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Abstract—Deep learning methods have shown great promise
in automatically extracting features from hyperspectral images
(HSIs) for classification purposes. Recently, researchers have
recognized the importance of high-order feature interactions—
capturing relationships between features in different image
regions—in extracting discriminative features. Despite their effec-
tiveness, the existing deep learning models for HSI classification
often overlook high-order feature interactions, resulting in sub-
optimal performance. To address this issue, we propose a novel
spectral–spatial multiorder interaction network (S2MoINet) for
HSI classification. The proposed framework can effectively extract
highly discriminative features by leveraging correlations between
features in different locations, significantly improving the classifi-
cation accuracy. More specifically, we design a multiorder spectral–
spatial interaction block in the framework to extract the high-order
and generalized features by leveraging the interaction between
spatial and spectral features. Based on experimental results from
four public HSI datasets, it has been shown that the proposed
S2MoINet delivers optimal classification results when compared
to other state-of-the-art methods.

Index Terms—Hyperspectral image classification, multiorder
interaction, neural networks, recursive gating mechanism,
spectral–spatial feature representation.

I. INTRODUCTION

A HYPERSPECTRAL image (HSI) contains numerous
spectral bands that cover a specific, continuous, and nar-

row wavelength range of the electromagnetic spectrum, ren-
dering them abundant in spectral information [1]. Standard
processing methods for the HSI include noise reduction, feature
selection, and classification [2], [3], [4]. HSI classification is
a fundamental task of HSI interpretation due to its ability to
help researchers identify specific materials, and this technique
has been used successfully in a variety of applications, such
as urban planning [5], military reconnaissance [6], agricultural
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production [7], earth observation [8], and mineral resource
prospecting [9].

In the early stages of HSI classification research, numer-
ous explorations have been conducted using machine-learning-
based models [10]. These methods typically require manual
feature extraction and utilize algorithms, such as support vector
machines, random forests, and k-nearest neighbors, to imple-
ment HSI classification [11]. Regrettably, these methods meet
difficulty in effectively capturing high-dimensional and nonlin-
ear features in HSI data, leading to suboptimal classification
accuracy.

The classification of HSI has been widely researched with
deep learning models thanks to the development of comput-
ing technology and algorithms. Among these deep learning
models, convolutional neural networks (CNNs) have been ex-
tensively explored for their automatic capability in extracting
HSI features [1], [12]. In particular, various types of CNNs
have been devised, including capsule networks [13], [14], graph
CNNs [15], [16], and morphological convolution network mod-
els [17]. These models improve object feature representation,
topological feature relationships, and morphological description
by leveraging the flexible feature extraction of convolution.
CNNs allow for extracting abundant spectral–spatial features
from HSI data, making them a popular choice for HSI classifi-
cation tasks. Nevertheless, the shared convolution operators of
these models tend to create homogeneous features, which can-
not effectively capture the discrepancy information of different
spectral channels and spatial locations in the HSI. As a result,
the capacity of models to discriminate HSI features is severely
suppressed.

The attention mechanism is a feasible way to enhance fea-
ture distinguishability. It simulates human visual perception by
selectively focusing on salient parts, rather than treating every
part equally [18]. More studies have been conducted to introduce
attentional mechanisms into the HSI classification task to obtain
more representative features from the perspective of channel
attention, spatial attention, and spectral–spatial attention [19],
[20], [21]. Furthermore, methods such as multiscale attention
block [22], [23] and adaptive attention block [24] have been
designed to obtain more discriminative and comprehensive HSI
spectral–spatial feature information.

The self-attention (SA) mechanism engages with features
from various locations, leading to the development of sev-
eral SA-mechanism-based approaches for HSI classification.
SA mechanisms, grounded in this principle, determine feature
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weights based on their similarity to other features [25], [26].
Recent studies have demonstrated this through various attention-
based methods, such as the spectral attention mechanism, the
SA context network, the spectral–spatial self-mutual attention
network, etc. [27], [28], [29], [30], [31]. The SA mechanism
can only obtain the second-order interaction information of the
data, and its operation requires the calculation of the similarity
matrix between all the pixels. It may lead to high computational
complexity when utilizing it for the HSI classification tasks,
resulting in inefficient models.

Similarly, the gating mechanism works by assigning weights
to features, which helps to suppress redundant information
and highlight relevant information. This ultimately leads to
improved performance in the target task [32], [33], [34]. More
recently, Rao et al. [35] introduced HorNet for computer vision
tasks, offering a novel perspective on feature extraction wherein
feature interaction entails capturing relationships between fea-
tures across distinct image regions. They categorized the feature
extraction approaches of the CNN [12], SENet [36], and visual
transformer [26] as zeroth-order, first-order, and second-order
interaction features, respectively. Specifically, they employed re-
cursive gating convolutions to eliminate excessive information,
thereby preserving distinguishable features through iterative
evaluation of correlations across various locations and assigning
negligible weights to homogeneous features. The application
of high-order feature interactions to enhance RGB image clas-
sification effectiveness has been demonstrated across multiple
domains [37]. HorNet’s success in computer vision tasks has
inspired us to develop HSI classification models. However, the
existing deep learning approaches for the HSI have not incorpo-
rated multiorder interaction features, which is a limitation that
hinders the performance of these models. Moreover, owing to
the unique spectral characteristics of HSI data, directly applying
RGB image classification methods to HSI classification presents
a challenge.

To tackle the abovementioned challenges, we develop a novel
classification framework for the HSI, named spectral–spatial
multiorder interaction network. This framework has two main
parts. First, we introduce a spectral–spatial feature representa-
tion and fusion (S2FRF) block, which extracts spectral–spatial
feature information from the input HSI patches. Second, we
design a multiorder spectral–spatial interaction (MoS2I) block
for high-order feature extraction, which is composed of the mul-
tiorder spectral–spatial gating mechanism (MoS2GM) module
together with other common operations to acquire the local
and global high-order contextual interaction feature. Through
combining the high-order spectral–spatial interaction features,
our approach can obtain a more sufficient high-order information
representation of HSI objects and then can effectively identify
more complex targets in HSI data. Meanwhile, considering the
feature importance of spectral and spatial domains, we adopt the
SA mechanism to emphasize the interested information, thus al-
lowing the model to suppress redundant information effectively,
especially in spatial–spectral features. Furthermore, the skip
connection is also employed to transmit low-order information
into the deep layer for capturing high-order interaction features.
The main contributions of this article can be summarized as
follows.

1) The main innovation of this article is to introduce the
idea of high-order spectral–spatial feature extraction and
interaction into the HSI classification task.

2) According to the properties of HSI data, a spectral–spatial
multiorder interaction network (S 2 MoINet) is designed
to achieve effective and efficient HSI classification by
extracting high-order and generalized features based on
the interaction of spatial–spectral features.

3) To comprehensively represent spectral–spatial features
and their multiorder interactions in the spectral and spatial
domains, we introduce a novel MoS 2 I block that employs
a gating mechanism to iteratively suppress redundant fea-
tures.

4) We have conducted both the qualitative and quantitative
assessments of the classification capabilities of our S 2

MoINet on various HSI datasets, with thorough abla-
tion studies. The experimental results indicate that our
proposed network outperforms other current backbone
networks with a maximum improvement of 10% in overall
accuracy (OA).

The rest of this article is organized as follows. Section II
summarizes the related work of HSI classification. Section III
introduces the proposed S2MoINet model and describes its com-
ponent modules in detail. Section IV presents the experimental
settings and result analysis. Section V presents the discussion.
Finally, Section VI concludes this article.

II. RELATED WORK

HSI data usually contain massive spectral bands and spa-
tial pixel information, and the information interaction between
spectral and spatial dimensions is essential for the analysis
and application of hyperspectral data [38]. When performing
HSI classification tasks, traditional models frequently use two
primary kinds of spectral-based feature extraction methods and
spectral–spatial-based feature extraction methods [39], [40]. In
addition, the information in HSI data is also complex and diverse,
and the shallow (texture) features of the HSI obtained through
the model cannot express the information from ground objects
well, so it is necessary to further capture the high-order (contour,
shape, etc.) abstract features of the HSI to achieve adequate
representation of the ground object information.

In this article, we introduce a novel model called the
S2MoINet, which integrates the spectral–spatial interaction re-
lationship between features at different locations through an
MoS2GM. It can effectively capture the more representative and
discriminative high-order interaction feature information of the
HSI and finally achieve a more accurate classification of the HSI.

In this section, we briefly review the development of elemen-
tary ideas and specific operations associated with the proposed
model, namely, the convolution-based model, attention mecha-
nism, SA mechanism, and gating mechanism.

A. Convolution-Based Model

Deep learning techniques have recently gained attention for
extracting spectral and spatial features simultaneously [1], [4],
[41]. CNNs, a deep learning approach, automatically extract
local structure and deep abstract features from input image
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data. CNNs have been widely applied in computer vision tasks
and have achieved remarkable performance in HSI spatial–
spectral feature extraction and classification. For instance, Chen
et al. [12] adopted the CNN approach to automatically obtain
spectral–spatial features from the HSI, achieving better classifi-
cation performance. Zhong et al. [42] proposed a spectral–spatial
residual network to realize robust HSI classification results by
utilizing the residual blocks and 3-D convolutions. Li et al. [43]
utilized a fully group CNN method and achieved robust classifi-
cation accuracy with relatively less parameters. Meng et al. [44]
designed a residual dense asymmetric convolutional network
that reduced feature redundancy and parameters through a novel
concatenation mechanism and asymmetric convolution so as to
capture discriminative HSI features.

In recent years, novel-convolution-based variants have
emerged, including graph convolution networks [45], [46] that
can deal with non-Euclidean structures, the morphological con-
volutional network [17] that can retain the basic features of
images (such as the boundary, shape, and structure information),
and the capsule network [14], [47] that can capture the pose and
spatial relationship of objects. While CNN-based models have
proven effective for HSI classification tasks, they have limited
capacity for capturing long-range dependencies and interactions
across different regions. Therefore, it is not enough to obtain
spectral–spatial features by convolution operations alone.

B. Attention Mechanism

The attention mechanism enables the evaluation of the relative
importance between different input features, obtains the corre-
lation between data, and eventually obtains more discriminative
features in the image [36].

Many experts have already utilized the attention mechanism
to perform HSI classification tasks. Wang et al. [19] designed a
model that utilized the squeeze-and-excitation module to acquire
more conducive spectral and spatial features for HSI classifica-
tion. Furthermore, experts also studied the attention mechanism
and the feature fusion block, which can learn discriminative
features containing HSI spectral information and spatial back-
ground features from different sensory fields [20], [24]. Zhu
et al. [21] adopted a residual spectral–spatial attention model
to suppress useless band and spatial information for adaptive
feature selection and refinement of HSI spectral–spatial infor-
mation. Gao et al. [22] proposed a densely connected multiscale
attention model to effectively emphasize the features and im-
prove the extraction and fusion capability of HSI spectral–spatial
features. Fang et al. [23] constructed a network by utilizing the
multiattention method to effectively fuse the spectral–spatial
features for superior classification results.

Compared to the previous convolution-based models, the
attention mechanism can effectively capture the representative
features in HSI data, which is conducive to HSI classification.

C. SA Mechanism

The SA mechanism allows each element of an input sequence
to interact with others by calculating the scaled dot-product
of query, key, and value, which can facilitate the learning of

Fig. 1. Structure of the SA mechanism, where Q, K, and V are the input
matrixes. Mul stands for the matrix multiplication operation, Scale represents
the scaling operation, and Softmax is the normalized exponential function.

correlations between different parts of the data [25]. The basic
structure details are shown in Fig. 1. Let X ∈ R

N×D denote the
input data, and the SA layer is calculated as follows:

SA(Q,K, V ) = Softmax (QKT/
√
d)V (1)

where d is the hidden dimension of queries Q and keys K. The
query Q = XW Q, key K = XW K, and value V = XW V

matrices are computed via linear projections.
The correlation information between data can be obtained by

matrix multiplication operation. Therefore, it can dynamically
generate weights to effectively capture second-order interaction
information in data after two successive matrix multiplication
operations in SA.

For HSI classification, an increasing number of studies have
proposed using SA mechanisms to enhance the ability of models
to capture remote spectral–spatial interactions across different
bands and spatial locations [48]. Specifically, Qing et al. [27]
constructed an end-to-end transformer model by utilizing the
SA mechanism to effectively capture the long-range contin-
uous spectrum relationship in HSI. Zhou et al. [31] adopted
the self-mutual attention mechanism and the SA module to
extract spectral–spatial correlations and account for long-range
dependencies. Zhang et al. [49] introduced an innovative atten-
tion model called the global-local block spatial–spectral fusion,
which was designed to effectively gather information from both
the spectral and spatial dimensions to classify HSI data. Recent
studies have shown that models combining convolution and
SA mechanisms [29], [50] generally outperform single-model
approaches.

D. Gating Mechanism

The gating mechanism is also a wide application in deep
learning for image feature extraction. It can perform the gating
operation on the convolution or recurrent layer and selectively
amplify or suppress feature channels, dimensions, or time-series
features, which enhances the adaptability to different inputs. For
example, Mou et al. [32] regarded the HSI as sequence data and
then employed the recurrent neural network (RNN) model along
with the custom activation function and adjusted gated recurrent
unit to address the multiclass classification problem of the HSI.
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Fig. 2. Overall structure of the S2MoINet model for HSI classification, which includes the S2FRF block to capture the spectral–spatial information in the HSI,
the multiorder spectral-space interaction block that can obtain arbitrary-order spectral–spatial interaction information, and the classification layer for ultimate
classification purpose. Details of the n-order spectral–spatial gating mechanism module are shown in the bottom half of the figure.

Hang et al. [51] developed a cascaded RNN model with gated
recurrent units to analyze features and consider complementary
information of HSI data, which allowed the model to obtain
more discriminative spectral–spatial information for enhanced
classification performance. Zhou et al. [52] introduced a mul-
tiscanning strategy with the RNN, which incorporated a gating
mechanism to capture the sequential feature of HSI pixels and
extensively account for the spatial correlation in HSI patches.
Prior research underscored the ability of recursive gating mech-
anisms to refine information flow, enhance the discriminability
and generality of features, and ultimately achieve superior model
classification performance.

More recently, the recursive gating mechanism has been intro-
duced and demonstrated to effectively facilitate complex feature
representation in various neural network models. For HSI clas-
sification tasks, incorporating the recursive gating mechanism
allows for filtering and regularizing features to obtain high-order
interaction information, thereby enhancing classification perfor-
mance [53]. Meng et al. [54] presented a network for feature
fusion that utilized spatial attention and gated mechanisms to
highlight discriminative regions in multilayer feature maps and
extracted key areas information with high efficiency.

It is crucial to consider the high-order information of the
input data for the classification task. Therefore, Li et al. [37]
applied the high-order feature interaction to improve optical
remote sensing scene classification performance. Subsequently,
Rao et al. [35] presented high-order feature interactions using
the recursive gating mechanism. Regrettably, these methods
focus solely on high-order features in RGB images, presenting
challenges when introducing high-order features directly to HSI
classification, particularly in efficiently handling the fusion of

spectral–spatial information. Therefore, we combine the SA
mechanism to get the interactive information of the HSI and
utilize the recursive gating mechanism to solve the problem of
capturing high-order features at the root.

III. METHODOLOGY

In this section, we present the S2MoINet framework, which
emphasizes spectral–spatial interactions between pixels and
their neighboring regions, enabling arbitrary MoS2I to facil-
itate HSI classification. The overall classification structure is
displayed in Fig. 2. It is comprised of three primary components.

1) The S2FRF block, which is performed for the HSI to obtain
the output spectral–spatial features simultaneously: Mean-
while, it also considers the local contextual information
and effectively preserves features regarding local spatial
neighbors. Section III-A contains the necessary informa-
tion regarding the spectral–spatial feature embedding.

2) The MoS2I block, which contains several MoS2GM mod-
ules: The MoS2GM module can realize the modeling of
multiorder interaction between spectral and spatial do-
mains and obtain the corresponding multiorder encoded
feature output. Section III-B provides a comprehensive
overview of this particular component.

3) The classification layer that utilizes the softmax function
to accurately determine the probability of the input being
categorized into a specific class, and it is described in
Section III-C.

The original HSI input data can be regarded as 3-D data
cube, which is specifically expressed as X ∈ R

H×W×C , where
H ×W is the input spatial size and C is the spectral band



JIANG et al.: S2MOINET: SPECTRAL–SPATIAL MULTIORDER INTERACTIONS NETWORK FOR HSI CLASSIFICATION 7139

number. For the pixel located at any spatial position (i, j)
in the input data X , we can obtain the spectral vectorxi,j =
(x1

i,j , x
2
i,j , . . . , x

C
i,j), where xc

i,j ∈ R (i = 1, 2, . . . , H , j =
1, 2, . . . ,W , c = 1, 2, . . . , C) corresponds to the pixel at spa-
tial position (i, j) in the band c of the HSI. Spectral vectors
can carry a significant quantity of useful spectral fluctuation
information that can be utilized to distinguish different ground
objects. Moreover, each pixel and its neighboring pixels also
contain abundant spatial information, such as the arrangement
of ground object and the relationship with other objects in the
HSI [31]. Therefore, it is very important to fully consider the
spectral–spatial information simultaneously of HSI data in a
certain neighborhood of each pixel when performing feature
extraction.

A. Spectral–Spatial Feature Representation and Fusion

To fully obtain the spectral–spatial feature information from
the HSI, we employ 2-D convolution to process the original input
data of the HSI to ensure that the complex features and changes in
the spectral and spatial domains are fully captured and merged,
which we call the S2FRF block. Specifically, the convolution
operation is performed on the input vectorx(i,j) of the original
HSI at spatial position (i, j) to obtain its corresponding output
features. The value uk2

(i,j) of the k2th output channel at the spatial
position (i, j) is calculated as follows:

uk2

(i,j) =

C∑
k1=1

m∑
α=−m

m∑
β=−m

wk1,k2

(α,β)x
k1

(i+α,j+β) + bk2
(2)

where xk1

(i+α,j+β) represents the value of input vector at the
corresponding position in the k1th channel, C is the number
of channels for input data, 2m+ 1 ∈ Z

∗ is the size of con-
volutional kernels, the weight of the convolutional kernel at
position (α, β) is represented by wk1,k2

(α,β), and bk2
is the corre-

sponding bias. Finally, we can obtain a series of spectral–spatial
feature embedded outputs U = {uk2

(i,j)|i = 1, 2, . . . , H; j =

1, 2, . . . ,W ; k2 = 1, 2, . . . , C ′} ∈ R
H×W×C ′

from HSI data.

B. Multiorder Spectral–Spatial Interaction

To further acquire the intrinsic multiorder information in the
HSI, we perform feature extraction modeling of the contextual
information and MoS2I features on the outputs U , which is
obtained from the S2FRF block. Unlike the existing high-order
feature extraction models, we consider the fusion of spatial–
spectral interaction features for the properties of HSI data and
also effectively introduce the MOS2GM module with locality
perception and context aggregation capability and some other
simple modules. Specifically, the linear projections, depthwise
convolutions, and elementwise products are organically inte-
grated to achieve a similar function of input-adaptive spectral–
spatial mixing to SA. Meanwhile, the recursive gating operation
is also performed on the above features to effectively capture
the semantic interaction information between contextual data
of the HSI. Through the above operations, we can construct
an MoS2GM module to successfully obtain the contextual and

MoS2I information of the HSI. The MoS2GM module’s specifics
are illustrated in Fig. 3.

For the first-order spectral–spatial gating mechanism, we
utilize a input linear projection operation to perform channel
mixing for the input feature token U ∈ R

H×W×C ′
; it can be

written as follows:[
VH×W×C ′

0 ,SH×W×C ′
0

]
= Ψin(U) ∈ R

H×W×2C ′
(3)

whereΨin(·) is the linear projection function to perform channel
mixing. V0 and S0 are the results obtained by linear projection.
Note that, here, we split the result into V0 and S0 in order to
perform the interaction of adjacent features.

Then, we conduct another depthwise convolutional operation
f(·) on the output V0 and S0 to obtain the features V1 that
considering the first-order spectral–spatial interaction of HSI
data; the first-order interaction equation is expressed as follows:

V1 = f(S0)� V0 ∈ R
H×W×C ′

(4)

where the operator � denotes the elementwise product opera-
tion.

Finally, one more output linear projection operation Ψout(·)
to perform channel mixing is utilized to make the first-order
spectral–spatial interaction feature more robust and reduce the
overfitting problem. Thus, the output feature vector Ŷ1 can be
obtained by using the first-order spectral–spatial gating mecha-
nism, as follows:

Ŷ1 = Ψout(V1) ∈ R
H×W×C ′

. (5)

The similar feature extraction operation is also performed in the
n-order (n ∈ Z

+) spectral–spatial gating mechanism. First, the
linear projection operation is performed on the input features
obtained by the S2FRF block to acquire a set of projection
features V0 and {St}n−1

t=0[
VH×W×C ′

0
0 ,SH×W×C ′

0
0 , . . . ,SH×W×C ′

n−1

n−1

]

= Ψin(U) ∈ R
H×W×2C ′

(6)

where C ′
t = C ′/2n−t−1, t = 0, 1, . . . , n− 1, represents the tth

order of the MoS2GM module. The adjacent features are split
into V0 and {St}n−1

t=0 to further capture the MoS2I features
between them. Moreover, this splitting strategy utilized in the
MoS2GM module enables the acquisition of features from
coarse to fine, thus improving the capability of multiorder feature
acquisition while reducing the computational complexity to
some extent.

Since the arbitrary order interaction of spectral–spatial in-
formation for the HSI data can be captured by means of con-
catenating feature vector {St}n−1

t=0 and performing depthwise
convolution, we recursively perform the depthwise convolution
ft(·) and dimension-matching operation gt(·) of different orders
forn times, so as to get thenth-order spectral–spatial interaction
features. To stabilize the training process, we also scale the
obtained output for each recursion by 1/δ for obtaining stable
output values

Vt+1 = ft(St)� gt(Vt)/δ ∈ R
H×W×C ′

t (7)
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Fig. 3. Diagram of the n-order spectral–spatial gating mechanism module. The module utilizes linear projection to mix information in the spectral channel,
depthwise convolution for feature extraction of HSI data in the spatial domain, and the elementwise product to effectively interact with spectral–spatial features.

where δ is a small real number to make the model training
more stable. The dimension-matching operation gt(·) can be
calculated as follows:

gt =

{
Identity , t = 0,
Linear , t = 1, 2, . . . , n− 1

(8)

where Identity represents the identity projection operation ex-
ecuted on the input channel C ′

t, and Linear means to perform
a linear projection operation on the input channel to make the
C ′

t−1 andC ′
t dimensions matching. We also utilize the final linear

projection operation to obtain the output Ŷn of the nth-order
MoS2GM by the following equation:

Ŷn = Ψout(Vn) ∈ R
H×W×C ′

(9)

where Ψout is the output linear projection to perform channel
mixing, and Vn is the result obtained through the last recursion
operation of (7). We consider the output Ŷn in (9) as the result
of nth-order spectral–spatial interaction.

The interaction between the features of HSI ground objects
can better exploit the information associations present in HSI
data, which, in turn, can improve the accuracy and robustness
of HSI classification tasks. From the perspective of complex
spectral–spatial feature interaction, in order to achieve a clearer
expression, the calculation of the nth-order MoS2GM module
can also be written as follows:

Vk
n(i,j) =

∑
(α,β)∈Θi,j

C ′∑
c=1

Hc
(i,j)→(α,β)w

c,k
Ψin,(α,β)

uc
(α,β)

Hc
(i,j)→(α,β) = Wk

n−1,(i,j)→(α,β)Gk
n−1,(i,j) (10)

where Vk
n(i,j) refers to the value of nth-order output feature

(i.e., Vn) at the spatial position (i, j) and the kth channel.

Θi,j is the local region centered at position (i, j) in the kth
channel, and (α, β) is a point in this region. The arrow “→”
indicates the direction of connected mapping from the spatial
position (i, j) to (α, β).Hc

(i,j)→(α,β) is the result calculated from

Vn−1, including (n− 1)th-order interactions, Wk
n−1,(i,j)→(α,β)

is the corresponding convolutional weight for fn−1(·), and
Gn−1 = gn−1(Vn−1) is the projection result of Vn−1 by (8).
wc,k

(α,β) represents the linear weight through Ψin(·) at the cor-
responding position, and uc

(α,β) corresponds to the value at
position (α, β) in the cth channel of the input feature token
U . Therefore, it can be seen from (10) that the above nth-order
MoS2GM operation is equivalent to a general feature extraction
and interaction module, which can perform better in consider-
ing the high-order spectral–spatial interaction features of the
HSI.

When applying the MoS2GM module to HSI data, if the order
is n = 0, the S2MoGM encoder module reduces to a standard
2-D convolution, capturing only simple spectral–spatial features
and disregarding interactions within the HSI data. However,
when the order is n = 1, the HSI data undergo the S2FE op-
eration to obtain spectral–spatial features, followed by a matrix
multiplication operation that determines the dynamic weight of
input, accounting for the first-order spectral–spatial interaction
of the HSI. When the order is n = 2, the MoS2GM module
performs two consecutive matrix multiplications, equivalent
to the SA mechanism, enabling extraction of spatial–spectral
correlation information within the HSI data, thus consider-
ing the second-order spatial–spectral interaction. As the or-
der n increases, the model accounts for MoS2Is in HSI data,
effectively suppressing redundant information, particularly in
spatial–spectral features, and facilitating subsequent HSI clas-
sification tasks.
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The MoS2I output feature token Ŷn with equal sizes of input
feature is obtained through the MoS2GM module. Then, after
performing the normalizing operation, two subsequent linear
projection operations and GELU activation function on the
obtained token Ŷn to obtain the final output YMoS2I of the
MoS2I block . To get more detailed and multiorder features
of the HSI ground objects, we can stack the MoS2I block for
l times, where l = 1, 2, . . . , L.

C. Classification Layer

Next, the multiorder output features learned in the MoS2I
block are fed into the classification layer. Specifically, the
MoS2I feature tokens are initially pooled through the global
average pooling operation. This is followed by a Linear pro-
jection operation, which generates the classification vector
q = [q1, q2, . . . , qB ]

T, and qb, b = 1, 2, . . . , B, denotes the bth
class of land cover. The calculation formula is as follows:

q = Linear (Pooling (YMoS2I)) . (11)

Then, the output vector p = [p1, p2, . . . , pB ]
T is calculated by

the softmax function, so we can get the label of input data
belonging to each type of ground object

pb = softmax(qb) =
exp(qb)∑B
i=1 exp(qi)

. (12)

Let z = [z1, z2, . . . , zB ]
T represent the one-hot coding vector

of the ground truth, where zb ∈ {0, 1} (b = 1, 2, . . . , B) denotes
the bth class of the HSI; then, the proposed model’s optimization
procedure with the cross-entropy function Eloss can be calculated
as follows:

Eloss = −
B∑

b=1

zblog(pb). (13)

IV. EXPERIMENT AND ANALYSIS

A. HSI Dataset Description

We performed experiments on four HSI datasets, which are
commonly used to evaluate the performance of HSI classifica-
tion tasks. Fig. 4 provides false-color and ground truth maps
information, while Table I presents a more specified description
of the datasets.

1) Indian Pines (IP): The first hyperspectral dataset was
gathered by the Airborne Visible Infrared Imaging Spec-
trometer (AVIRIS) instrument in 1992 at the Indian Pines
Northwestern Indiana [55]. The spatial resolution of IP
is approximately 20 meters per pixel (mpp), and it has
145 × 145 pixels and 224 bands encompassing wave-
lengths from 400 to 2500 nm. During the experiment,
bands that were absorbent were eliminated, and 200 bands
were kept. The captured area mainly consists of various
crops, irregular forests, and pastures, with a total of 16
different land cover types.

2) Salinas Valley (SV): The second hyperspectral dataset
was also gathered by the AVIRIS instrument in 1998
over Salinas Valley, CA, USA [56]. The spatial resolution

Fig. 4. False-color and ground truth maps of each HSI dataset. (a) IP. (b) SV.
(c) TF. (d) HH.

of SV is approximately 3.7 mpp, and it has 512 × 217
pixels and 224 bands. Similarly, the absorbent bands were
eliminated, with only 204 remaining. The capture area is
dominated by regular fields with different crops, including
16 different land cover classes.

3) Tea Farm (TF): The third hyperspectral dataset was col-
lected by the Pushbroom Hyperspectral Imager instru-
ment in 1999 over tea planting base in Fanglu Village,
Changzhou City, Jiangsu Province, China [57]. The spatial
resolution of TF is approximately 2.25 mpp, and it has
512 × 348 pixels and 80 bands covering wavelengths from
417 to 855 nm. The captured area includes ten different
land-cover classes.

4) HongHu (HH): The fourth hyperspectral dataset was col-
lected by the unmanned-aerial-vehicle-borne instrument
in 2017 over farming areas with various crop types in
Hubei province, China [58]. The spatial resolution of HH
is approximately 0.043 mpp, and it has 940 × 475 pixels
and 270 bands covering wavelengths from 400 to 1000 nm.
The captured areas include many types of crops in a
complex agricultural scenes but also different varieties of
the same crop, comprising a total of 22 different land-cover
classes.
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TABLE I
LAND-COVER CLASSES FOR THE DATASETS AND THEIR RESPECTIVE SAMPLE NUMBERS

TABLE II
DETAILS OF THE PROPOSED S2MOINET

B. Experimental Settings

1) Evaluation metrics: Four quantitative evaluation metrics
were introduced to quantitatively analyze the effectiveness
of the S2MoINet and other models for comparison, includ-
ing OA, average accuracy (AA), Cohen’s kappa coefficient
(κ), and the number of model parameters (Params).

2) Comparison with state-of-the-art models: For further
analysis, we compare the S2MoINet method with seven
commonly used and relevant deep architectures, including
CNN [12], GhostNet [59], MAGCaps [60], ViT [26],
Swin [61], SpectralFormer [29], ConvViT [62], and
gMLP [63].

3) Implementation details: Validation experiments of the
proposed model were conducted on a computer equipped

with 128-GB RAM and an NVIDIA RTX 3090 graphics
card (24-GB VRAM) in the PyTorch 1.10 and Python
3.9 environment. We employed the cross-entropy loss
function in the experiments. The AdamW optimizer was
chosen, with a minibatch size of 64 and 300 training
epochs. After every one-tenth of the total number of
epochs (i.e., after epochs 30, 60, 90, etc.), the learning
rate was multiplied by a factor of 0.9 to decrement from its
initial value of 3e-4. Considering the different datasets, we
utilized a third-order model with two times MoS2I block
operation as an example. More details of the proposed
model with base parameter settings are listed in Table II.
In our studies, samples for the training and testing groups
were drawn at random from the ground truth of the HSI
dataset. We also selected samples with training ratios
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TABLE III
CLASSIFICATION RESULTS FOR THE IP DATASET OF 15 × 15 INPUT SCALE AT 1% TRAINING RATIO

TABLE IV
CLASSIFICATION RESULTS FOR THE SV DATASET OF 15 × 15 INPUT SCALE AT 1% TRAINING RATIO

of 0.5%, 1%, 1.5%, 2%, 2.5%, and 3% at random for
each land-cover class in every dataset, and the remaining
samples served as the testing data. We carefully chose to
use half of the total number of samples as the training set
for classes with small sample sizes. All the experiments
were carried out ten times to ensure a fair comparison, and
the average results are presented.

C. Classification Results in Different Models

For each dataset, Tables III–VI present the quantitative clas-
sification results in terms of the three metrics, i.e., OA, AA,
and κ of each model on every HSI dataset. Among them, the
labeled training sample is fixed at 1%, the scale of HSI input
patches is selected as 15×15, and the classification results for
each class and global metrics in the table are arranged by
row, while the results for different models are displayed in
columns.

It can be seen from tables that the S2MoINet model maintains
a classification accuracy of 90% or above in each class compared
with other models in most cases. By utilizing the S2MoINet
model to extract MoS2I features, better access to deep abstract
discriminative features in the data can be achieved. This is
especially helpful as the resolution and structural complexity
of HSI data increase, thus allowing the model to better classify
the resulting complex HSI data. Therefore, the S2MoINet model
acquires better classification results for each ground object class
in multiple trials on different HSI datasets. In general, the
proposed S2MoINet demonstrates the best results in terms of
OA, AA, and κ, with all these metrics displaying the highest
values. As compared to other models, the performance of OA,
AA, and κ for the S2MoINet model has improved across all the
datasets.

A qualitative evaluation was carried out, in which the clas-
sification maps generated by different models were visualized.
Figs. 5–8 exhibit the obtained classification results for IP, SV, TF,
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TABLE V
CLASSIFICATION RESULTS FOR THE TF DATASET OF 15 × 15 INPUT SCALE AT 1% TRAINING RATIO

TABLE VI
CLASSIFICATION RESULTS FOR THE HH DATASET OF 15 × 15 INPUT SCALE AT 1% TRAINING RATIO

and HH datasets at an input scale of 15 × 15, with a training ratio
of 1% and using various models. The results effectively show
that, for most classes on each dataset, the proposed S2MoINet
model surpasses the compared models. It employs a combina-
tion of SA and recursive gating mechanisms to construct the
MoS2GM module, which effectively captures MoS2I features
in HSI data. This powerful combination enables the model to
effectively capture MoS2I features in HSI data, resulting in
superior recognition performance for complex objects. More-
over, the gating mechanism plays a crucial role in mitigating
the effects of noisy data points, leading to better accuracy in the
HSI classification process. This also significantly reduces the
number of misclassified sample points, effectively addressing
the “salt and pepper phenomenon” that often arises during the
HSI classification process. Overall, the proposed model delivers
excellent classification results for each experimental dataset,
demonstrating its generalization ability for HSI classification
tasks.

The compared models display a considerable number of
misclassified regions. Typically, the CNN-based models, such
as CNN, GhostNet, and MAGCaps, tend to generate relatively
smoother classification maps, thanks to their strong ability
to nonlinearly fit data. As a recently used network architec-
ture, the SA-mechanism-based models, such as ViT, Swin,
SpectralFormer, and ConvViT, can achieve sequential repre-
sentations from the HSI. This produces classification maps of
comparable quality to the classical models mentioned earlier.
Models based on gating mechanisms (i.e., gMLP) can extract
contextual information of HSI data in both the spectral and
spatial domains due to their ability to process data recursively,
thus enabling relatively high classification results.

In the enlarged part displayed in the red box (see Fig. 5), on the
IP dataset, the region shapes of several land covers [i.e., Alfalfa
(C1), Corn-Mintill (C3), Grass-Pasture (C5), Soybean-Notill
(C10), and Soybean-Clean (C12)] are narrow and irregular; the
sample distributions are also relatively discrete. Owing to the
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Fig. 5. Classification maps produced by different models for the IP dataset with 1% training samples. (a) Ground truth. (b) CNN (86.06%). (c) GhostNet (77.61%).
(d) MAGCaps (82.37%). (e) ViT (82.05%). (f) Swin (79.99%). (g) SpectralFormer (84.77%). (h) ConvViT (78.67%). (i) gMLP (85.27%). (j) S2MoINet (87.79%).

Fig. 6. Classification maps produced by different models for the SV dataset with 1% training samples. (a) Ground truth. (b) CNN (98.83%). (c) GhostNet
(98.59%). (d) MAGCaps (97.28%). (e) ViT (98.25%). (f) Swin (98.76%). (g) SpectralFormer (97.33%). (h) ConvViT (97.62%). (i) gMLP (98.66%). (j) S2MoINet
(98.85%).

Fig. 7. Classification maps produced by different models for the TF dataset with 1% training samples. (a) Ground truth. (b) CNN (99.22%). (c) GhostNet
(98.40%). (d) MAGCaps (98.21%). (e) ViT (98.94%). (f) Swin (98.86%). (g) SpectralFormer (98.85%). (h) ConvViT (97.17%). (i) gMLP (99.04%). (j) S2MoINet
(99.27%).
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Fig. 8. Classification maps produced by different models for the HH dataset by different classifier. (a) Ground truth. (b) CNN (97.42%). (c) GhostNet (97.92%).
(d) MAGCaps (96.01%). (e) ViT (96.56%). (f) Swin (96.86%). (g) SpectralFormer (97.97%). (h) ConvViT (97.56%). (i) gMLP (97.52%). (j) S2MoINet (98.04%).

Fig. 9. Classification performance of different models at different training ratios for each HSI dataset with 15×15 input scale. (a) IP. (b) SV. (c) TF. (d) HH.

narrow shape of the Grass-Pasture (C5) region, which is in
proximity to the Corn-Mintill (C3) region, many deep learn-
ing models struggle with feature extraction and classification.
This brings the misidentification of most ground objects in the
Grass-Pasture (C5) region as Corn-Mintill (C3). In addition,
the regions labeled Soybean-Notill (C10) and Soybean-Clean
(C12) in the IP dataset contained samples with spatial proxim-
ity. These regions represented the same crop but in different
maturity stages, resulting from similarities in their character-
istics with few differences. However, previous deep learning
models are influenced by each other’s structures while learning
their unique features. Consequently, the models may exhibit
mutual misclassification due to poor feature discriminability.

Similarly, the classification results for the HH dataset obtained
by the proposed S2MoINet model are also presented in Fig. 8.
When comparing the classification performance of different
deep learning models, the MAGCaps model has the poorest per-
formance with an accuracy of 96.01%, followed by the ViT and
Swin model with 96.56% and 96.86%, while the classification
accuracy of other compared models is all above 97%. In contrast,
the S2MoINet model achieves the best classification accuracy
with a rate of 98.04%. This result demonstrates the efficacy of
our proposed model for HSI classification task. Besides, it can
also be seen that the experimental results on each HSI dataset
of S2MoINet are all optimal, which also effectively reflects the
generalization of our proposed model for HSI classification.

The S2MoINet model’s classification map in this region dis-
plays a relatively smooth outcome thanks to its capability of
acquiring multiorder spatial–spectral interaction characteristics
of the HSI. However, it is worth noting that the misclassified

pixels by the S2MoINet mostly occur at the edges of the region,
indicating the difficulty in accurately classifying pixels in these
areas due to the smoothing effect of depth-wise convolution.
Further research is required to effectively leverage the spatial
information inherent in the HSI.

In addition, we also compare the changes in the classifica-
tion accuracy of different models as the number of training
samples increases, as shown in Fig. 9. The results indicate that
the classification performance of most models improves as the
number of training samples increases. In contrast, the S2MoINet
consistently maintains high accuracy for all the datasets, and its
classification performance steadily improves with an increase in
training samples, which also fully illustrates the generalization
and stability of our proposed model. Compared with other
models, the S2MoINet model outperforms them by achieving
the best classification results with a training ratio of only 1%.
Nonetheless, we have noticed a gradual decline in the rate
of model performance optimization as the number of training
samples increases, which means that the performance of the
model is less sensitive to changes in training samples. This
indicates that our proposed model is particularly well suited for
classifying HSI data with small sample sizes.

D. Model Analysis

In addition to the learnable parameters within networks and
hyperparameters required in the training process, the settings of
certain model parameters are also essential for achieving optimal
classification performance. Therefore, it is crucial to investigate
proper parameter settings. We conducted an analysis of several
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Fig. 10. Classification performance with different L and C ′ settings of the S2MoINet model on various datasets. (a) IP. (b) SV. (c) TF. (d) HH. L represents the
number of MoS2I blocks, and C ′ represents the number of channels input to the MoS2GM module.

Fig. 11. Classification performance of the S2MoINet model for each HSI dataset at different Scale and Order with 1% training ratio. (a) IP. (b) SV. (c) TF. (d) HH.

parameters that have an impact on both the classification perfor-
mance and the training process, which include: 1) the number
of MoS2I blocks (L), which can affect the ability of multiorder
interactive information extraction; 2) the number of channels
input to the MoS2GM module (C ′), which can affect the ability
of deep spatial–spectral feature extraction; and 3) order and
scale: they represent the order of the S2MoINet model, which
can better represent the semantic information of different levels
of HSI, and the scale of HSI input data, which can realize the
effective representation of the ground object information with
different granularity in the HSI, respectively.

1) Parameter Sensitivity Analysis: To assess the efficacy of
the proposed MoS2I block, we examined the classification per-
formance of each dataset using a 1% training ratio, focusing on
the parameters L and C ′, as depicted in Fig. 10. We analyzed
the influence of various L and C ′ values on the network, which
are selected from 1, 2, 3, 4 and 16, 32, 64, 128, respectively.
A comprehensive analysis of the classification results under
these parameter settings reveals that increasing C ′ significantly
improves classification accuracy. However, when L exceeds a
certain threshold, performance stabilizes and then decreases
with further increases in L. This decline is attributed to over-
fitting caused by excessive L values, which adversely affects
classification performance. As the C ′ parameter increases, the
model’s classification performance follows a similar trend to that
of L-first increasing and then decreasing. Moreover, for all the
experimental datasets, the overall classification accuracy gener-
ally exhibits a rising and then falling trend as L and C ′ change.
Consequently, to strike a balance between time consumption

TABLE VII
CLASSIFICATION RESULTS OF THE ABLATION STUDY FOR EACH HSI DATASET

OF 15×15 INPUT SCALE AT 1% TRAINING RATIO

and classification performance, we set the parameter L to 3 and
C ′ to 64 for subsequent specific research and analysis of the
S2MoINet model on each dataset.

2) Performance Analysis: To specifically investigate the
S2MoINet model at different orders (i.e., Order = 1, 2, 3,
4, 5) and input scales (i.e., Scale = 11×11, 13×13, 15×15,
17×17, 19×19, 21×21), we further compare and analyze the
classification performance on each HSI dataset with its OA at
a fixed training ratio of 1%. The specific results are shown in
Fig. 11.

Generally, the multiorder spectral–spatial information (i.e.,
abstract features) of the HSI ground objects considered in the
model gradually aggrandizes with the increase of the feature
order extracted by the model, thus resulting in a certain degree of
improvement in the classification performance of the multiorder
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TABLE VIII
PARAMETERS OF NINE METHODS ON FOUR DATASETS

model. According to the results in Fig. 11, it can be found
that owing to the different resolutions of the HSI datasets, the
appropriate input scale and the order of feature extraction also
vary. The IP dataset has a relatively low resolution of 20 mpp,
which means that it contains less information in each pixel, and
most of the detailed information will be lost when utilizing an
excessively large input scale for feature extraction, thus reducing
the classification performance of the model. As a result, we
achieved the highest classification accuracy of 89.93% for the
IP dataset when utilizing a smaller input scale of 13×13 and
second-order S2MoINet model. For the SV and TF datasets,
their resolutions are relatively similar to each other (i.e., 3.7 and
2.25 mpp), and the resolution is somewhat higher than that of the
IP dataset, and the amount and complexity of the information
contained in the pixels have also increased. Therefore, when
processing the HSI ground objects, a larger input scale and
feature extraction order are required. The optimal classification
accuracy is obtained when the input scale is 17×17 and the order
of S2MoINet model is 3, which are 99.39% (SV) and 98.24%
(TF), respectively. The HH dataset has the highest resolution
of 0.043 mpp, and each pixel in the data has more abundant
and complex information, so it can obtain sufficient feature
information when the input scale is 19×19 and the order of the
S2 MoINet model is 4 and finally obtain the highest classification
accuracy of 98.24%.

These results demonstrate that for high-resolution datasets
with complex structural features, the proposed S2MoINet model
can better extract abstract multiorder features, enabling a
more comprehensive description of HSI data features. In low-
resolution HSI datasets with simple feature structures, the model
can also extract corresponding low level yet effective feature
representations. Consequently, the proposed model can better
describe the heterogeneous structural information of HSI objects
at different levels.

3) Ablation Experiment: To confirm the efficacy of the
S2FRF and MoS2I blocks in acquiring and classifying HSI fea-
tures effectively, we conducted a series of ablation experiments
for each dataset using a 15 × 15 input scale at a 1% training
ratio (see Table VII). Specifically, our experiments have seven
variants (from V1 to V7); the specific settings are as follows.

1) V1: the model only has the S2FRF block, and without the
MoS2I block, i.e., no multiorder spectral–spatial interac-
tion, we named it as w/o MoS2I.

2) V2–V6: there is no S2FRF block, and only the MoS2I
block is used to consider the k th-order (k=1,2,3,4,5) in-
formation of HSI data, i.e., only k th-order spectral–spatial
interaction is performed, we named it as with koS2I.

3) V7: the proposed S2MoINet model.

It is evident that the classification accuracy of V1 is relatively
the lowest when only simple spatial–spectral feature extraction
is performed by the S2FRF block. In contrast, the classifica-
tion accuracy of V2–V6 improves when considering only the
multiorder feature interaction of the data due to the increased
features. These variants achieve the second-best classification
effect at different orders, depending on the dataset.

Given the varying resolutions of each dataset, the com-
plexity of information contained in each pixel also differs.
Consequently, the IP dataset achieves better results using the
low-order MoS2I block (i.e., second-order), whereas the SV
and TF datasets exhibit the relatively superior classification
performance when the MoS2I block order is set to 3. The HH
dataset, with more complex and detailed information and a
stronger nonlinear structure of its ground object, attains better
classification results when the MoS2I block order is set to 4.

Compared to other variants, V7 (S2MoINet) achieves the op-
timal classification performance, providing clear the evidence of
the effectiveness of the two proposed blocks: S2FRF and MoS2I,
for HSI feature extraction and classification. Both the blocks
are indispensable; removing the S2FRF block or disabling the
MoS2I block will degrade the model’s classification accuracy.

V. DISCUSSION

In this section, another metric is utilized to evaluate the per-
formances of the proposed S2MoINet and several comparative
models. The model’s computational complexity can be assessed
by comparing the number of parameters for different models;
the specific parameters of the S2MoINet and other comparative
models on four HSI datasets are shown in Table VIII. From the
table, we can observe that the convolution variants models (such
as GhostNet and MAGCaps) show the best and second-best
results in terms of parameter quantity due to the characteristics of
their lightweight design. The traditional CNN model, although
its classification performance is mostly suboptimal in relative
terms, has the largest number of model parameters. There are
also a lot of parameters in the gMLP model and the trans-
former variation models (such as, ViT, Swin, SpectralFormer,
and ConvViT).

In contrast, our proposed S2MoINet model incurs an increase
in the number of parameters compared with the other models
(ranking fifth highest) due to its ability to consider multiorder
information of HSI data. Nevertheless, our model exhibits the
best classification performance among all the models evaluated,
indicating that it achieves a better balance between classification
accuracy and model complexity.
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VI. CONCLUSION

In this article, we designed a novel S2MoINet to settle the
problem that previous models do not consider the MoS2I fea-
tures of the HSI. Our approach placed greater emphasis on the
multiorder interactions of HSI, which enabled it to effectively
depict local detailed spectral differences and convey multiorder
spatial interaction information during feature extraction. The
proposed model demonstrated success in extracting discrimina-
tive features for HSI classification tasks, especially in processing
the edges of noise class regions and pixels in uniform regions of
mixed ground objects in HSI datasets containing high-resolution
complex information. The proposed S2MoINet outperformed
both the traditional and cutting-edge deep learning techniques,
according to extensive experiments on four popular HSI datasets.

In future work, we will enhance the model by incorporating
advanced techniques to increase its applicability for HSI clas-
sification tasks and developing a lightweight network to reduce
computational complexity without compromising classification
performance. Furthermore, we aim to investigate the impact of
the proposed model under varying conditions to obtain MoS2I
features of HSI data, which would make the model more inter-
pretable.
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