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Abstract—Fusing features from different feature descriptors or
different convolutional layers can improve the understanding of
scene and enhance the classification accuracy. In this article, we
propose a hierarchical deep texture feature fusion network, abbre-
viated as HDTFF-Net, aiming to improve the classification accuracy
of high-resolution remote sensing scene classification. The proposed
HDTFF-Net can effectively combine the shallow texture informa-
tion from manual features and the deep texture information by
convolutional neural networks (CNNs). First, for deeply excavating
the multiscale and multidirectional shallow texture features in im-
ages, an improved Wavelet feature extraction module and a Gabor
feature extraction module are designed by fully fusing the struc-
tural features into the backbone neural network. Then, to make
the output texture features more discriminative and interpretative,
we incorporate the above texture feature extraction modules into
traditional CNNs (Tra-CNNs), and design two improved deep net-
works, namely Wave-CNN and Gabor-CNN. Finally, according to
the Dempster-Shafer evidence theory, the designed Wave-CNN and
Gabor-CNN are fused with the Tra-CNN by a decision-level fusion
strategy, which can effectively capture the deep texture features
by different feature descriptors and improve the classification per-
formance. Experiments on high-resolution remote sensing images
demonstrate the effectiveness of the proposed HDTFF-Net, and
verify that it can greatly improve the classification performance.

Index Terms—Convolutional neural network (CNN), deep
Gabor features, deep wavelet features, Dempster-Shafer (D-S)
evidential theory, remote sensing scene classification (RSSC).
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I. INTRODUCTION

W ITH the ongoing development of the satellite imaging
technologies, a great amount of high-resolution remote

sensing (RS) images containing complex and detailed spatial
structures are obtained by sensors carried on satellites or aircraft.
It thus provides a solid source of data support for land-use/land-
cover investigation, such as scene classification [1], change de-
tection [2], [3], and RS image registration [4]. And remote sens-
ing scene classification (RSSC) aims to automatically identify
and classify different land cover types using image processing
and machine learning algorithms. The land cover types generally
include natural environments such as forests, grasslands, and
water bodies, as well as human-made environments such as
farmlands, airports, and factories. It is an important technique
in RS image analyzing and interpreting, and has a wide range of
applications in fields such as environmental monitoring, urban
management, land planning, and disaster assessment [1], [2],
[3], [4], [5].

Recently, RSSC has received widespread attentions and var-
ious methods [1], [2], [3], [4], [5], [6], [7] have been proposed,
thanks to the continuous collection of available datasets and the
latest advancements in data-driven algorithms. In literature, ef-
fective and discriminative feature representation plays a crucial
role in RSSC. According to the way of feature learning, most
of the state-of-the-art approaches can be divided into three cat-
egories: hand-crafted feature-based methods, unsupervised fea-
ture learning-based methods, and deep feature-based methods.

A. Hand-Crafted Feature-Based Methods:

Earlier algorithms are mostly dependent on low-level and
hand-crafted features to extract the relevant information from
RS images. These hand-crafted features are generally designed
to capture specific characteristics in scene such as texture, shape,
and color, and can be used to distinguish different land covers [8].
For example, Ojala et al. [6] utilized local binary pattern (LBP)
to describe the gray-scale and the rotation invariant texture
information in RS images, and Tan et al. [7] introduced a
low-rank representation to automatically annotate multilabel RS
images. In addition, Dalal et al. [9] used the histogram of oriented
gradients (HOG) to capture the shape and texture information
in images. And Kobayashi et al. [10] transformed the histogram
features by the powerful Dirichlet model, thus improving the
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classification performance of RS images. Luo et al. [11] used six
traditional feature descriptors including GLCM, Gabor, SIFT,
etc., for shallow feature extraction, and then combined them
in various ways to enhance the classification performance of
RS image. Nevertheless, these handcrafted features generally
require domain expertise and a lot of time to manually design
and implement the feature extraction process. And they are often
designed for a specific task or dataset and may not generalize
well to other datasets or tasks. Therefore, with the increas-
ing complexity of RS images, these low-level and handcrafted
features may grow weaker and may not adequately represent
semantic information.

B. Unsupervised Feature Learning-Based Methods

Different from the supervised methods, the unsupervised
ones [12], [13], [14], [15] do not require an enormous amount
of labeled training data or are fine-tuned from the pretrained
Convolutional neural networks (CNNs). The well-known gen-
erative adversarial networks (GANs), that is to learn a generative
distribution of data through a two-player minimax game, is
one of the most exciting unsupervised algorithm appearing in
recent years. For example, Ma et al. [12] proposed a SiftingGan
method that can well generate and manipulate labeled samples
for data augmentation, thereby improving the performance of
the scene classification baseline. Yu et al. [13] utilized an at-
tention GAN for feature learning by incorporating contextual
information through expanded convolutional layers and utilizing
feature representation to form a content loss. And Kwak et al.
[14] presented a novel unsupervised self-training with domain
adversarial network by combing the adversarial training to al-
leviate spectral discrepancy problems with the self-training to
automatically generate new training data in the target domain
using an existing thematic map or ground truth data. In addition,
Romero et al. [15] proposed the use of greedy layerwise unsu-
pervised pretraining coupled with a highly efficient algorithm
for unsupervised learning of sparse features. It is rooted on
sparse representations and enforces both population and lifetime
sparsity of the extracted features, simultaneously.

C. Deep Feature-Based Methods

Compared with the manual features, deep features have shown
to be highly effective for RSSC tasks [5], [16], [17], [18],
[19], [20], [21], [22], [23]. They are capable of capturing the
subtle variations and learning the hierarchical information in RS
scenes, thus enabling accurate and efficient analysis in RSSC.
For example, Chen et al. [16] proposed an RSSC method via
multibranch local attention network, where convolutional local
attention module is embedded into all downsampling blocks and
residual blocks of ResNet backbone. Xie et al. [17] introduced
a scale-free CNN model for RSSC. It avoids losing critical
information in image by pretrained CNNs, which deteriorates
the classification performance. However, the CNNs generally
employ a single receptive field, and thus may not capture the
complex structure and the varied textures in high-resolution RS
images. What is worse, these deep features obtained by CNNs
may not have a specific physical meaning, and may lack of some
interpretability.

Fortunately, recent studies [18], [19], [20], [21], [22], [23]
have demonstrated that fusing the features by different convo-
lutional neural networks can greatly improve the scene under-
standing and enhance the classification accuracy. For example,
Wang et al. [18] designed a multilevel feature fusion network,
which reduced the high-dimensional features through adaptive
channel dimensionality for scene classification, and achieved
high accuracy and stability. Chu et al. [21] designed a specifical
feature fusion algorithm fusing the weights of the global GIST
and local SIFT, and obtained better performance in RS scene
classification. Ji et al. [22] localized the multiscale discrimi-
native regions in RS images using an attention network, and
then integrated the features learned from the localized regions
by a classification network. Similarly, recent studies in [19],
[20], [23], [24], [25], [26], [27], [28], [29], [30] fused the multi-
layer or multiscale features by specifical ways and all provided
significant achievements, which well demonstrated that feature
fusion is an efficient step in feature representation and image
classification.

Generally, the deep feature-based methods can get better
performance than the handcrafted feature-based unsupervised
feature learning-based methods. However, they still have many
shortcomings and challenges in real high-resolution RSSC,
which are summarized as follows.

1) High-resolution RS images generally contain complex
scenes and varied textures, and typically have high
with-in class differences and between-class similarities.
Therefore, it is often easier to misclassify these images,
especially the artificial buildings, thus promoting us to
excavate more discriminative deep features for accurate
classification.

2) The deep features obtained by CNNs or multilayer net-
works generally have a common problem that it is diffi-
cult to provide a specific physical interpretation from the
perspective of physical scattering mechanism in images,
especially for RS images with complex structures and
varied textures. Fortunately, as artificially designed feature
descriptors, Gabor filter and Wavelet transformation have
some similar operation modes or effects as that in CNNs,
making it possible for us to fuse them into CNNs. In fact,
similar effects [31] have been done and have obtained
satisfying results. However, focusing on high-resolution
RSSC, most of them cannot well integrate Gabor or
Wavelet into CNNs or lack the effective preservation of
details, but just employ them to generate texture features
for CNN inputs or bring edge blurring.

3) What is more, features obtained by different feature de-
scriptors may make different contributions to the final
discrimination of categories. Employing only a single
receptive field or directly concatenating the multilayer
and multiscale features may limit the discriminative char-
acteristic of the deep features to a certain extent. Thus,
an effective fusion strategy for the hierarchical features
is of great significance in classification. In fact, focus-
ing on the fusion of hierarchical features, the powerful
Dempster-Shafer (D-S) evidential theory has been suc-
cessfully applied to synthetic aperture radar (SAR) image
segmentation [32].
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Motivated by the limitations and challenges aforementioned,
we propose a hierarchical deep texture features fusion network
based on D-S evidential theory to improve the performance
of RSSC, named as hierarchical deep texture feature fusion
network (HDTFF-Net) in this article. The main novelties and
contributions of this article are summarized as follows.

1) The proposed HDTFF-Net model contains three sub-
networks, namely Tra-CNN, Wave-CNN, and Gabor-
CNN, to effectively capture the complex and varied
textures within multiple receptive fields, thus provid-
ing greater discriminative features for classification. The
Tra-CNN employs the powerful DenseNet-201 model as
the basic framework, and the improved Wave-CNN and
Gabor-CNN integrate the shallow texture feature into
the deep feature extraction module for providing specific
physical meanings for deep features.

2) In Wave-CNN, the discrete Wavelet decomposition is
fused into CNN for enhancing the description of multilevel
texture features. And a spatial attention mechanism is
fused to pay attention to the locations of textures and
details, thus providing greater weights for them.

3) In Gabor-CNN, we propose to replace the convolutional
kernel of some convolutional layers in backbone model
with a two-dimensional Gabor kernel, so that it can ex-
tract the texture features of different directions and scales
in frequency domain and thus enhance the deep texture
feature representation.

4) Considering the difference and relationship between the
hierarchical deep features obtained by Wave-CNN, Gabor-
CNN, and Tra-CNN, we propose an effective decision-
level fusion strategy based on the D-S evidential theory.
Thus, every subnetwork can well make its contribution to
the final inference of the attributive class. Extensive com-
parisons and ablation experiments on NWPU-RESISC45,
PatternNet38 and AID30 datasets demonstrate the effec-
tiveness of HDTFF-Net in RSSC.

The rest of this article is organized as follows: Section II
provides a brief review of popular CNN models. Section III
details the proposed HDTFF-Net framework, containing the
Gabor-CNN, the Wave-CNN, and the fusion strategy by D-S
evidential theory. Finally, the RS scene classification results
and analysis on several public datasets are given in Section IV
to validate the effectiveness of HDTFF-Net, and Section V
concludes the article.

II. RELATED WORK

Deep learning employs artificial neural networks (ANNs)
containing multiple layers to solve complex problems. It learns
features by training a neural network on a large amount of
training samples, and then makes predictions or classifications
on testing samples. CNN [25], [33], a special type of ANN, is
commonly used in deep learning. It can automatically learn fea-
tures from raw data without manual feature extraction, making
it more suitable for complex images, voice, and other fields. Due
to its remarkable performance, CNN has occupied a dominant
position in multiple application fields, including face detection,

disease classification, image segmentation, and scene classi-
fication. Most recently, many typical CNNs, such as LeNet,
AlexNet, VGGNet, and ResNet have appeared in the field of
image understanding and recognition. In literature, these models
have also achieved excellent results in RS scene classification.

A typical CNN [33] consists of several key components
including convolutional layers, pooling layers, fully connected
layers, and softmax layer, which are detailed in the following.
Input data is propagated layer by layer and then the class prob-
ability is obtained through the fully connected layer.

1) The convolutional layer refers to a module that extracts
features by applying a set of learnable filters to perform
convolution operations on input data. The convolution
operation is the sum of the element-wise products of the
filter and the input data. Since the parameters of the filter
are learnable, the convolutional layer can automatically
identify the important features from inputs, and thus re-
alize efficient feature extraction. After the convolutional
layer, an activation function, such as Sigmoid, ReLU and
tanh, will be used to introduce nonlinearity to better fit the
data.

2) The pooling layer aims to divide the input image into
rectangular regions called pooling filters. Each filter ag-
gregates the pixel values within the window, typically by
computing the maximum or average value. This can help
to reduce the computational cost of subsequent layers in
the network.

3) The fully connected layer is responsible for mapping the
features extracted by the previous layers to the final output
or prediction. In the fully connected layer, every output
feature map from the previous layer will be flattened into
a one-dimensional vector ξs.

4) Finally, the obtained feature vector ξs will be fed into the
softmax layer, which is used to transform the outputs of
the previous layer into a probability distribution over the
classes k ∈ {1, 2, . . . ,K}

p (xs = k|ξs,Ws) = eW
T
skξs

/ K∑
i=1

eW
T
siξs (1)

where xs indicates the label of image s, and Ws denotes the
weight matrices of softmax function.

III. HDTFF-NET MODEL FOR RSSC

According to the discussions above, we can conclude the
following:

1) Texture representing the natural spatial variation in the
backscatter associated with the variability of targets is a
crucial and ubiquitous factor in classification, and it is easy
to misclassify these images with varied textures.

2) Most of the traditional CNNs may not have specific phys-
ical meanings, especially for high-resolution RS images.

3) Employing a single receptive field or directly concatenat-
ing the multilayer features may limit the discriminative
characteristic of the fusion features to a certain extent.
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Fig. 1. Architecture of the proposed HDTFF-Net.

Therefore, we are inspired to propose an efficient hierarchical
deep texture features fusion network, abbreviated as HDTFF-
Net, for deep texture features extraction and high-resolution
RSSC. As illustrated in Fig. 1, different from the existing mul-
tilevel CNNs fusing deep features from multiple convolutional
layers, the proposed HDTFF-Net model consists of three subnet-
works, that is, Wave-CNN for learning deep Wavelet features,
Gabor-CNN for learning deep Gabor features, and Tra-CNN
for learning deep gray features, which will be detailed in the
following sections.

First, the HDTFF-Net model performs image enhancement,
containing random translation, invertion, rotation, enlargement
and minification, on input RS images to make the dataset four
times larger than the original one and thus effectively improve
the generalization of HDTFF-Net. Then, all measured RS im-
ages are resized to 224 × 224 × 3, and then are normalized by
(x− xmin)/(xmax − xmin).

Second, the preprocessed datasets are respectively inputted
into the designed Wave-CNN, Gabor-CNN, and Tra-CNN. In
HDTFF-Net, each subnetwork is trained on the same data and
then their outputs are fused in parallel. And the designed Wave-
CNN and Gabor-CNN can effectively consider the low-level tex-
ture features in deep learning, thus enhancing the interpretabil-
ity of deep textures from the perspective of specific physical
meaning, and providing greater discriminative features for scene
classification. Furthermore, every subnetwork learns its special
type of deep features from raw RS images, which can guarantee
the effective extraction of textures and detail information more
comprehensively.

Finally, the HDTFF-Net aims to estimate the class labels of
all images belonging to. However, due to the differences and
relationships between the obtained deep features, directly maxi-
mizing or integrating the class probability maps by Wave-CNN,
Gabor-CNN, and Tra-CNN cannot guarantee their respective
contributions to the final inference of the attributive class. Thus,
we propose to fuse them according to the D-S evidential theory,
which will also be detailed in the following.

A. Tra-CNN for Learning Deep Gray Features

As provided in [34], as a densely connected network model
with front and back layers, DenseNet has fewer parameters and
stronger ability of deep feature extraction and loss transfer. And
it helps to address the vanishing gradient problem caused by

Fig. 2. Structure of Tra-CNN.

the deepening of CNN network layers. The feature extraction
module of DenseNet generally contains four Dense Blocks and
three Transition Blocks. And the formula of Dense Block is
defined as follows:

xL = HL [x0, x1, . . . , xL−1] (2)

where xL is the output of layer L, HL is the nonlinear trans-
formation function, and the output feature map dimension of
the network layer before L is kept consistent with xL by batch
normalization.

In literature [34], according to the depth of network, there are
DenseNet-121, DenseNet-169, and DenseNet-201. Considering
the complex scene in high-resolution RS images, DenseNet-
201 with deeper network structure is employed to construct
the Tra-CNN, which is shown in Fig. 2. As shown in Fig. 2,
the input image with a size of 224× 224× 3 is preferentially
passed through a 7× 7 convolutional kernel to extract the shal-
low information. Next, the feature map is downsampled by a
3× 3 maximum pooling layer, and then the feature results will
pass through four dense blocks and three translation layers to
obtain the deep features. Here, the transition layer is mainly used
to reduce the channel number and the size of the output feature
map of the dense block and then to pass the feature map to the
next dense block. Finally, a nonlinear activation is performed by
BN layer and ReLU activation layer, a global average pooling
layer is used to integrate the features, a Dropout layer is used for
network connection with consequent cropping to mitigate the
occurrence of overfitting, and a softmax layer is used to output
class probabilities for classification.

B. Wave-CNN for Learning Deep Wavelet Texture Features

1) Wavelet Transform: Wavelet transform [35] utilizes
wavelet basis functions to analyze and represent signals, im-
ages and data. These basis functions are theoretically derived
from a wavelet called the mother wavelet by translation and
dilation operations. It provides a frequency window and a time
window that can be modulated. In the field of image processing,
discrete Wavelet transform (DWT), consisting of filtering and
downsampling, is generally used. Given an image x, it passes
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Fig. 3. Example of DWT of different levels. (a) R component of the original image. (b) One-level decomposition result. (c) Two-level decomposition result.
(d) Three-level decomposition result. (e) Four-level decomposition result. Note that the red patches refer to the low-frequency component xLL, the blue, yellow,
and black patches refer to the high-frequency detail components xLH , xHL, and xHH .

through four filters of equal size, i.e., low-pass filter fLL, and
high-pass filters, fLH , fHL, fHH , and then the image x will be
divided into a low-frequency approximate component xLL and
three high-frequency detail components, i.e., xLH , xHL, and
xHH . Then, it could continuously decompose the approximate
component to capture finer details. Thus, DWT allows for a
multiresolution analysis of an image, which means that different
scales of the image can be analyzed separately [35].

In this article, for the implementation of two-dimensional (2-
D) DWT, the Haar Wavelet function is adopted. Specifically,
each feature map is down-sampled by a factor of 2 when it passes
through four mutually orthogonal filters, and then four different
components will be generated. These four filters can be defined
as follows:

fLL =

[
1 1
1 1

]
, fLH =

[−1 −1
1 1

]
,

fHL =

[−1 1
−1 1

]
, fHH =

[
1 −1

−1 1

]
. (3)

Then, the DWT operation [41] can be determined by the
following:

xLL = (fLL ∗ x) ↓2, xLH = (fLH ∗ x) ↓2,
xHL = (fHL ∗ x) ↓2, xHH = (fHH ∗ x) ↓2 (4)

where ∗ is convolutional operator, and ↓2 is downsampling
operator with the stride of 2. Moreover, according to the theory
of Haar transform, the (i, j)th value of xLL, xLH , xHL and
xHH after 2-D Haar transform can be written as follows:

xLL(i, j) = x(2i− 1, 2j − 1) + x(2i− 1, 2j)

+ x(2i, 2j − 1) + x(2i, 2j)

xLH(i, j) = − x(2i− 1, 2j − 1)− x(2i− 1, 2j)

+ x(2i, 2j − 1) + x(2i, 2j)

xHL(i, j) = − x(2i− 1, 2j − 1) + x(2i− 1, 2j)

− x(2i, 2j − 1) + x(2i, 2j)

xHH(i, j) = x(2i− 1, 2j − 1)− x(2i− 1, 2j)

− x(2i, 2j − 1) + x(2i, 2j) (5)

where i = 1, 2, . . . , V/2 and j = 1, 2, . . . , H/2 are the coordi-
nates of each pixel in image. Thus, the width and height of the

Fig. 4. Results of different pooling methods. (a) Outputs of different down-
sampling methods. (b) Four different components obtained by 2-D DWT.

output component of each level after DWT will be 1/2 of the
input image. Then, according to the characteristics of multires-
olution analysis of DWT, the sub-band image xLL containing
low-frequency approximate information will be continuously
decomposed by DWT.

To demonstrate the effectiveness of 2-D DWT in capturing
different levels of texture features, we provide an example of an
RS image decomposition, as displayed in Fig. 3. As shown in
Fig. 3(a), the original RS image’s R component is first extracted.
Fig. 3(b) shows the first-level decomposition results, where the
low-frequency component xLL, enclosed in the red rectangle,
mainly preserves the main information of the input feature map.
Meanwhile, the structural information in image in horizontal,
vertical, and diagonal directions can be obtained from different
high-frequency sub-bands xLH , xHL, and xHH , respectively
shown in blue, yellow, and black rectangles. By continuously
decomposing the low-frequency component, higher level detail
structures can be obtained, as shown in Fig. 3(c) and (d) for
the second and third level of decomposition. Based on the
demonstrated capability of DWT in capturing multiscale texture
features, we plan to incorporate it into deep learning frameworks
to excavate deeper texture features from RS image analysis.

As we know, traditional CNNs generally employ max pooling
and average-pooling for downsampling, which can effectively
reduce the image size and suppress the noise. However, they
easily get into such problems as shown in Fig. 4(a). Depending
on the data, the Max pooling may overemphasize on details, thus
easily erasing some details in image especially when the pixel
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Fig. 5. Discrete wavelet decomposition fused by spatial attention module
(DWT-SAM).

values in background are close to that in details. And depending
on the data, the average pooling performs mean filtering and
downsampling on the image, thus obviously diluting the perti-
nent details in image.

Therefore, this article aims to design a more suitable module
that not only has the dimension reduction function of the pooling
layer but also can well retain textures in image.

Here, we obtain four different components by 2-D DWT, as
shown in Fig. 4(b). It is clear that the main information in image
is well preserved in low-frequency component, and the details
are well preserved in different high-frequency components. In
conclusion, the 2-D DWT can not only obtain the same low-
frequency component as CNN, but also well maintain better
details than CNN.

Inspired by the discussions above, we mean to improve the
traditional CNN by using DWT to replace traditional pooling
layers. Considering the advantages of DWT, the fusion of DWT
into CNN can help to enhance the description of texture features,
and further improve the performance of scene classification. In
the next section, we will provide a detailed introduction of how
to integrate DWT into deep learning models.

2) Construction of Wave-CNN: As discussed above, the in-
put RS images can be decomposed into low-frequency and
high-frequency components by 2-D DWT. Generally, the low-
frequency components contain the smoothing information, and
the high-frequency components contain the varied textures and
details in image. Considering that DWT has the characteristic of
multiresolution analysis and can better preserve the textures and
details in classification, the Wave-CNN model is constructed
based on DenseNet. In Wave-CNN, the multilevel Wavelet
texture features are first decomposed and then the redundant
information is filtered. In addition, a spatial attention module
(SAM) is fused to pay attention to the locations of textures,
which is shown in Fig. 5, providing greater weights for textures.
And the cascade fusion is used to strengthen the reuse of fea-
tures and improve the classification ability of Wave-CNN. In
the following, Fig. 6 illustrates the structure of the proposed
Wave-CNN.

1) All of the maximum and average pooling layers in the tra-
ditional DenseNet are replaced by Wavelet decomposition to
capture the multiscale texture features in RS image. As we
know, the input image in DenseNet first passes through a
convolutional module and a 3× 3 maximum pooling layer,
and then completes the down-sampling for subsequent prop-
agation in the Translational Block by an average pooling

layer. In the proposed Wave-CNN, these pooling layers are
replaced with 2-D Wavelet transform layers to obtain the
low-frequency component xLL and the high-frequency ones
xLH , xHL, xHH .

Empirically, the diagonal component xHH contains less ef-
fective information in RS image and generally brings more
redundant noise. Thus, for reducing the negative impact of xHH

on texture feature extraction, this article removes it and only
retains xLL, xLH , and xHL. Specifically, the low-frequency
component xLL is used as the result of downsampling the input
feature map, and the features are nonlinearly activated by adding
a BN layer and a ReLU activation layer. And thexLH component
and xHL component are fused into a high frequency detail
texture component H by Add layer.

2) Multistage Wavelet feature extraction: The 2-D DWT is
employed to extract the first-stage Wavelet components
(xLL1_1, xLH1_1, xHL1_1), and x

′
dense(1) is assumed to be the

output of Dense Block1. Then, we will obtain the first-stage
Wavelet feature Wavelet1_1 by the proposed DWT-SAM mod-
ule as shown in Fig. 5. Next, the first-stage Wavelet com-
ponent xLL1_1 will be further decomposed into the second-
stage Wavelet components (xLL1_2, xLH1_2, xHL1_2) by 2-D
DWT, and then the second-stage Wavelet feature Wavelet1_2

will be obtained by the same method as Wavelet1_2. Thus,
the Dense Block N will perform a total of N − 4 Wavelet
decompositions.

3) Discrete Wavelet decomposition fused by spatial attention
module (DWT-SAM): To pay attention to the locations of
textures, an SAM is fused into the traditional 2-D DWT, which
can effectively provide greater weights for textures. Here, the
feature maps pass through an average pooling layer and a
maximum pooling layer, respectively, along the channel axis,
and then we can obtain two feature maps with a dimension of
1. After the superimposition by the Concat channel, the spatial
weight matrix will be obtained by a 1× 1 convolutional layer.
The spatial matrix is dotted with the xLL component and is
accessed in the network layer using a shortcut connection.
Fig. 5 shows the structure of DWT-SAM, and the module
formula is defined as follows:

xH = xLH + xHL (6)

xS = xLL ⊗ fSigmoid

(
conv1

7×7

(
concat

(
AvgPool (xH) ,
MaxPool (xH)

)))

= xLL ⊗ fSigmoid
(
conv1

7×7

(
concat

(
FS

Avg, F
S
Max

)))
(7)

Wavelet = BN (fReLU (xLL ⊕ xS)) (8)

where fReLU denotes the activation function, BN represents
the batch normalization, and xS represents the spatial attention
module composed of components. AvgPool and MaxPool re-
spectively represent average and maximum pooling. Conv is the
convolutional layer used for channel transformation.

4) Multilevel Wavelet cascade fusion: In order to incorporate the
multilevel Wavelet texture features into the initial network, a
multilevel Wavelet cascade fusion is proposed with reference
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Fig. 6. Structure of Wave-CNN.

to DenseNet structure characteristics. It aims to allow the
output features of each block in the network to additionally
obtain the Wavelet texture output of the previous layer, thus
achieving further enhancement of the texture features. Ad-
ditionally, the cascade fusion is used to strengthen feature
reuse and improve the classification ability of Wave-CNN. As
illustrated in Fig. 6, starting from Dense Block2, the output
features of each Dense Block will be added to the multilevel
Wavelet features of the previous Dense Block, and the Dense
Block N is integrated into the Wavelet feature output of each
of the N − 1 previous Dense Blocks. The fusion formula is
defined as follows:

x
′
dense(n) = Hn

[
xdense(n),Waveletn−1, . . . ,Wavelet1

]
,

n ≥ 2 (9)

where xdense(n) and x
′
dense(n), respectively, denotes the input

and output features of Dense Block n in the backbone model.
Waveletn−1 denotes the Wavelet feature of Dense Blockn− 1,
andHn is the nonlinear transformation function. And the feature
dimension of the previous Wavelet feature is kept consistent with
xdense(n) by batch normalization, ReLU activation function, and
convolutional layer.

C. Gabor-CNN for Learning Deep Gabor Texture Features

1) Gabor Features: Gabor [37] filter employs several Gabor
kernels to perform short-time windowed Fourier transform on
the signal in the frequency domain to filter the input image.
And then it extracts the information that matches the frequency
range of the filter, and suppresses the information that exceeds
the frequency range. In the field of image processing, the formula

of 2-D Gabor filter is defined as follows:

g (x, y, λ, θ, ϕ, σ, γ) = e

(
−
(

x′2+γ2y′2
2σ2

))
· e

(
i
(
2π x′

λ
+ ϕ

))

(10)

gR (x, y, λ, θ, ϕ, σ, γ) = e

(
−
(

x′2+γ2y′2
2σ2

))
· cos

(
2π

x′

λ
+ ϕ

)

(11)

gI (x, y, λ, θ, ϕ, σ, γ) = e

(
−
(

x′2+γ2y′2
2σ2

))
· sin

(
2π

x′

λ
+ ϕ

)

(12)

x′ = x cos θ + y sin θ,

y′ = −x sin θ + y cos θ (13)

where λ is the wavelength. We can obtain the feature maps of
different scales by adjusting λ. θ denotes the direction of the
Gabor kernel function. And we can obtain the characteristic
graphs in different directions by changing θ.ϕ is the phase offset,
and it is generally set to a constant. σ is the spatial aspect ratio
and γ represents the standard deviation of the Gabor function’s
Gaussian factor. The real component gR(.) and imaginary com-
ponent gI(.) are obtained by Euler Formula. gR(.) is used to
eliminate redundant features and smooth the image, and gI(.) is
to extract the edge information in image.

In order to visually observe what the CNN and Gabor has
learned from image data, we visualize the pretrained DenseNet
kernels and Gabor kernels in the first few layers, as shown in
Fig. 7(a) and (b). It can be seen that: 1) Many learned filters
by CNN and Gabor are similar, laying a good foundation for
the replacement of convolution kernel by Gabor kernel. 2) The
learned filters by Gabor show a regular characteristic of direction
in the shallow layers, however the learned filters by CNN do not.
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Fig. 7. (a) CNN kernels (b) Gabor kernels. (c) Texture feature extraction by
2-D Gabor filter.

That is to say, filters by Gabor with different orientations can well
help to analyze the varied edges and textures in images. What
is more, Gabor filter has another advantage that its parameters
can be artificially adjusted, thus enhancing its ability to decom-
pose signals in different scales and directions. Here, Fig. 7(c)
illustrates the texture feature extraction by 2-D Gabor filter.

Thus, considering the advantages of Gabor filter, we are sure
that fusing it into CNNs can help to enhance the robustness
of deep features to the variations of orientation and scale in
the shallow feature maps extracted by the first few convolution
modules, and thus help to enhance the representation of deep
texture features. It is the main motivation for us to construct the
Gabor-CNN, which will be detailed in the following.

2) Construction of Gabor-CNN: Considering the advantages
of 2-D Gabor filter on feature extraction, we propose to replace
the feature extraction function of standard convolutional kernel
with 2-D Gabor filter to place more emphasis on the extraction
of textures in high-resolution RS images. So, it can effectively
extract the texture features of different directions and scales
in the frequency domain and thus enhance the deep texture
feature representation. After filtering, Gabor feature maps will
be activated by the ReLU function, and then be transferred to the
next layer. Finally, the trainable convolutional kernel is added
for updating the weights of the network in back propagation. In
detail, we add a learning weighted filter bank after the Gabor
convolutional layer, which is used to change the number of
feature channels and obtain the final feature map of the entire
module. The filter bank consists of convolutional kernel with a
dimension of CI × CO, where (CI , CO) denotes the number of
channels in the input signature graph and the number of filter
convolutional kernels, And the size of convolutional kernels is
1× 1, which is consistent with the Gabor filter kernels. The
GaborConv2D layer is obtained by passing the activated Gabor
feature maps through a 1× 1 convolutional layer, which is

Fig. 8. Deep Gabor feature module.

defined as follows:

xj
l+1 = Convn

1×1 ⊗ fReLU

(
Gaborjk×k ⊗ xm

l

)
(14)

where xm
l is the input feature map, and m is the number of

channels. Gaborjk×k is the k × k Gabor convolutional layer, and
j is the number of Gabor kernels. And the value of j depends
on the direction and scale of Gabor kernel. Assume that the
direction of Gabor kernel is d and the scale is s, j = s× d. The
ReLU function fReLU is used to nonlinearly activate the Gabor
features. Convn1×1 is a standard convolutional kernel of 1× 1,
and n is its number of kernels. Through (14), we can obtain the
output feature map xn

l+1, and n is the number of channels.
In a standard convolutional layer, for j standard k × k con-

volutional kernels, the number of trainable parameters of this
convolutional layer is (k × k ×m+ 1)× j with the number of
input feature maps m. However, in the proposed GaborConv2D
layer, it is not necessary to update the parameters of kernels, and
thus the number of trainable parameters is (j + 1)× n.

Fig. 8 shows the deep Gabor feature module. As shown in
Fig. 8, the network needs to update the parameters of each
layer by backpropagation after propagating through the forward
direction of the GaborConv2D layers. Thus, only the latter con-
volutional layer with a size of 1× 1 can be learned. Therefore,
this layer only needs to update the learned convolutional kernel
Conv in the backpropagation of the neural network, and let the
loss beL, the learning rate beη. And the gradient update equation
is as follows:

Conv′ = Conv + η · ∂L

∂ (Conv)
. (15)

The structure of Gabor-CNN is illustrated in Fig. 9. In Gabor-
CNN, some of the standard convolutional layers in the DenseNet
network are replaced with GaborConv2D. It sets the number
of Gabor kernels to 40 (extracting texture feature maps in 8
directions and 5 scales) and varies the number of channels by
1× 1 convolutional layers to ensure matching the number of
channels with the baseline. The first layer in Gabor-CNN uses
GaborConv2D with 7× 7 Gabor kernels, and the stride is set to
1, so as to maintain the texture features in image. Besides, we
use a 3× 3 convolutional layer with the stride of 2 to extract
deep features and reduce the size of the image. Finally, we use
a 3× 3 maximum pooling layer to reduce dimension.

Each Dense Layer in Dense Block contains two convolutional
layers with different kernel sizes and different number of con-
volutional kernels. The former one contains 128 convolutional
kernels, and the size of convolutional kernel is 1× 1. It is often
used to limit the dimension of feature maps and reduce the
computational amount of subsequent convolution layer. And
the later one generally contains 32 convolutional kernels, and
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Fig. 9. Structure of Gabor-CNN.

TABLE I
PARAMETERS OF GABOR CONVOLUTIONAL KERNEL

the size of convolutional kernel is 3× 3. It is to extract the
deep features in image. The Dense Block1 mainly extracts the
shallow features of the image, including corner points, texture,
light and dark features, etc., and the Gabor convolutional kernel
is mainly used for the extraction of details and texture features in
image. Therefore, only the 3× 3 convolutional kernels in Dense
Block1 of original DenseNet model are replaced with Gabor
convolutional kernels, and the later Dense Blocks still employ
the standard convolutional kernel to extract deep features. And
the parameters for each Gabor convolutional kernel are set as
that in Table I.

D. Hierarchical Deep Texture Feature Fusion By D-S
Evidential Theory

According to the discussions above, we can obtain several
class probabilities by Wave-CNN, Gabor-CNN, and Tra-CNN.
This section will focus on fusing the class probabilities and
predicting the class labels of the input images. Considering
the differences and relationships between the deep features by
Wave-CNN, Gabor-CNN, and the traditional CNN (Tra-CNN),
directly maximizing or integrating the class probability maps
cannot guarantee the semantic description. Thus, according to
the powerful D-S evidential theory [32], we propose a decision-
level fusion to integrate the hierarchical deep features. In this
way, the HDTFF-Net can fully combine the advantages of dif-
ferent deep features, and thus every subnetwork can well make
its contribution to the final inference of the attributive class. At
the same time, each sub-network in HDTFF-Net shares the same
training dataset, which helps to reduce the requirements for data
preparation and further to enhance the overall generalization of
the HDTFF-Net in classification.

The class probability corresponding to the subnetwork in
HDTFF-Net is regarded as the basic belief assignment (BBA)
function in D-S evidential theory, which is defined as follows:{

m(∅) = 0∑
A⊆Θ m(A) = 1

(16)

where m is a BBA function. Θ = {e1, e2 , . . . , eL} is a recogni-
tion frame containing L elements, and every element consists of
a binary vector of length L. If one of the components takes the
value of 1, the remaining ones will take the value of 0.A denotes

the focal element within the recognition frame, indicating the
class of scenes to which different images belong. Andm(A) > 0
is satisfied, where m(A) represents the strength of evidence in
support for hypothesis A according to the specified evidence
subject, and indicates the degree of confidence of the evidence in
A. In HDTFF-Net, A contains only one element, and then m(A)
can be interpreted as a probability function, which is commonly
referred to as the Bayesian BBA.

For each image prediction, the class probabilities m1, m2,
and m3 obtained by Wave-CNN, Gabor-CNN, and Tra-CNN
can be considered as a set of BBAs. According to the D-S
evidential theory, the hierarchical deep texture feature fusion
is implemented as follows:

m (e1) = m1 ⊕m2 ⊕m3 (e1)

=
m1 (e1)m2 (e1)m3 (e1)∑L
j=1 m1 (ej)m2 (ej)m3 (ej)

(17)

where ⊕ expresses the class probability fusion of sub- networks
in HDTFF-Net.

In conclusion, the HDTFF-Net with three subnetworks can
fully capture the multiscale, multidirectional, and multitype
deep features in high-resolution RS images, thus providing more
discriminative features for classification.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets Description for Experiments

In the experiments, three public high-resolution RS image
datasets are used to demonstrate the performances of the pro-
posed HDTFF-Net in RSSC. These three datasets all contain
rich scene changes, leading to high within-class differences and
between-class similarities and making them more challenging.
And the descriptions are provided in the following.

NWPU-RESISC45 [38]: The NWPU-RESISC45 dataset is
a diverse benchmark dataset for RSSC, containing 45 scene
categories, including lake, farmland, airport, etc. Each category
contains 700 images, resulting in a total of 31 500 images. The
images were acquired by Google Earth and have a resolution of
256 × 256 pixels. The spatial resolution of the images varies
between 0.25 and 30 m/pixel. Fig. 10 provides some example
images of NWPU-RESISC45 dataset.

AID30 [39]: The aerial image dataset (AID) consists of 10
000 aerial images covering 30 classes, with each class containing
about 300 to 400 RGB images with a resolution of 600×600 pix-
els captured by different sensors and platforms. The spatial
resolution varies from 8 to 0.5 m/pixel. Some example images
of AID30 dataset are shown in Fig. 11.
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Fig. 10. Some example images of NWPU-RESISC45 dataset.

Fig. 11. Some example images of AID30 dataset.

Fig. 12. Some example images of PatternNet38 dataset.

PatternNet38 [40]: The PatternNet38 was acquired from
Google Map. It contains a total of 30 400 RGB images with
a resolution of 256 × 256 pixels. The spatial resolution of
the image ranges from 0.062 to 4.693 m/pixel. Each image in
PatternNet38 is labeled with one of 38 land cover categories,

Fig. 13. Data Enhancement. (a) Original image. (b) Random rotation.
(c) Horizontal flip. (d) Vertical flip. (e) Gaussian noise. (f) Contrast adjustment.

TABLE II
MODEL TRAINING PARAMETERS

including cemetery, oil gas field, tennis court, and so on. Fig. 12
shows some example images of PatternNet38 dataset.

B. Experiment Setting and Objective Evaluation

1) Data Enhancement: In the experiments, random rota-
tion, horizontal flip, vertical flip, Gaussian noise, and contrast
adjustment are used for data enhancement in order to increase the
sample diversity and enhance the generalization of the proposed
HDTFF-Net in RSSC. The first three types, that is random
rotation, horizontal flip and vertical flip, belong to geometric
transformations and are the most commonly used data enhance-
ment methods. They mainly focus on the position bias in the
training data, and can effectively solve the problem of insuffi-
cient training samples. However, the geometric transformation
only considers the original position bias of samples, thus having
limited ability in enriching the sample diversity of RS images.
Therefore, we additionally employ Gaussian noise and contrast
adjustment, belonging to color transformation, to rich the sample
diversity for accurate classification. Fig. 13 shows the results of
different enhancement methods.

2) Experiment Environment: We conduct the scene classifi-
cation experiments on high- resolution RS images using a PC
with a 11th Gen Intel(R) Core(TM) i9-11900F @ 2.50 GHz
CPU, a NVIDIA GeForce RTX 3090 GPU and 32 GB memory.
And the software environment is Python 3.7.16 + Tensorflow
(GPU) 2.9.1.

3) Parameter Setting: The model training parameters are set
as that in Table II, and each subnetwork in HDTFF-Net is
pretrained on the ImageNet. The weight of the network layer
after the Dense Block 4 is not updated. During the migration
learning, the momentum of the optimizer SGD is set to 0.9, and
the weight Decay is set to 0.0001. The first 100 rounds only
update the weight of the network layer after the Dense Block 4.
The Early-Stop strategy is adopted. When the loss of the test set
does not decrease for five consecutive rounds, the training will
automatically stop. Then, we will train the entire network for
100 epochs, and this training phase adopts a learning rate decay
strategy. When the loss of the test set does not decrease for five
consecutive rounds, the learning rate is reduced by 0.5, and the
minimum learning rate is set to 0.000001.
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Fig. 14. Confusion Matrix on NWPU-RESISC45.

4) Experiment Evaluation Metrics: The classification accu-
racy and the confusion matrix are taken as the quantitative eval-
uations of scene classification results, calculated by comparing
the classification maps with the reference labels. The specific
definitions are provided as follows.

1) Accuracy (Acc) measures the percentage of correctly clas-
sified images out of all the images in the dataset. A higher
value of accuracy indicates a better performance of the model
in classification. Mathematically, it is expressed as follows:

Acc =
TP + TN

TP + FP + TN+ FN
(18)

where TP and TN, respectively, represent the number of
positive samples that are correctly and incorrectly judged. FP
and FN, respectively, represent the number of negative samples
that are correctly and incorrectly judged.

2) The standard deviation σ represents the amount of variation
or dispersion in a set of data values from the mean or average
value, and is expressed as follows:

Acc′ =
1

n

n∑
i=1

Acci

σ =

√
1

n

∑n

i=1
(Acci −Acc′)2 (19)

where n is the number of experiments, Acci is the accuracy
of the ith experiment, Acc′ is the average accuracy of the
experiments, and σ is the standard deviation of the accuracy
of all experiments.

TABLE III
COMPARISON OF ACC AND σ ON NWPU-RESISC45

3) Confusion matrix compares the predicted class labels with
the true class labels to calculate the number of correct and
incorrect predictions. It provides a summary of the predictions
made by the model against the actual or true labels of the
data, and helps in estimating the performance of classification
models. Generally, the row elements in confusion matrix
correspond to the actual labels, while the column elements
corresponding to the predicted labels.

C. Scene Classification Results and Analysis

In this article, we assess the performance of HDTFF-Net using
the selected dataset and compare it with some existing scene
classification methods that operate in the same environment. In
experiments, we randomly selected samples from the dataset
as the training set and the remaining samples as the test set. We
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TABLE IV
COMPARISON OF ACC AND σ ON AID30

conduct the experiments five times and take the average accuracy
of these experiments as the final accuracy.

1) Classification Results and Analysis on NWPU-RESISC45:
The comparison of Acc and σ on the NWPU-RESISC45 dataset
by different algorithms are provided in Table III. From Table III,
we can see that HDTFF-Net achieves the best average accuracy
of 94.47%, when the proportion of training set is set to be 20%,
demonstrating the value of HDTFF-Net in fusing hierarchical
deep features and in high-resolution RS scene classification.

Fig. 14 shows the confusion matrix of HDTFF-Net on the
NWPU-RESISC45 dataset, where the values on the main diag-
onal are the classification accuracies of all scenes. According
to Fig. 14, we can see that the classification accuracies of
42 scenes out of 45 categories are greater than 90%. In the
comparison of different classification methods, it is easily to
misclassify the “palace” and the “church” due to that they
are both classical buildings and with similar styles and the
scene structures. The suboptimal algorithm LSRS integrates
semantic features into the network model, and the accuracies of
“palace” and “church” are respectively 82% and 79%. In con-
trast, the proposed HDTFF-Net fuses hierarchical deep features
by Wave-CNN, Gabor-CNN, and Tra-CNN by D-S evidential
theory. Theoretically, it can learn more discriminative features
from images, and further enhance the performance of scene
classification, And the approving results are shown in Fig. 14,
illustrating the accuracies of “palace” and “church” are 88%
and 79%, respectively. Especially, the accuracy of “church” has
been greatly improved, which can fully verify the effectiveness
of HDTFF-Net in scene classification.

2) Classification Results and Analysis on AID30: The
AID30 contains 30 categories, and the number of images in
every class is not uniform. Thus, the problem of with-in class
differences and between-class similarities in it is more serious,
making the task of classification more difficult. As shown in
Table IV, the HDTFF-Net in this article has achieved an average
accuracy of 97.46% when the training set proportion is set to
50%. Compared with the dual-stream deep network models,
such as LSRL, ACGLNet, Attention CNN+H-GCN, and Two-
Stream Fusion, the classification accuracy in this article has been

TABLE V
COMPARISON OF ACC AND σ ON PATTERNNET38

respectively improved by 0.10%, 0.36%, 1.68%, and 2.88%,
which proves that the proposed fusion method can achieve
significant improvement on large RS scene datasets.

Fig. 15 shows the confusion matrix generated by HDTFF- Net
on the AID30. By observing the values on the diagonal, we can
see that the classification accuracies of 28 categories exceed
90%. The classification accuracies of nine categories, such
as “baseball field,” “beach,” “meadow,” “forest,” etc., reaches
100%. And the performance of some confusing categories,
such as “airport,” “bare land,” “bridge,” “dense residential,”
“stadium,” and “sparse residential,” is also excellent, reaching
98% or more. In addition, the algorithm also achieves better
classification results for the scenes “resort” and “school,” which
are easily confused by most of the reference algorithms. HDTFF-
Net extracts different types of deep features and then fuses
them based on an effective fusion criterion, which alleviates
the influence of large intraclass variability in the AID dataset
and improves the accuracy.

3) Classification Results and Analysis on PatternNet38: The
scene categories in the PatternNet38 dataset are uniform, and are
with great variability among categories. Therefore, we employ
40% of the dataset for training the network and 60% of the
dataset for testing the performance of HDTFF-Net and other
advanced classification algorithms. The comparison of Acc and
σ on PatternNet38 by different methods is provided in Table V.
It is clear that the HDTFF-Net proposed in this article obtains an
average accuracy of 99.64%, which is greater than other compar-
ison models. The suboptimal model ACGLNet, which integrates
the global and the local features by combining a variety of
convolutional neural networks, achieves an average accuracy of
99.50% with 40% training set ratio. The HDTFF-Net algorithm
proposed in this paper not only combines the shallow texture
features and deep features, but also considers the differences and
relationships between the features obtained by different deep
feature descriptors. And the accuracy is improved by 0.14%,
indicating that the HDTFF-Net can effectively discriminate the
PatternNet38 dataset.

Fig. 16 shows the confusion matrix of HDTFF-Net on the
PatternNet38 dataset. According to the diagonal data in Fig. 16,
we can see that the accuracies of 38 scene categories all reach
more than 95%, among which the discrimination of 30 scene
categories is completely correct. The most easily confused
category in the PatternNet38 dataset, i.e., “sparse residential,”
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Fig. 15. Confusion Matrix on AID30.

Fig. 16. Confusion Matrix on PatternNet38.

also has an accuracy of 96%. In conclusion, the proposed
HDTFF-Net can provide more discriminative features with
specific physical meanings and obtain better performance in
high-resolution RSSC.

D. Ablation Experiments

According to discussions above, the HDTFF-Net is derived
by integrating the three subnetworks, that is Tra-CNN, Gabor-
CNN, and Wave-CNN, at an effective decision- level based on
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TABLE VI
ABLATION EXPERIMENTS OF DIFFERENT VARIANTS

the D-S evidential theory. In order to validate the effectiveness of
incorporating shallow texture features and multiple deep texture
features for enhancing the classification performance, ablation
experiments are conducted. Specifically, the performance in
RSSC is evaluated by comparing Tra-CNN, Gabor-CNN, Wave-
CNN, and the combination of different neural networks using
D-S evidential fusion. The results of ablation experiments are
presented in Table VI.

As shown in Table VI, the Tra-CNN, that is DenseNet201,
achieves 93.35%, 95.48%, and 99.15%, respectively, on NWPU-
RESISC45, AID30, and PatternNet38. As discussed above, the
Gabor-CNN and the Wave-CNN are enhanced by considering
the various textures in images. Fortunately, the Gabor-CNN im-
proves the performance by 0.73%, 1.00%, and 0.30%, and Wave-
CNN by 0.77%, 1.38%, and 0.27%. In addition, we also provide
the result by fusing any two networks, that is, Tra-CNN+Gabor-
CNN, Tra-CNN +Wave-CNN, and Tra-CNN+Wave-CNN, and
obtain satisfying performance. All of these can fully demon-
strate the advantages of excavating various textures in traditional
CNNs for accurate scene classification. Finally, we provide the
results by HDTFF-Net, which fuses Tra-CNN, Gabor-CNN, and
Wave-CNN by D-S evidential theory. As shown in Table VI,
the classification accuracies, respectively, reach 94.47, 97.46,
and 99.64, proving that the proposed fusion strategy based
on D-S evidential theory can well improve the classification
performance of the proposed HDTFF-Net model.

Furthermore, we compare the proposed fusion strategy based
on D-S evidence theory with some traditional fusion methods.
The reference fusion strategies are specified as follows.

1) Feature vector concatenation fusion.
2) Decision-level weighting fusion (Without loss of gener-

ality, we set all weights for Tra-CNN, Gabor-CNN, and
Wave-CNN to be 1/3);

3) Decision-level voting fusion. The classification results by
different fusion strategies are provided by Table VII. It
is clear that directly integrating the three submodels by
feature concatenation and decision-level weighting and
voting fusions can also obtain satisfying classification
accuracy. However, compared with HDTFF-Net, they still
have weaker performance. What is more, their motivations

TABLE VII
CLASSIFICATION RESULTS BY DIFFERENT FUSION STRATEGIES

and considerations are different from that embodying in
the proposed HDTFF-Net.

V. CONCLUSION

In this article, we have designed the HDTFF-Net by fusing
the deep features from Tra-CNN, Gabor-CNN, and Wave-CNN
for high-resolution RSSC. In HDTFF-Net, DenseNet201 is em-
ployed as the backbone network. And then Gabor-CNN and
Wave-CNN are designed by fusing the various low-level textures
into traditional CNNs, thus providing specific physical meanings
for the deep features. Specifically, Gabor-CNN employs the 2-D
Gabor filter to extract multiscale and multidirectional texture
features, and uses it to replace a portion of the convolutional
kernel in the backbone network. And Wave-CNN considers
the downsampling characteristics of Wavelet transform and the
characteristics of low-frequency and high-frequency compo-
nents, and also improves its attention to the texture position
by a spatial attention mechanism. In addition, the HDTFF-Net
model fuses Tra-CNN, Gabor-CNN, and Wave-CNN based on
D-S evidence theory by considering their contributions to the
final inference of the attributive class. In the end, we have
performed abundant experiments on three public datasets, that is
NWPU-RESISC45, AID30, and PatternNet38. The comparison
results have verified that the HDTFF-Net outperforms other
algorithms in excavating effective and discriminative features
for high-resolution RSSC. Future works will consider improving
our model for RSSC by extracting the nonredundant sparse
features to further deal with the overfitting of deep networks
and the inefficiency of deep features.
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