SAT-4 DATASET WITH DIFFERENT HASH BITS

Task Constraint  32bits  48bits  64bits
UTBH-T 625 66.7 69.3
Top-10  UTBH-L  64.3 68.1 71.4
UTBH 70.1 70.7 72.0
UTBH-T  52.2 57.0 61.0
Top-100  UTBH-L  55.4 583 62.7
UTBH 62.1 62.2 63.2

TABLE Il

COMPARISON OF MEAN PRECISION OF THE TOP-10 RETRIEVED RESULTS AND
THE TOP-100 RETRIEVED RESULTS FOR UTBH-T, UTBH-L, AND UTBH ON
THE SAT-6 DATASET WITH DIFFERENT HASH BITS

Task Constraint  32bits  48bits  64bits
UTBH-T  79.0 78.8 79.1

Top-10 UTBH-L  79.6 80.2 79.3
UTBH 824 83.6 83.6

UTBH-T  71.8 72.2 71.6

Top-100  UTBH-L  73.3 74.1 73.4
UTBH 76.8 78.1 77.3

results for UTBH-T, UTBH-L, and UTBH with 32, 48, and 64
bits. For the SAT-6 dataset, Table II presents the comparison
of mean precision of the top-10 ranked results and the top-100
ranked results for UTBH-T, UTBH-L, and UTBH with 32, 48,
and 64 bits. It can be seen from Tables I and II that UTBH obtains
better performance than UTBH-T and UTBH-L. For example,
for the top-10 ranked results with 32 bits, UTBH can enhance
the mAP to 70.1% from 62.5% carried out by UTBH-T, 64.3%
carried out by UTBH-L. For the top-100 ranked results with 32
bits, UTBH can enhance the mAP to 62.1% from 52.2% carried
out by UTBH-T, 55.4% carried out by UTBH-L. This is because
UTBH exploits the RS transformer and the balanced term to
learn more efficient hash codes. Specially, Fig. 5 presents t-SNE
visualizations of hash-like codes of the proposed UTBH ap-
proach without considering the balanced term on SAT-6 dataset.
Fig. 6 shows t-SNE visualizations of hash-like codes of the
proposed UTBH approach on SAT-6 dataset. As demonstrated
in Fig. 5, UTBH without exploiting the balanced term fails
to generate the discriminative hash codes. Because it cannot
reduce the disparity between the hash-like codes space and the
Hamming space. Besides, we demonstrate the comparability
between UTBH and UTBH-T in Fig. 7, where top ten ranked
RS images with 64 bits on SAT-6 dataset obviously speculate
the significance of UTBH retrieval result.
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TABLE III
COMPARISON OF MEAN PRECISION OF THE TOP-10 RETRIEVED RESULTS FOR
DIFFERENT METHODS ON THE SAT-4 DATASET WITH DIFFERENT HASH BITS

Method 32 bits(%) 48 bits(%) 64 bits(%)
IMH [53] 56.0 53.8 54.8
IsoHash [54] 60.6 64.0 65.5
ITQ [55] 63.6 65.3 66.2
SpH [56] 59.6 62.3 65.8
KULSH [57] 49.2 50.7 55.3
Top-10 PRH [5] 60.7 62.1 66.5
OKH [58] 439 51.6 60.0
OSH [59] 60.3 63.7 64.7
OPRH [12] 60.8 63.0 65.6
VAEH [11] 62.5 65.0 66.6
UTBH 70.1 70.7 72.0

The bold values represent the best results on the corresponding dataset.

TABLE IV
COMPARISON OF MEAN PRECISION OF THE TOP-100 RETRIEVED RESULTS FOR
DIFFERENT METHODS ON THE SAT-4 DATASET WITH DIFFERENT HASH BITS

Method 32 bits(%) 48 bits(%) 64 bits(%)
IMH [53] 55.0 524 54.1
IsoHash [54] 57.6 59.4 59.7
ITQ [55] 60.9 60.7 61.0
SpH [56] 56.3 58.8 60.7
KULSH [57] 47.6 479 52.6
Top-100 PRH [5] 59.2 59.5 62.2
OKH [58] 41.8 48.0 56.1
OSH [59] 56.8 59.6 59.6
OPRH [12] 59.8 59.4 61.6
VAEH [11] 60.7 61.6 62.3
UTBH 62.1 62.2 63.2

The bold values represent the best results on the corresponding dataset.

D. Method Comparison

1) Results on SAT-4 Dataset: For the SAT-4 dataset, to assess
the significance of UTBH, we compare UTBH with several ap-
proaches, including IMH [53], IsoHash [54],ITQ [55], SpH [56],
KULSH [57], PRH [5], OKH [58], OSH [59], OPRH [12],
VAEH [11]. VAEH is a deep learning-based approach. IMH,
IsoHash, ITQ, SpH, KULSH, PRH, OKH, OSH, and OPRH are
traditional methods. Table III presents the comparison of mean
precision of the top-10 ranked results for many approaches with
32, 48, and 64 bits. Table IV shows the comparison of mean
precision of the top-100 ranked results for many approaches
with 32, 48, and 64 bits. We can obviously notice that although
comparative retrieval approaches have gained good outcome on
two metrics, UTBH can attain the best precision in top ten ranked
consequence and the best retrieval precision in top 100 ranked
consequence on RS image dataset. For example, for the top-10
retrieved results, the proposed UTBH approach can enhance
the mean precision with 64 bits from IMH (54.8%), IsoHash
(65.5%), 1TQ (66.2%), SpH (65.8%) KULSH (55.3%), PRH
(66.5%), OKH (60.0%), OSH (64.7%), OPRH (65.6%), VAEH
(66.6%) to 72.0%. Moreover, the top-100 retrieved results,
UTBH can enhance the mean precision with 64 bits from IMH
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Fig. 9. Precision curves with different returned samples with 48 bits in the
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Fig. 10.  Precision curves with different returned samples with 64 bits in the
SAT-4 dataset.

(54.1%), IsoHash (59.7%), ITQ (61.0%), SpH (60.7%) KULSH
(52.6%), PRH (62.2%), OKH (56.1%), OSH (59.6%), OPRH
(61.6%), VAEH (62.3%) to 63.2%. Fig. 8 shows precision curves
with different returned samples with 32 bits. Fig. 9 presents
precision curves with different returned samples with 48 bits.
Fig. 10 presents precision curves with different returned samples
with 64 bits. From these three figures, UTBH can gained better
outcome than other comparative approaches. This is because
UTBH can not only guide the interactions among the multichan-
nel information of multispectral RS images, but also reduce the
disparity between the hash-like codes space and the Hamming
space adequately.

2) Results on SAT-6 Dataset: For the SAT-4 dataset, the com-
parison of mean precision of the top-10 ranked results for many
approaches with 32, 48, and 64 bits is shown in Table V. The
comparison of mean precision of the top-100 ranked results for
many approaches with 32, 48, and 64 bits is shown in Table VI.
Fig. 11 presents precision curves for different ranked samples
with 32 bits. Fig. 12 presents precision curves for different
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TABLE V
COMPARISON OF MEAN PRECISION OF THE TOP-10 RETRIEVED RESULTS FOR
DIFFERENT METHODS ON THE SAT-6 DATASET WITH DIFFERENT HASH BITS

Method 32 bits(%) 48 bits(%) 64 bits(%)
IMH [53] 58.3 62.6 60.4
IsoHash [54] 66.7 68.0 67.3
ITQ [55] 67.2 69.1 68.1
SpH [56] 64.2 66.4 69.4
KULSH [57] 41.3 459 452
Top-10 PRH [5] 65.1 68.2 68.3
OKH [58] 54.1 61.9 63.8
OSH [59] 66.9 68.4 68.0
OPRH[12] 64.5 69.9 70.5
VAEH[11] 69.1 73.2 74.8
UTBH 82.4 83.6 83.6

The bold values represent the best results on the corresponding dataset.

TABLE VI
COMPARISON OF MEAN PRECISION OF THE TOP-100 RETRIEVED RESULTS FOR
DIFFERENT METHODS ON THE SAT-6 DATASET WITH DIFFERENT HASH BITS

Method 32 bits(%) 48 bits(%) 64 bits(%)
IMH [53] 575 61.4 58.2
IsoHash [54] 63.5 64.5 64.2
ITQ [55] 64.9 66.0 65.3
SpH [56] 61.6 63.1 65.7
KULSH [57]  41.8 49.6 52.0
Top-100  PRH [5] 62.9 65.8 65.2
OKH [58] 52.1 59.2 61.7
OSH [59] 63.9 65.0 64.7
OPRH [12] 63.1 67.2 67.7
VAEH [11] 67.9 70.4 71.2
UTBH 79.5 78.1 77.3

The bold values represent the best results on the corresponding dataset.

ranked samples with 48 bits. Fig. 13 presents precision curves
for different ranked samples with 64 bits. Similar experimental
results are clearly observed on SAT-4 image dataset. UTBH
achieves the best performance on all the metrics, which illustrate
the availability of generating hash codes by guiding the inter-
actions among the multichannel information and reducing the
disparity between the hash-like codes space and the Hamming
space adequately.

3) Results on AID Dataset: To investigate the effectiveness
of the proposed UTBH approach in RSI retrieval task, we
compare UTBH with several approaches, including PRH [5],
OSH [59], OPRH [12], GreedyHash [60], VAEH [11], and
BihalfHash [61]. GreedyHash, VAEH, and BihalfHash are deep
learning-based approaches. Table VII shows the comparison
of mean precision of the top-10 ranked consequences and the
top-100 ranked consequences for different algorithms on the
AID dataset with different lengths. For example, for the top
10 retrieved results, the proposed UTBH approach can en-
hance the mean precision with 64 bits from PRH (15.78%),
OSH (16.84%), OPRH (17.46%), GreedyHash (19.35%), VAEH
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TABLE VII
COMPARISON OF MEAN PRECISION OF THE TOP-10 RANKED CONSEQUENCES
AND THE TOP-100 RANKED CONSEQUENCES FOR DIFFERENT ALGORITHMS ON
THE AID DATASET WITH DIFFERENT LENGTHS

Method 32 bits(%) 48 bits(%) 64 bits(%)
PRH [5] 15.13 15.46 15.78
OSH [59] 16.24 16.64 16.84
OPRH [12] 16.68 16.94 17.46
Top-10 GreedyHash [60] 17.64 17.88 19.35
VAEH [11] 18.41 19.28 20.39
BihalfHash [61] 20.46 23.37 24.45
UTBH 22.14 23.72 25.63
PRH [5] 10.54 10.77 11.05
OSH [59] 11.64 11.82 11.96
OPRH [12] 11.95 12.16 12.63
Top-100  GreedyHash [60] 11.84 11.94 15.03
VAEH [11] 11.84 13.27 14.74
BihalfHash [61] 14.36 16.18 17.36
UTBH 15.14 16.26 17.86

The bold values represent the best results on the corresponding dataset.

(20.39%), BihalfHash (24.45%) to 25.63%. Moreover, the top-
100 retrieved results, UTBH can enhance the mean preci-
sion with 64 bits from PRH (11.05%), OSH (11.96%), OPRH
(12.63%), GreedyHash (15.03%), VAEH (14.74%), BihalfHash
(17.36%) to 17.86%. Thus, compared with other state-of-art
retrieval approaches, the UTBH approach achieves better per-
formance, which demonstrates the effectiveness of the proposed
UTBH approach.

V. CONCLUSION

In this article, we develop a novel unsupervised multispec-
tral RS image retrieval approach, which learns hash codes by
guiding the interactions among the multichannel information
of multispectral RS images and reducing the disparity between
the hash-like codes space and the Hamming space adequately.
Firstly, the proposed UTBH method utilizes the transformer for
solving the issue of deficient usage of the interactions among the
multichannel information of multispectral RS images. Second,
we perform effective hash codes learning by designing a novel
objective function, which not only preserves discrimination of
hash codes in the learning process but also reduce the disparity
between the hash-like codes space and the Hamming space.
Finally, comprehensive experiments on diverse benchmark have
well demonstrated the reasonableness and effectiveness of the
proposed UTBH method.
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