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A Prediction and Prior Information Guided
SAR Ship Detection Method
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Abstract—Data-driven ship detection methods via deep learning
algorithms are the recent research hotspot. In this family of models,
it is essential to divide the positive and the negative samples. The
commonly used strategy is called label assignment. In the previous
detectors, label assignment resulted from the handcrafted heuristic
techniques. Therefore, it needs to tune the hyperparameters, and
improper settings will deteriorate model performance. Moreover,
a significant inconsistency between the training and the testing
objective is available. To address these issues, a prediction and
prior information guided label assignment technique is proposed.
A network specific to ship detection is then presented to improve
multiscale detection performance. First, the IoU prediction is spec-
ified as the estimation of localization precision. The quality of the
candidate anchor is evaluated by a combination of classification
and positioning. It reduces the inconsistency between training and
testing. Besides, the learning status of the current model and the
anchors’ prior information are exploited simultaneously. Optimum
positive samples are selected in an adaptive manner. Finally, a
multiscale ship detection network is designed, concentrating on
small ships’ rich contextual information. After feature fusion and
feature enhancement on different scales, shallow texture and deep
semantic information are combined to detect multiscale ships.
Multiple experiments are conducted on SSDD and HRSID datasets,
and the results demonstrate the advantage of the proposed method
compared with advanced detectors.

Index Terms—HRSID, label assignment, SSDD, ship detection.

I. INTRODUCTION

A S AN active microwave sensor, synthetic aperture radar
(SAR) can produce massive high-resolution images

throughout the day and under all weather conditions. SAR ship
detection is illustrated in Fig. 1, and its task is to locate the
precise positions of all ships in the image. Ship detection is a
fundamental component of the SAR ocean image interpretation.
Detecting ship targets provides a broad range of application
perspectives [33]. Ship detection serves to monitor and manage
specific maritime zones, bays, and ports. Illegal fishing and
smuggling can be found in real time [23]. Researches on SAR
target detection algorithms date back to the 1980 s and can be
divided into traditional and deep learning-based methods. As a
traditional representative and widely used method, the constant
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Fig. 1. Examples of SAR ship detection. (a) Offshore scene. (b) Inshore scene.

false-alarm rate (CFAR) algorithm distinguishes between target
and clutter while maintaining the constant value of false alarm
rate [24]. CFAR calculates the detection threshold according to
the statistical characteristics of the clutter around the target [25].
The result of CFAR-based methods severely relies on the sta-
tistical model of clutter. Model mismatch leads to performance
decline and weak generalization ability when dealing with data
including various sea clutter. In conclusion, traditional methods
are difficult to achieve satisfactory detection results in complex
scenarios [1].

Benefitting from the development of artificial intelligence, ob-
ject detection algorithms based on deep learning have achieved
a great success. The convolutional neural network (CNN) can
automatically extract image features and generate more robust
results. However, label assignment, which is the ship detectors’
crucial process, has yet to be investigated sufficiently. Label
assignment refers to distinguishing positive and negative sam-
ples during the training phase. Its result determines the learning
objectives of each position of the feature map, which directly
impacts model performance. Anchor-free detectors like FCOS
assign points in the feature map area corresponding to ground
truth as positive samples [17]. Two-stage detectors like Faster R-
CNN assign one or more anchors as positive samples according
to their intersection over union (IoU) with the ground-truth (GT)
box being maximum or its IoU exceeding a certain threshold [3].
One-stage detectors like the Yolo series divide an image into
multiple grid cells [2], [4]. When the center of a target falls
into a grid, this grid is in charge of predicting that target.
Anchors will be assigned as positive samples if their bounding
box overlaps a GT box more than any other. The traditional
label assignment strategies mainly follow a fixed rule based
on manual habits. They are always suboptimal for a variety
of ships in complex SAR scenes. Moreover, traditional label
assignment strategies require researchers to spend plenty of
time tuning hyperparameters (the number of positive samples,
the threshold for dividing positive samples, and the artificially
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Fig. 2. Visualization of two drawbacks brought by the significant misalign-
ment between the training objective and the testing one. The blue bounding
boxes denote the ground truth and the red bounding boxes mark the detection
results retained via NMS. The green bounding boxes mark the detected boxes
removed via NMS. They are yielded by Yolo v4. (a) Offshore scene. (b) Inshore
scene.

set ratio of positive and negative samples), which adds tedious
and unnecessary work. Furthermore, inappropriate settings of
hyperparameters can significantly affect the performance of
models. It restricts the ability to generalize the model to var-
ious datasets. Especially, there is a discrepancy between the
training (minimizing both classification and localization loss
of anchors) and the testing stage (expurgating duplication of
bounding boxes only according to the classification score via
nonmaximum suppression) [5], [39]. The cases of inconsistency
between classification confidence and localization accuracy are
shown in Fig. 2. The process of NMS uses confidence as the only
indicator and accurate localized bounding boxes are not always
the ones with the highest confidence score. The red boxes are
the final detection results retained by the NMS, but the removed
green boxes are more accurate. The detector may miss the ship in
Fig. 2(a) when the IoU of the retained detected box is under 0.5.
Besides, a less precise detected box may suppress an accurately
localized one in Fig. 2(b).

Recently, extensive experiment results have revealed the great
potential of making label assignment strategies adaptive and
prediction-aware [6], [7], [8]. However, compared to selecting
positive samples and then calculating the loss, cost-based meth-
ods must calculate the cost of all the anchors. Most calculations
are superfluous and occupy vast amounts of memory resources.
To solve these problems, this article proposes a new solution
called prediction and prior information guided label assignment
(PPIG) to sample high-quality positives. The main contributions
of this article are as follows:

1) A novel label assignment strategy, PPIG, is proposed
for SAR ship detection. The proposed method eliminates
the need for manual hyperparameter tuning. In addition,
PPIG assigns positive samples in an adaptive manner by
integrating the current learning status of the model and
anchors’ prior information.

2) IoU prediction is specified as the estimation of location
accuracy. The detection quality of bounding boxes is
measured by classification and localization to reduce the
discrepancy between the training and testing objectives.

3) A multiscale ship detection network is designed, con-
centrating on small ships’ rich contextual information.

Fig. 3. Some representative SAR ship detection methods.

The proposed network extracts more semantic informa-
tion about various ships through feature enhancement and
feature fusion on different scales.

The remainder of this article is structured as follows. Section II
provides an overview of related work. Section III elaborates on
the proposed methods. Section IV presents experimental results
on two datasets and related analyses. Finally, certain conclusions
are reached in Section V.

II. RELATED WORK

Because of the difference between optical and SAR images,
obtaining satisfactory results in ship detection is still tricky.
Many networks have been designed specifically focusing on
the characteristics of SAR data [34]. Ship detectors can also
be divided into anchor-free, one-stage, and two-stage methods.
Some representative detection methods are presented in Fig. 3.
Anchor-free models find the key points of ship targets and then
predicts the corresponding position [26]. Sun et al. [27] proposed
the category-position module in the FCOS network (CP-FCOS),
which utilizes the information from classification branch fea-
tures to improve the ship position regression performance. Hu
et al. [28] designed a balance attention network (BANet) with a
local attention module and a nonlocal attention module to im-
prove the generalization capability for multiscale ship detection.
Besides, one-stage models only predict once to obtain all the
ship targets’ position, so the detection speed is faster. Zhang
and Zhang [29] designed a lightweight ship detection network
called “ShipDeNet-20” with only 20 convolution layers, and
the accuracy was still competitive. Yang et al. [30] devised
a receptive field increased module and introduced a coordi-
nate attention module to suppress false negatives. In compar-
ison, two-stage models achieve accurate detection performance
through coarse localization and position refinement of ship
targets. Deng et al. [31] designed a condensed backbone network
with dense blocks learning deep ship detector from scratch and
proposed a new loss function to improve the recall rate. Zhao
et al. [32] proposed the attention receptive pyramid network
to refine feature representation, which combines the receptive
fields block and the convolutional block attention module as the
lateral connection.

III. PROPOSED METHODS

The significant inconsistency between the training and testing
objectives affects the detection performance and the anchors’
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Fig. 4. Structure of the proposed methodology. The black lines indicate the
training stage and the red lines indicate the test phase.

prior information has been ignored in some methods. Further-
more, unnecessary calculations consumed large quantities of
memory resources. To solve these problems, this article proposes
a novel label assignment for SAR ship detection. The overall
framework with PPIG is illustrated in Fig. 4. First, a single
convolution layer is added to predict the IoU of each anchor
without sacrificing efficiency. The predicted IoU reflects the
positioning accuracy of the anchors and is conducive to selecting
appropriate positive samples in the training stage [9]. Second,
PPIG integrates the anchor classification and localization quality
scores with the prior information. It leverages semantic feature
to guide the label assignment by using the model’s learning
status. Additionally, introducing IoU prediction makes it prone
to assign anchors containing more target information as positive
samples. Third, the quality of the candidate boxes is measured
by classification and localization simultaneously. It is utilized in
the NMS process to reduce the discrepancy between training and
testing objectives. Finally, since the candidate anchors of poor
quality are excluded from the positive sample, the false alarm
rate will decrease in the test stage.

Besides, the gap between optical deep learning methods and
SAR ship detectors is a great challenge [10]. The ship size in the
SAR image is significantly smaller than the targets in the optical
image [11] and the small ships are difficult to detect. It leads to a
performance decline to directly migrate optical models to SAR
images [12]. To solve this problem, MSDNet is designed to
extract more semantic and texture information about multiscale
ships.

A. Phase 1. IoU Prediction

At the training stage, detectors optimize both the classification
loss and the localization loss. However, at the testing stage, de-
tectors only expurgate the duplication of bounding boxes based
on the classification score via NMS [15]. The discrepancy leads
to a mismatch problem between the classification scores and
localization quality. It makes the training objective suboptimal
and diminishes detector performance. Anchors’ IoU with ships
can be calculated directly from GT information during training.
However, the detected boxes’ IoU with its corresponding ship

Fig. 5. Difference between confidence and IoU prediction in learning objec-
tives. (a) Confidence. (b) IoU prediction.

is unavailable in the test. To solve this problem, only one
convolution layer is added to predict the IoU of each anchor
with its corresponding ship. The sigmoid activation function is
used to obtain valid IoU values. Furthermore, the IoU predic-
tion is trained jointly with the classification and localization.
IoU prediction loss is defined as Focal loss [16] between the
predicted IoU and the true IoU. Specifically, an anchor quality
indicator is devised based on classification score and local-
ization estimated accuracy simultaneously. The intuitive way
is illustrated in (1) to multiply the confidence score by the
predicted IoU. The evaluating quality function is obtained as
follows:

δ (ω, i) = conf (ω, i)× pred_IoU (ω, i) (1)

where ω and i are candidate anchors and the indexes of ships.
conf(ω, i) and pred_IoU(ω, i) refer to the predicted confidence
scores and the predicted IoU of corresponding candidate anchor,
respectively. Ship detectors should only distinguish between
foreground and background. Therefore, the confidence score is
instead of classification. δ(ω, i) can act as a scoring function
reflecting the prediction quality of the candidate anchors. The
score ranks all the detected boxes in the subsequent NMS
computation procedure. The inconsistency between the training
objective and the testing one is then reduced. This article uses
a single convolution layer to enhance the detector’s accuracy
without sacrificing efficiency.

To intuitively explore the differences between the predicted
IoU and confidence, the learning objectives of the two are shown
in Fig. 5. For the sake of clarity, Fig. 5 results in a grid of
7 ∗ 7 instead of the experimental minimum of 19 ∗ 19. The
predicted IoU and confidence are one-to-one corresponding to
the initial anchor. Moreover, each feature map matches three
initial anchors of different sizes. Therefore, the learning ob-
jectives are corresponding to the initial anchor [138, 70]. The
positive sample’s grid is marked by the red dot in the ship’s
center, and the learning objective is in the lavender font. The
learning objectives of the negative samples of confidence and
the predicted IoU are marked in blue and orange, respectively.
The areas without fonts are ignored samples. The result of Fig. 5
intuitively demonstrates that the predicted IoU can learn more
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knowledge about the target than confidence. The fundamental
is similar to the label smoothing technique. Confidence only
contains information about whether the grid has an object but
has no idea about the IoU between the object and the predicted
bounding box. In the proposed method, the confidence score is
used to distinguish whether the center of the ship target falls
within the grid.

B. Phase 2. A Prediction and Prior Information Guided Label
Assignment Method

Traditional label assignment follows a hand-designed fixed
rule. However, it cannot be optimal for various ships in complex
SAR scenes. If the low-quality prediction is forced to assign
as a foreground sample, the convergence direction of the net-
work could be suboptimal, leading to degradation of detection
performance. To this end, PPIG is devised to adaptively assign
positive samples according to the quality of prediction and prior
information. Let N and ξi denote the number of ships and
clustering of anchors produced by the pixel closest to the ith
ship’s center, respectively. The quality of the ith ship’s candidate
anchor ω is represented by Φ (ω, i). PPIG considers selecting
positive samples as finding the optimal anchor ω̂. As presented
in (2) and (3), the positive sample ω̂ is the anchor with the highest
quality Φ(ω, i)

ω̂ = arg
N

max
i

Φ(ω, i) (2)

Φ(ω, i) = 1 [ω ∈ ξi]︸ ︷︷ ︸
center rule

×[IoUanchor_GT (ω, bi)︸ ︷︷ ︸
anchor prior knowledge

+ conf (ω, i)× pred_IoU (ω, i)︸ ︷︷ ︸
prediction-aware anchor quality score

]. (3)

Here IoUanchor_GT (ω, bi) is the IoU between the candidate an-
chors and the ships. PPIG simultaneously takes into account
the center rule [17], anchors’ prior knowledge, and prediction-
aware quality score. First, to suppress the low-quality anchors
generated by the locations far from the center of ships, PPIG
follows the center rule. Positive samples are selected only from
anchors predicted by the pixel closest to the center of a ship
instance in the predefined feature map layer. Besides, consid-
ering the ship bounding box bi prior IoU with ship instance is
conducive to allowing positive samples to contain more target
information.

Additionally, the IoU of the anchor and its corresponding
ship is used as the prior knowledge. After finding the grid
where the GT center of the ship is located, the IoU could be
calculated shown in Fig. 7. The prior knowledge reflects the
scale and aspect ratio similarity between the anchor and the
corresponding ship. In the early stage of training, the model has
yet to converge. Therefore, the current learning state of the model
gives inaccurate results of IoU prediction and confidence. In this
case, the positive sample selected according to the prediction
quality may not be the best choice. Introducing prior information
can avoid the suboptimal positive sample selection caused by the
inaccurate prediction.

Algorithm 1: PPIG.
Input: I is a set of ship ground-truth boxes on the SAR
image
bi is the ship bounding box
� is the number of feature pyramid levels
ω is a set of candidate anchors

Output: P is a set of positive samples
1: for each ground-truth i ∈ I do
2: build an empty set for candidate anchors of the

ground-truth i: ω ← ∅;
3: for each level j ∈ [1, �] do
4: ξi ← pick anchors predicted by the pixel closest to

the center of a ship instance in the feature map;
5: ω = ω ∪ ξi;
6: end for
7: compute IoU between ω and i: IoUanchor_GT (ω, bi);
8: decode the confidence from network predictions:

conf (ω, i);
9: decode the predicted IoU from network predictions:

pred_IoU (ω, i);
10: compute the quality of the ship i with the candidate

anchors ω: Φ (ω, i);
11: find the optimal positive sample ω̂ according to

ω̂ = argmax
∑N

i Φ (ω, i);
12: P = P ∪ ω̂;
13: end for
14: return P ;

Finally, the quality of anchors should be evaluated reflecting
the learning status of the current model and the prediction quality
should be based on classification score and localization precision
simultaneously. PPIG dispenses with hyperparameter tuning and
improves the detector’s performance by dynamically assigning
the optimal predictions as positive samples. Algorithm 1 de-
scribes how the PPIG works in the training phase. For each
ground truth i on the image, its candidate anchors are found
according to the center rule. As described in Lines 3 to 6, on each
pyramid level, candidate anchorsω are only picked from anchors
predicted by the pixel closest to the center of a ship instance.
Then, the true IoU IoUanchor_GT (ω, bi) between these candi-
dates and the ground-truth box bi is computed in Line 7. The con-
fidence conf (ω, i) and the predicted IoU pred_IoU (ω, i) are de-
coded from the network prediction in Line 8 and Line 9. Because
the result of PPIG should reflect the learning status of the current
model and the quality of candidate anchors should be evaluated
based on classification and localization simultaneously. The
quality of the candidate anchors ω: Φ (ω, i) is calculated in
accordance with (3) in Line 10. Finally, the candidate anchor
with the highest quality is selected as the final positive sample
ω̂ in Lines 11 and 12. For each ship, only one positive sample is
selected for the loss calculation. Compared to assigning multiple
positive samples to a ship, the proposed method reduces the false
alarm rate by excluding low-quality samples from the training
objectives.
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Fig. 6. Configuration of MSDNet.

C. Phase 3. Multiscale Ship Detection Network

In view of the difficulty of small ship detection, MSDNet is
designed based on small ship detection via deformable convo-
lutional networks (SSD-DCN) [13]. MSDNet extends ideas of
feature fusion and feature enhancement to boost performance
further. In the ship detection network, the high-level feature
maps usually have larger receptive fields with more semantic
information but lack specific information on the ship target. In
contrast, low-level feature maps can provide relatively more ship
target information, especially for small targets. The multilevel
feature fusion (MLFF) is proposed to extract multiscale features.
PANet and MLFF are shown in Fig. 8 [14]. P3 is added in the
bottom-to-up and up-to-bottom feature fusion. It takes full ad-
vantage of ship target information in low-level feature maps and
makes the detectors focus more on the small ships. The obtained
multiscale fusion features contain rich contextual information.
Besides, many times feature fusion will lead to forgetting some
knowledge in the original feature map. To solve this problem,
the feature reuse branches are added to P4, P5, and P6. The fea-
ture reuse branches avoid missing contextual information while
extracting more small-ship detailed information. MLFF fuses
and refines shallow texture features and deep semantic features,
aiming to integrate the location and classification information
into the detection head.

Moreover, an intense network will not extract more semantic
information about ships, but will produce feature redundancy.
The structure of MSDNet is illustrated in Fig. 6. MSDNet expur-
gates the times (2,8,8,4, respectively) of repetition of Resblock
in the backbone to improve the model’s efficiency. Additionally,

Fig. 7. Schematic diagram of prior knowledge calculation. The rectangle with
green color marks the ground truth and rectangles with other colors mark the
candidate anchors.

Fig. 8. Feature pyramid network design. (a) Original PANet. (b) Proposed
method called MLFF.
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Fig. 9. Illustration of the adaptively spatial feature fusion (ASFF) module.

to suppress the inconsistency between the different scales of
the feature pyramid, MSDNet deploys ASFF to improve the
scale-invariance of features [18]. Moreover, MSDNet halves the
channel dimension of ASFF processing’s output by half using a
1× 1 convolution. It reduces the loss of semantic information
by preventing a rapid decrease in the number of channels of the
feature map. As shown in Fig. 9, different levels of feature maps
are gathered in the different levels of the ASFF module and fused
according to the spatial weights learned by the network. Since
feature maps at different levels have different resolutions and
channel numbers, convolution and pooling operations are used
to resize them to the same scale. XPa→Pb refers to the feature
maps resized from levelPa to levelPb. (i, j) represents the spe-
cific position. λP4(i, j), ηP4(i, j), μP4(i, j) denote the spa-
tial adaptive weights for the different levels of feature maps. Ac-
cording to [18], we force λP4(i, j) + ηP4(i, j) + μP4(i, j) = 1
and λP4(i, j), ηP4(i, j), μP4(i, j) ∈ [0, 1]. Thus, the equation
of feature fusion at level P4 is shown as follows:

Y P4 = λP4(i, j)×XP6→P4 + ηP4(i, j)×XP5→P4

+ μP4(i, j)×XP4→P4. (4)

Y P4 implies the output feature maps of the ASFF module.
By introducing ASFF, contradictory information may be filtered
out, and some discriminative clues may dominate at the cor-
responding position. Finally, MSDNet adds an IoU prediction
layer to replace the classification layer by considering ship
detection as a binary classification problem. MSDNet’s predic-
tion head is shown in the right corner of Fig. 6. The IoU predic-
tion head is trained jointly with the confidence head and location
head. Loss of IoU prediction is also calculated for positive and
negative samples instead of all anchors. Furthermore, the overall
loss function can be divided into three parts contributing to the
confidence, location, and IoU prediction [19].

IV. EXPERIMENTAL RESULTS

A. Implementations

1) Datasets: Experiments are conducted to evaluate the
advantage of the proposed methods on SSDD and HRSID
dataset [20]. SSDD is a public SAR ship detection dataset
containing images with different resolutions, sensors, polar-
izations, sea states, and ship types [36]. There are 1160 SAR
images and 2358 ships with different sizes in the SSDD. HRSID
consists of 5604 high-resolution SAR images with 800× 800

pixels [37]. These images are cropped from 136 panoramic SAR
imageries containing 16 951 ships. HRSID includes SAR images
of different polarizations, sea states, and sensors. The resolution
is 0.5 m, 1 m, and 3 m, respectively. It is noted that detectors
will achieve high performance in the condition of a relatively
simple test set. This article uses a relatively complex test set
(including more inshore images and fewer offshore images) and
the partitioning of datasets follows the random partition mode.
The training subset, validating subset, and test subset are divided
in the proportion: 7 : 2 : 1.

2) Training Settings: All evaluations were implemented with
the PyTorch framework. Faster R-CNN, Yolo v3 [21], Yolo
v4, Yolo v5, EfficientDet, and CenterNet [22] were trained
with pretrained models for contrastive experiments and only
the proposed methods were trained from scratch. The Adam
method is used to train the network. The beginning learning
rate is set to 0.001, and the weight decay mode is cosine.
The freeze and unfreeze epoch batch size is set to 8 and 2,
respectively.

3) Evaluation Metric: The precision, recall, average preci-
sion (AP), and F1 score are adopted to evaluate the detection
performance. These widely used evaluation metrics are calcu-
lated by three components, true positive (TP), false positive (FP),
and false negative (FN). The precision represents the correctness
of all predicted samples and the recall indicates the coverage of
all targets. In general, precision and recall are defined as

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

where TP denotes the number of correctly detected targets, FP
indicates the number of false alarms, and FN represents the
number of missing targets. Besides, a detected bounding box
is recognized as a correct prediction when its IoU with the
corresponding ground truth is higher than 0.5. Since precision
and recall affect each other, AP and F1 score are used to evaluate
the overall performance of detection algorithms. AP and F1
scores are calculated as follows:

AP =

∫ 1

0

P (R)dR (7)

F1 = 2× Precision× Recall
Precision + Recall

(8)

whereP (R) is the precision-recall curve andR represents recall.
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TABLE I
EXPERIMENTS RESULTS OF THE IOU PREDICTION IN PPIG AND USING A

SINGLE IOU BRANCH AS A CLASSIFICATION RESULT

TABLE II
INFLUENCE OF THE PROPOSED METHODS ON SSDD

TABLE III
EXPERIMENTAL RESULTS OF PANET AND MLFF ON SSDD

B. Ablation Experiments

First, experiments are reported in Table I to investigate the
difference between the IoU prediction in PPIG and using a single
IoU branch as a classification result.

According to Table I, PPIG is better than using a single IoU
branch as the classification result. The result demonstrates the
superiority of evaluating the prediction quality of the detected
boxes based on classification and positioning. It is also worth
noting that IoU prediction has fewer false alarms when the
recall rate is the same as the confidence. Confidence only
contains information about whether the grid has an object, but
IoU prediction can predict the IoU between the object and
the bounding box. Therefore, IoU prediction can learn more
information related to the object.

In addition, some ablation experiments on SSDD are per-
formed to evaluate the advantage of the proposed methods
reported in Table II. MSDNet improves the AP by 3.36%
compared with Yolo v4 [23]. It reveals that MSDNet makes the
general detector more suitable for SAR ship detection. With the
introduction of IoU prediction, AP has been further improved. It
demonstrates the potential to measure the detected boxes based
on both classification and localization. Besides, PPIG boosts
the AP from 89.59% to 94.05%. The result demonstrates the
success in assigning the positive samples adaptively according
to integrating the model’s current learning status and anchors’
prior information.

Besides, experiments on SSDD are conducted to prove the
advantages of MLFF over PANet reported in Table III. MLFF
improves the AP by 2.01% and the precision by 9.63% compared
with PANet. Besides, the inference speed of MLFF decreases
by 0.4 FPS compared to PANet. The significant increase in
detection accuracy is worth the slight increase in inference time.

TABLE IV
STUDY RESULTS OF PPIG ON SSDD

TABLE V
COMPARISONS ON TWO EXTRA LABEL ASSIGNMENT METHODS

The comparison between the detection results of PANet and
MLFF in Yolo v4 on the HRSID dataset is shown in Fig. 10.
The false alarm of MLFF is fewer than that of PANet, and the
detection ability of small ships is also improved.

In addition, in order to verify the transferability of PPIG,
some ablation experiments on different detection frameworks
have been conducted, as shown in Table IV. Compared with the
Yolo v3, Yolo v5m, Yolo v5l, and RetinaNet, PPIG increases
the AP by 4.55%, 2.08%, 2.45%, and 2.35%, respectively [38].
Precision and recall rates are also improved in the above four
methods. The results show that the application of PPIG brings a
noticeable improvement. It demonstrates that PPIG is a general
and robust algorithm. Therefore, the proposed methods can
be ported to other SAR detection frameworks to improve the
performance.

Furthermore, the label assignment method is designed in (9)
and (10) to evaluate the necessity of prior information further

ω̂ = arg
N

max
i

α (ω, i) (9)

α (ω, i) = 1 [ω ∈ ξi]× [conf (ω, i)× pred_IoU (ω, i)] (10)

Another label assignment method is designed in (11) and (12)
to evaluate the optimal combination of prediction and prior
information

ω̂ = arg
N

max
i

β (ω, i) (11)

β (ω, i) = 1 [ω ∈ ξi]× [IoUanchor_GT (ω, bi)

× conf (ω, i)× pred_IoU (ω, i)]. (12)

The performance comparisons on label assignment separately
in the SSDD dataset are shown in Table V. According to the
performance of (9) and PPIG, it concludes that anchors’ prior
information is prone to the anchor containing more target pixels
as positive samples and contributes to improving the model’s
accuracy. Therefore, it is necessary to introduce prior informa-
tion to label assignments. Besides, comparing the performance
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Fig. 10. Visual cases on HRSID dataset. The first row is the detection results of Yolo v4 with PANet. The second is the detection results of Yolo v4 with MLFF.
The third row is the ground truth. Rectangles with green color mark the predicted ships. Rectangles with blue color mark the ground truth ships.

TABLE VI
INFLUENCE OF THE PROPOSED METHODS ON HRSID

of (11) with PPIG, prior information is just as crucial as the
model’s current learning status in assigning positive samples.
The results demonstrate that PPIG is the optimal combination
of the prediction-aware and anchor prior information.

Finally, ablation experiments of the proposed methods on
HRSID are performed to evaluate the robustness and broad
applicability. The quantitative comparisons are displayed in
Table VI. Compared with the SSDD dataset, MSDNet has a more
outstanding performance improvement on the HRSID dataset.
MSDNet improves AP by 7.34%. The number of images, the

number of pixels per image, and the total number of ships on
HRSID are 4–8 times higher than SSDD. As the data increases,
designing a specialized detection network can lead to even
more significant performance improvement. The PPIG provides
2.69% AP gains. Result comparisons revealed that an appro-
priate label assignment strategy could improve the detection
performance. The deployment of IoU prediction, PPIG, and
MSDNet achieves the highest AP. It demonstrates that all the
proposed methods are indispensable for improving the detection
performance.

C. Comparative Experiments

In order to evaluate the advantage of PPIG comprehensively,
state-of-the-art (SOTA) label assignment methods (ATSS [7],
o2o [8], POTA [9]) are evaluated in Table VII. These label
assignment methods are deployed on MSDNet to control vari-
ables and parameters that are not related to label assignment are
set the same. All of them follow standard practices, but have
limitations. The AP and recall of PPIG are superior to the SOTA
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Fig. 11. Visual detection results of Yolo v4 and MSDNet with PPIG on SSDD. The first and the third rows are visual detection results obtained by Yolo v4. The
second and fourth rows are visual detection results obtained by MSDNet (PPIG). Rectangles with green color mark the predicted ships. Rectangles with blue color
mark the ground truth ships. Rectangles with red color mark the false alarm.

TABLE VII
STUDY RESULTS OF LABEL ASSIGNMENT

methods ATSS, o2o, and POTA. It demonstrates that the neglect
of the prior information of anchors causes a performance decline.
Deploying PPIG improves the model’s AP by 4.64%, precision
by 7.01%, recall by 4.51%, and F1-score by 5.98%. It reveals
the potential of assigning the positive samples according to the
model’s learning status and the prior information of anchors
simultaneously.

The performances of the proposed method, faster RCNN,
CenterNet, EfficientDet, Yolo v3, Yolo v4, Yolo v5, and SSD-
DCN [13] are shown in Table VIII. MSDNet with PPIG is
superior in all performance indicators. The improvement is
based on a proper label assignment and a network specially
designed for SAR ship detection.

Furthermore, to demonstrate the advantage of the proposed
methods on different datasets, the comparisons with other state-
of-the-art detectors are shown in Table IX [35]. AP of MSDNet
with PPIG has achieved 86.11%, which is 10.43% higher than
Yolo v5l. The analysis of precision and recall rate concludes

TABLE VIII
DETECTION RESULTS OF CNN-BASED METHODS ON SSDD

TABLE IX
DETECTION RESULTS OF CNN-BASED METHODS ON HRSID
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Fig. 12. Visual detection results on HRSID of Yolo v4 and MSDNet with PPIG. The first, third, fifth, and seventh rows are visual detection results obtained by
Yolo v4. The second, fourth, sixth, and eighth rows are visual detection results obtained by MSDNet with PPIG. Rectangles with green color mark the predicted
ships. Rectangles with blue color mark the ground truth ships. Rectangles with red color mark the false alarm.
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Fig. 13. FLOPs, model size, and parameter size of different detection networks. (a) FLOPs. (b) Model size. (c) Parameter size.

that the proposed method detects more ship instances with lower
false alarm rates. Consequently, the much higher AP value of the
proposed method confirms the necessity of designing a matched
label assignment for SAR ship detection.

Fig. 11 shows some detection results predicted by Yolo v4 and
the proposed method on SSDD. The first and second columns
are a comparison of the off-shore results and the other columns
are a comparison of the in-shore results. It can be seen that
the proposed method detects more ships while generating fewer
false alarms, especially in complex SAR scenarios. In addition,
the proposed method gets more accurate bounding boxes than
Yolo v4. The mean IoU between all the correct detections and
their corresponding ships is calculated to compare the accuracy
of the prediction boxes quantitatively. This article proposes this
indicator to measure the quality of the prediction results. As
shown in Fig. 14, the proposed method improves the mean IoU
by 0.129. It indicates that the proposed method achieves a higher
recall rate while maintaining a lower false alarm rate, and the
prediction results are also closer to ground truth.

Some detection results on HRSID are presented in Fig. 12.
The offshore scenarios as difficult samples are mainly used to
compare the performance gap between the two methods. The
proposed method has fewer false alarms in the detection results,
particularly with islands and land. Meanwhile, the proposed
method detected more multiscale ships in offshore scenes. MSD-
Net with PPIG has excellent detection performance in port and
other complex scenarios. Additionally, as for predicting ships
correctly, detected boxes predicted by MSDNet with PPIG are
closer to ship instances than Yolo v4. As shown in Fig. 14,
the proposed method improves the mean IoU between all the
correct detections and their corresponding ships by 0.026. The
comparisons of detection results demonstrate the advantage of
the proposed method.

The computational complexity of the proposed MSDNet with
seven CNN-based methods, including Faster R-CNN, Yolo v3,
CenterNet, RetinaNet, Yolo v4, Yolo v5 m, and Yolo v5l, are
compared in Fig. 13. Generally, the computational complexity
of the algorithm is measured by FLOPs, model size, and param-
eter size. The proposed MSDNet’s FLOPs decreases by 5.36G
(about 8.37%) compared to Yolo v4, which saves computing
resources. Besides, the proposed method’s model size decreases
the 13.95MB compared to Yolo v4, which can better meet the
requirements of mobile or embedded devices. The proposed
method decreases the 0.36MB parameter size compared to Yolo

Fig. 14. Comparison of the mean IoU between all the correct detections and
their corresponding ships from Yolo v4 and the proposed method.

Fig. 15. Comparison between FPS, parameter size, and AP of different detec-
tion networks.

v4. MSDNet (PPIG) occupies less memory usage and needs less
algorithm initialization time.

The comparison between FPS, parameter size, and AP of the
proposed and SOTA methods is shown in Fig. 15. The detection
speed of MSDNet (PPIG) is 15.19 FPS, and the AP is 94.05%.
Compared with Yolo v4, the inference speed of MSDNet (PPIG)
is 4.13 FPS slower, but its detection accuracy is much better (the
AP is 8% higher). The significant increase in detection accuracy
is worth the slight increase in inference time.
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Fig. 16. Visual failure cases on SSDD and HRSID of MSDNet with PPIG. The first and third rows are visual detection results of SSDD and HRSID, respectively.
The second and fourth rows are ground truth of SSDD and HRSID, respectively. Rectangles with green color mark the predicted ships. Rectangles with blue color
mark the ground truth ships.

Fig. 16 shows some failure cases of the proposed method on
the SSDD and HRSID datasets. It can be seen that the most
common situation is false positive predictions, especially in
coastal areas such as ports. Improving ship detection networks’
ability to discriminate between sea and land is the next research
point. Besides, the proposed method is challenging to deal with
large or tiny targets because the initial anchor size set by the
anchor-based algorithm cannot cover all targets in the dataset.
Even if the anchor-free algorithm removes the constraint brought
by the anchor, it is still challenging for the network to learn the
exact width and height of the extreme-size targets. Almost all
detection algorithms are faced with the difficulty of predicting
objects of extreme size. A single picture of HRSID contains
a broader range of scene changes, and the ship scale is more
various. Therefore, detecting a huge ship into two objects or
missing small ships is more common than SSDD. Although
the MLFF alleviates the difficulty of multiscale ship detection,
further research is needed to balance huge and tiny ship detection
performance.

V. CONCLUSION

This article proposes PPIG for ship detection and designs a
novel detection network refining semantic information of multi-
scale ships. Specifically, the work has three crucial implications:

1) It reveals that label assignment is a crucial procedure
that significantly affects the current SAR ship detector’s

performance. Researchers should draw more attention to
introducing a proper label assignment.

2) Four critical points of devising a proper label assignment
are demonstrated. First, the method should be adaptively
to discard hyperparameters tuning. Second, the method
should reflect the model’s current learning status. Third, it
should simultaneously evaluate the detected boxes’ qual-
ity according to classification and localization. Fourth, the
anchor prior information should not be ignored, and it is
conducive to assigning the optimal anchors as positive
samples.

3) Ship detectors should consider multiscale object detection
instead of migrating optical models directly to SAR im-
ages. Feature enhancement and fusion enable the network
to make full use of features on different scales and improve
the detector’s recall rate.
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