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Infrared Maritime Target Detection Based on Iterative
Corner and Edge Weights in Tensor Decomposition

Enzhong Zhao , Lili Dong , and Jin Shi

Abstract—High-precision infrared maritime target detection
plays an important role in early warning, monitoring, search,
and rescue. The methods of decomposing the original image into
low-rank background components and sparse target components
show favorable detection performance. However, the strong edge
interference is also sparse and may be mistakenly taken as tar-
get components, resulting in a large number of false alarms and
reducing detection accuracy. To solve the problem, we propose an
iterative corner and edge weights method based on tensor decompo-
sition. The original image is decomposed into the background com-
ponent, target component, and additional strong edge interference
component. The corner strength is designed as the weight of the
target component, and the edge strength is designed as the weight
of the interference component in order to separate the target and
interference more accurately. And the two weights are designed to
be updated during each iteration of the model solution to reduce the
impact of initial imprecise weights on detection results. Compared
with 8 advanced baseline methods in 10 datasets, the proposed
method demonstrates outstanding results and shows engineering
application prospects.

Index Terms—Infrared small target detection, interference
suppression, iterative weight, tensor decomposition.

I. INTRODUCTION

A S AN important technology in remote sensing [1], [2], [3],
infrared maritime target detection plays a key role in the

military, rescue, and other fields [4], [5]. High detection accuracy
is conducive to the efficient implementation of the task; how-
ever, the infrared maritime image may have interference factors
similar to the characteristics of the target, such as islands, strong
waves, clouds, etc., which are prone to be wrongly detected and
affect the detection accuracy [6]. In recent years, many scholars
have improved detection performance through different theories.

A. Related Work

Target detection methods can be divided into multiframe
methods using spatiotemporal information and single-frame
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methods using only spatial information. Multiframe methods
have favorable applications in static scenes with low real-time
requirements. Typical methods include Markov random field [7],
pipeline filtering [8], particle filter [9], dynamic program-
ming [10], temporal profile [11], etc. These methods are usually
time-consuming because they need to process multiple frames.
In contrast, single-frame methods are usually more efficient but
use relatively less information, which can be summarized into
filter-based methods, local-information-based methods, graph-
theory-based methods, deep-learning-based methods, matrix-
decomposition-based methods, etc.

Filter-based methods take advantage of the consistency of the
image background. The targets in the background that break
the consistency are separated based on spatial or frequency
domain. The spatial-based methods include: least-mean-square
filtering [12], bilateral filter [13], and morphology-based top-hat
transform [14]. Besides, the frequency-based methods include
high-pass filter [15], wavelet transform [16], etc. Although these
methods are less time-consuming, the high-frequency interfer-
ence is hard to be removed [17], so they are more suitable for
image preliminary processing.

Contrast is a significant factor in the human visual system [18],
and some researchers use the local information in the image to
extract the target. The local contrast method (LCM) [18] is a
classical method, and a large number of improvements have been
derived based on LCM, including relative LCM [19] for multi-
scale target detection. Adaptive scale patch-based contrast mea-
sure [20] for detection in the complex background and strong
noise. The halo-structure-prior-based LCM [21] combines the
structure tensor for better performance. Besides, the visual atten-
tion model [22], [23] uses the difference-of-Gaussians filter to
obtain the saliency map to extract the target. Furthermore, based
on the image entropy theory, the local entropy around the target
changes because the texture is destroyed, which can be used to
extract the target [24], [25]. These methods are susceptible to
high-intensity noise.

In recent years, methods based on graph theory have been
applied to target detection. The facet kernel and random walker
(FKRW) method [26] combines the local contrast with the
random walk to separate the target from the background. The
study in [27] utilizes the method based on region growth to
detect infrared small targets. Besides, the morphological profile
methods based on the max-tree and min-tree theories are applied
to detect targets with different sizes and intensities [28], [29].

The research of deep learning has attracted more and more
attention, which has a good effect on detecting targets of various
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scales and shapes. Deep-learning-based methods do not require
human design features but automatically extract abstract features
through the designed model. Representative methods include
region convolutional neural networks (R-CNNs) [30], fast R-
CNNs [31], you only look once [32], transformer networks [33],
[34], etc. Recently, the local patch network [35] and robust in-
frared small target detection network (RISTDnet) [36] combine
the local information to obtain better results for infrared small
targets. However, the current scarce data samples are difficult to
ensure the accuracy of detection temporarily [6].

The method based on matrix decomposition is originally used
to recover low-rank data from data contaminated with noise [37].
This kind of method is suitable for small target detection and
has wide applicability as it assumes that the target is sparse and
not constrained by the shape of the target [38]. The infrared
patch-image (IPI) [39] model transforms the original infrared
image into a local patch model for the first time. However,
the detection effect and effectiveness of IPI still need to be
improved [40]. The weighted IPI (WIPI) model [41] is de-
signed to provide different weights for each patch to suppress
strong background edges. The total variation regularization and
principal component pursuit [42] model solves the nonsmooth
and nonuniform images by attaching additional total variation
regularization to the background. The study in [38] analyzes the
reasons for the undesirable performance of the IPI model with
complex backgrounds and proves that more accurate results are
obtained by replacing the nuclear norm with the partial sum
of singular values. The nonconvex rank approximation mini-
mization (NRAM) model [40] introduces l2,1-norm to suppress
strong edge interference. The nonconvex optimization with lp-
norm constraint (NOLC) [43] further suppresses the background
and improves efficiency by constraining the sparse component
using lp-norm. The target-aware nonlocal low-rank modeling
with saliency filtering regularization method [44] introduces
a smooth but nonconvex surrogate of the rank and designs a
sparse constraint operator based on local entropy. Besides, the
Laplacian function is introduced to replace the nuclear norm
in [45].

In order to make better use of the nonlocal spatial information
of the image and improve the solving speed, the reweighted
infrared patch tensor [46] model converts the 2-D matrix model
into a 3-D tensor model. Subsequently, the partial sum of the
singular value is applied to estimate the tensor rank, and the
alternating direction method of multipliers (ADMM) [47] is
applied to solve the model in [48]. The Laplacian function is
also introduced in [49] to estimate tensor rank and the l1,1,2-norm
is introduced to measure strong edge interference. The tensor-
fibered nuclear norm based on the Log operator (LogTFNN) is
introduced in [50] to estimate tensor rank and applied hypertotal
variation to tackle complex backgrounds. Besides, the interpatch
correlation enhancement method [51] combines the local visual
saliency and improves the running speed.

B. Motivation

Tensor-based methods show decent results. However, inter-
ference with strong edges such as islands, waves, and clouds

in images also has sparse properties. It is necessary to separate
these sparse interference components from the target.

In order to converge quickly and detect accurately, this kind
of method often needs to calculate the weight of the original
image, which may lead to severe false alarms of results when
the initial weight introduces interference components.

Based on the above considerations, we propose an infrared
maritime target detection method based on iterative corner and
edge weights (ICEW). The contributions of this article are as
follows.

1) The interference component based on edge strength
weight is designed and measured by the l1,1,2-norm in
the tensor decomposition model to separate interference
such as strong edge and wave clutters more accurately.

2) A method to obtain the weights of the target component
and interference component in the iterative process is pro-
posed, which avoids the problem that interference is easily
introduced into the target component when the weights are
obtained only by the original image.

II. PROPOSED METHOD

A. Proposed Model

The IPT model divides the original image into several sub-
components after converting it into a patch tensor. The infrared
maritime background component can be regarded as continuous
and highly correlated, in other words, the background tensor has
low-rank properties. Meanwhile, the small targets only account
for a minority of pixels of the image, so the target tensor is sparse.
To estimate the rank of the background tensor, we introduce an
efficient tensor rank estimation method: The partial sum of the
tubal nuclear norm (PSTNN) [52], which protects large singular
values with important information during the optimization pro-
cess. The l1-norm is used to measure the sparsity of the target
components. Besides, islands and waves in the infrared maritime
image have sparse properties similar to the target. The strong
edge interference seriously affects the detection results. To solve
this problem, the l1,1,2-norm is introduced, which has been
proven to be able to characterize strong edge interference [40],
[49], and weights are designed for the target component and
the edge interference component, respectively. Based on the
above considerations, a principal component analysis model is
proposed as follows:

min
B,T ,S

‖B‖PSTNN + λ‖T �Wt‖1 + β‖S �Ws‖1,1,2

s.t. D = B + T + S (1)

where B denotes the background tensor, T denotes the target
tensor, S denotes the sparse interference components used to
separate the strong edge interference, D denotes the patch-
tensor constructed from the original image. The calculation
of ‖B‖ PSTNN is introduced in Definition 1. Wt represents the
weight of the target component; Ws represents the weight of
S; λ and β are compromising parameters. The calculation of
‖ · ‖1,1,2 is introduced in Definition 2.
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B. ICEWs of Target Component and Interference Component

For faster convergence and accurate separation of the target
components, weights are usually introduced for the target com-
ponents. Here we introduce an efficient structure-tensor-based
method that is well-suited for enhancing small targets. This
method utilizes the input image to construct the structure tensor
and obtain two eigenvalue matrices Λ1 and Λ2. The specific
processes of constructing structure tensor and obtaining Λ1 and
Λ2 are described in detail in Definition 3. Let the corresponding
elements in Λ1 and Λ2 be λ1 and λ2. When λ1 ≈ λ2 ≈ 0, the
position corresponds to a flat region. When λ1 ≥ λ2 � 0, the
position corresponds to a corner region. When λ1 � λ2 ≈ 0,
the position corresponds to an edge region [48].

Then, the corner strength weight of the target component
based on the structure tensor W cs can be calculated by the
Hadamard product between the harmonic mean and the max-
imum of the eigenvalues (Λ1,Λ2) as

W cs =
det(ST)

tr(ST)
� max(Λ1,Λ2)

=
Λ1 �Λ2

Λ1 +Λ2
� max(Λ1,Λ2) (2)

whereST indicates the structure tensor, the determinant of struc-
ture tensor det(ST) = Λ1 �Λ2, the trace of structure tensor
tr(ST) = Λ1 +Λ2. To get the corner strength weight Wcs of
the tensor X , X is first reconstructed as a matrix X , then the
matrix W cs is obtained by (2), and finally, the normalized Wcs

is constructed as a tensor. We abbreviate the above process as

Wcs = Wt(X ). (3)

We select four typical scenes, as shown in the first column in
Fig. 1. W cs obtained by (2) is shown in the second column. It
can be found that the target area is enhanced. However, parts
of islands and waves still remain, which may lead to residual
noise in the target component and affect the final detection
result. Therefore, it is unreasonable to calculate the weight only
through the original image. Considering that the strong edge
interference in the target and background components will be
gradually separated into the interference component during the
iteration process, it is theoretically more reasonable to use the
superposition of the target component and background compo-
nent obtained after each iteration to reobtain the weight of the
target component.

Based on the above considerations, we propose an iterative
weight method, and its comparison with the general method
is shown in Fig. 2. Since the weight of the general method
is constant, the interference may be introduced in the results
eventually. However, the proposed iterative weight method uses
the new B + T to calculate the required weights for the next
iteration each time, which separates the strong edge interference
with sparsity from the target.

Letk be the number of iterations in the model-solving process.
Based on the iterative model, the iterative weight of the target
component after k iterations Wk+1

t is designed as

Wk+1
t = Wk

sw �Wk
rec =

1

(T k + ε)�Wt(Bk + T k)
(4)

Fig. 1. Weights obtained by the structure tensor. The green circle indicates the
location of the target and the red circle indicates the location of the strong edge
interference.

where W sw = 1
T + ε is a sparsity weight for fast conver-

gence [53], constant ε avoids the denominator being zero. W rec

is the tensor corresponding to elementwise reciprocals of the
corresponding elements in Wcs.

In order to separate the strong edge interference sufficiently, it
is necessary to design a weight for the interference components.
Inspired by the corner strength, we combine the relationship
of eigenvalues Λ1 and Λ2 in the structure tensor to design the
edge weight of the enhanced edge. The edge strength W es can
be calculated as

W es = Λ1 −Λ2. (5)

The third column in Fig. 1 shows the edge strength maps for
four typical scenes. The constraint on edge strength is looser,
resulting in parts of wave clutters being included in addition to
strong edges. The edge interference remaining in corner strength
is more prominent in edge strength maps compared to the corner
strength maps, which is beneficial to accurately separate the
target component and the interference component.

We use the following equation to represent the process of
obtaining the normalized edge strength weight Wes of a tensor
X by (5):

Wes = Ws(X ). (6)

Then, the iterative weight of edge component after k iterations
Wk+1

s is designed as

Wk+1
s =

1

Ws(Bk + T k)
. (7)
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Fig. 2. Schematic of the general model and the proposed ICEW model. The general method on the left obtains the weight outside the iteration process, and the
weights of the proposed method on the right are continuously updated during the iteration process. D indicates the input image. W indicates the weight of the
component. T indicates the target component. B indicates the background component. S indicates the strong edge component.

C. Solution of the Model

We adopt ADMM to solve the convex optimization problem
(1). The augmented Lagrangian function of (1) is shown as
follows:

Lμ = ‖X‖ PSTNN + λ ‖T �Wt‖1 + β ‖S �Ws‖1,1,2
+ < Y ,B + T + S −D > +

μ

2
‖B+T + S −D‖2F .

(8)

Then, each component of (8) iterated k + 1 times can be
expressed as follows:

Bk+1 = arg min
B

‖B‖PSTNN

+
μk

2

∥∥∥∥B + T k + Sk −D +
Yk

μk

∥∥∥∥
2

F

(9)

T k+1 = arg min
T

λ
∥∥T �Wk

t

∥∥
1

+
μk

2

∥∥∥∥Bk+1 + T + Sk −D +
Yk

μk

∥∥∥∥
2

F

(10)

Sk+1 = arg min
S

β‖S �Wk
s‖1,1,2

+
μk

2

∥∥∥∥Bk+1 + T k+1 + S −D +
Yk

μk

∥∥∥∥
2

F

. (11)

The subproblem (9) can be solved by partial singular value
thresholding (PSVT) operator (see Definition 5) through fast
Fourier tensor singular value decomposition (t-SVD) computa-
tion (see Definition 6) [48].

The subproblem (10) can be solved by the soft thresholding
operator (see Definition 4) [54]

T k+1 = S λWk
t

μk

(
D −Bk+1 − Sk − Yk

μk

)
. (12)

Let Q = D −Bk+1 − T k+1 −Yk/μk, the subproblem (11)
can be solved by

Sk+1(:, :,m) = Q(:, :,m)·(
1− β

μk‖S(:, :,m)‖2‖Ws(:, :,m)‖2

)
+

(13)

where m = 1, . . . , n indicates the number of tensor patches.
Next, Y and μ are updated by

Yk+1 = Yk + μk
(
D −Bk+1 − T k+1 − Sk+1

)
(14)

μk+1 = ρμk (15)

where ρ is a constant greater than 1.

D. Polarity Judgment

The polarity of the target indicates the grayscale relationship
between the target and the local background. The polarity of
targets with grayscales higher than the local background is
positive, and the polarity of targets with grayscales lower than
the local background is negative. Fig. 3 shows the schematic
of the polarity judgment method. After the iterative process
converges, the low-rankB is flatter compared toS. Therefore, in
T calculated by (12), the target whose grayscales are higher than
the local background has a positive value, yet the target whose
grayscales are lower than the local background has a negative
value [55]. However, in certain scenes, the target component may
contain sparse interference with opposite polarity, as shown in
the matrix T in Fig. 3. Empirically, the target polarity is always
consistent in the same scene. Considering that the target is more
significant than the interference with the opposite polarity, and
the target is also more significant than the interference in Wcs,
a polarity judgment method based on target-weight similarity is
designed as follows:

T k =

{
T k

+, if ‖T k
+ �Wk

cs‖1 � ‖T k
− �Wk

cs‖1
−T k

−, otherwise
(16)
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Fig. 3. Schematic diagram of the polarity judgment method. The red circle
represents the targets. The final detection result is obtained by comparing the
similarity of target components with different polarities (T+ andT−) and target
weight W cs.

Algorithm 1: ADMM Solver to the Proposed Model.

Input : T 0 = B0 = S0 = Y0 = 0,W0
t = W0

s =
1,D, λ, μ0, ρ = 1.1, c = 1, k = 0

1: Fix the others and update Bk+1 by PSVT
2: Fix the others and update T k+1 by (12)
3: Fix the others and update Sk+1 by (13)
4: Fix the others and update Yk+1 by (14)
5: Fix the others and update Wk+1

t by (4)
6: Fix the others and update Wk+1

s by (7)
7: Update μ by (15)
8: Check the convergence conditions:
‖Bk+1+T k+1+Sk+1−D‖2F

‖D‖2F
< ε or ‖T k+1‖0 = ‖T k‖0

9: Polarity judgment by (16)
10: Update k: k = k + 1
Output : T k

where T k
+ = max(T k, 0), T k

− = min(T k, 0), ‖T k �Wk
cs‖1

indicates the similarity between T k and Wk
cs. For example,

when the target polarity is negative, −T k
− and Wk

cs are more
similar. Therefore, −T k

− is taken as the final result T . The
solution procedure for the whole minimization problem is shown
in Algorithm 1.

E. Procedure of the Proposed ICEW Method

The flow of ICEW is shown in Fig. 4. The main contributions
of this article lie in (4), (7), and (16) in the figure. Different from
the general tensor decomposition methods, the weights of the
target component and the interference component Wt and Ws

are obtained byB + T each time in the iteration process through
(4) and (7), so that the interference in the target is separated
more cleanly. Besides, the polarity judgment calculated by (16)
removes the interference which is opposite to the target polarity
and further ensures the detection accuracy. The following are
detailed descriptions of the ICEW process.

First, the original image is constructed as a patch tensor.
Second, the original tensor D is substituted into Algorithm 1
to obtain the T , B, and S at each iteration. Then, B and T are

superimposed and reconstructed into a matrix, and the weights
of the T and S are obtained by the structure tensor. Then, they
are constructed into patch tensors and participated in the next
iteration of Algorithm 1. Third, when the iteration is over, T
is divided into positive and negative tensors. After comparing
the similarity with Wcs, the target polarity can be determined
and accurate results obtained. Finally, the retained tensors are
reconstructed into matrixes to obtain the final target detection
result.

In order to intuitively show the changes of each component
and weight in the iterative process, the original image D in
Fig. 4 is taken as an example, and reconstruct each tensor into
a matrix, as shown in Fig. 5. Each row represents the state of
each component and the weight after each iteration. It is obvious
that in the first iteration, the distinction between the interference
component S and the target component T is not clear. More ob-
vious edge interference exists in the corner strength weightW cs.
When after several iterations, the interference in T is gradually
eliminated. The interference inW cs is gradually suppressed and
more edge interference is introduced in S. After the iteration
stops, the similarity between the positive and negative parts of
T and the latest W cs is, respectively, compared. Obviously, the
polarity of the target T is negative, and the negative part of T is
retained and reversed to obtain the final result.

F. Effectiveness of the Proposed ICEW Method

The accuracy of the results benefits from the introduction of
the interference component and the update of the weights during
each iteration. In order to prove that the proposed method has
a significant improvement effect on the detection performance,
we set up a comparative experiment. As shown in Fig. 6, where
Result1 represents the detection results obtained by neither
introducing the interference component nor obtaining weight by
iteration in the model. Result2 represents the detection results
obtained by iterative corner strength weight without introducing
the interference component into the model. Result3 represents
the detection results obtained by only introducing the inter-
ference component into the model without obtaining iterative
weights. The last column shows the final result of ICEW. Nu-
merous edge interference and clutter are introduced in the results
of the first model, and the second and third models suppress the
interference partly, and the proposed ICEW method performs
the best effect.

III. EXPERIMENTS

In order to verify the robustness of the proposed ICEW
method, qualitative and quantitative experiments are designed
in this section. Common evaluation metrics are used to compare
the performance and running time of ICEW with the baseline
methods in a variety of scenes.

A. Experimental Setup

1) Dataset: To demonstrate the robustness of ICEW, se-
quence images of 10 different scenes are provided, all of whose
sizes are 640 × 512 pixels. The typical image in each sequence
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Fig. 4. Flowchart of the proposed ICEW method. The original image is gradually separated into accurate target components, background components, and edge
components in the iterative process, and then, the final detection result is obtained by polarity judgment.

TABLE I
DETAIL INFORMATION CONTAINED IN 10 DIFFERENT SCENES

is shown in Fig. 7. Table I displays the target sizes, the number
of frames for each sequence, and the type of interference in each
sequence. Considering some methods default the grayscale of
the target is higher than their local background, since there are
dark targets in datasets (i) and (j), the grayscale of these images
is reversed in the experiment for fairness.

2) Evaluation Metrics: Four metrics are selected to evaluate
the effectiveness of the proposed method. According to detection
accuracy, the detection probability (Pd) and the false alarm rate
(Fa) are selected and presented by the receiver operating charac-
teristic (ROC) curve [56], [57]. According to global background
suppression ability and local target enhancement ability, the
background suppression factor (BSF), and signal-to-clutter ratio
gain (SCRG) are selected, respectively. The calculation formula
for each parameter is given in the following equations:

Pd =
number of detected true targets

number of true targets
(17)

Fa =
number of detected false targets

number of detected targets
(18)

BSF =
σin

σout + c
(19)

SCR =
|μt − μb|
σb + c

(20)

SCRG =
SCRout

SCRin + c
(21)

where σin and σout denote the standard deviation of the original
image and final output image excluding the location of the target,
respectively. The final output image in this article is the result
after normalization and before binarization. μt and μb denote
the average grayscale of the target and background area, respec-
tively. σb denotes the standard deviation of the target’s local
background. SCRin and SCRout represent the signal-to-clutter
ratio of the original and final output images, respectively. The
background-size setting in SCR is taken to be the region obtained
by expanding the target region boundary by 20 pixels. Constant
c is set to be 0.001 here. According to the definition of the four
evaluation metrics, smaller values of Fa indicate more accurate
detection, while larger values of Pd, BSF, and SCRG indicate
more accurate detection [5].

3) Baseline Methods: Eight baseline methods are selected
based on different theories. The name and parameter set-
ting of each method is shown in Table II. Among them,
GST [58] is a filter-based method. FKRW [26] is a graph-
theory-based method. RLCM [19] is a local-information-based
method. NRAM [40], NOLC [43], PSTNN [48], SRWS [59],
and LogTFNN [50] are decomposition-based methods. The
codes of the proposed ICEW method are available at https:
//github.com/marny4/ICEW.

https://github.com/marny4/ICEW
https://github.com/marny4/ICEW
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Fig. 5. Variation of each component during the iteration. The cyan circle indicates that some strong edge interference is gradually introduced into the interference
component S, and the interference in the corner strength weight W cs of the target component is gradually suppressed during the iteration process.

TABLE II
PARAMETER SETTINGS FOR THE EIGHT BASELINE METHODS

B. Analysis of Parameters

By adjusting the key parameters of the proposed ICEW
method, the detection effect of four typical scenes (b), (c), (g),
and (i) in Fig. 7 are tested. Pd and Fa are used to evaluate the
detection effect through the ROC curves so that the performance
of the method is in the relatively best state, as shown in Fig. 8.
Since the Fa value of the proposed method is low, the range of

Fa is set as [0,0.2]. The curves for the dataset (g) in row 3 rise
very fast, which indicates that the target is far more significant
than the interference and is not easily missed. When all values
of different parameters can achieve high Pd, the values that can
achieve a lower Fa can be considered superior.

1) Patch Size: The patch size is a parameter related to the
target size. Larger patch sizes contribute to the sparsity of
the target. Smaller patch sizes contribute to the efficiency
of singular value decomposition. The best results are
obtained when the patch size is 60 pixels.

2) Sliding Step: The sliding step size is also a key parameter
that affects the accuracy when constructing the patch
tensor. Too small a sliding step leads to a lack of sparsity
in the target and increases the time complexity. The best
results are obtained when the sliding step is 40 pixels.

3) Penalty Factorμ:μ balances the tradeoff among low-rank,
sparse, and interference tensors. According to the results
in Fig. 8, whenμ = 1, the values of Pd are relatively higher
and the values of Fa are relatively lower.

4) Compromising Parameter β: β is the balance parameter
of the interference component, which affects the detection
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Fig. 6. Comparison results to prove the effectiveness of the proposed ICEW method. The yellow circles indicate the residual noise interference in the results.

Fig. 7. Dataset in the experiment. (a)–(j) Representative images of each dataset, respectively. The green boxes represent bright targets and the blue boxes represent
dark targets.

accuracy. Larger β is prone to introduce more interference
into the target component. When the value of β is too
small, the target may be introduced into other components.
The value of β of 0.2 in this article is reasonable.

5) Compromising Parameter λ: λ is the balance parameter
of the sparse component, which also affects the detection
accuracy. Larger λ may cause the target to be introduced
into other components. Smaller λ is prone to introduce
more interference into the target component. Referring

to [60], λ is set as L/
√

max(p, q) ∗ n. L is set to 0.6 in
this article.

C. Qualitative Comparison

The detection results of the baselines and the proposed ICEW
method in 10 datasets are displayed in Figs. 9–11. The green
boxes mark the true targets, and the yellow circles mark the false
alarms in all detection results. Among the 8 baselines, GST has
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Fig. 8. ROC curves under different key parameters of the proposed ICEW method. Row 1, row 2, row 3, and row 4 indicate the result of the datasets (b), (c), (g),
and (i) in Fig. 7, respectively.

few false alarms but has many miss detections, which indicates
that GST is difficult to improve the saliency of the target. In
addition, GST is unable to suppress strong corner points in
Datasets 6 and 8. Although the number of miss detections of
FKRW is relatively small, a large number of false alarms caused
by clouds, backlighting, islands, and waves remain in the results.
The detection accuracy of RLCM is relatively higher, but some
weak targets in Datasets 9 and 10 are missed. And because of
the design of the sliding window in RLCM, the results lose
the morphological characteristics. NRAM is more sensitive to
noise, as can be seen in the result of Dataset 7. In addition,
NRAM overshrinks the size of the targets, with some false
alarms and missed detections in multiple datasets. As a method
that introduces a strong edge interference component, NRAM is
less capable of suppressing the interference than ICEW. NOLC
and SRWS have similar problems as NRAM, but they have
relatively few false alarms. The detection rate of PSTNN is
relatively high, but it is susceptible to strong edge interference
such as islands, which causes a large number of false alarms.
Although LogTFNN can detect almost all targets, a large number
of false alarms are introduced in the results, which indicates
that LogTFNN cannot separate targets and backgrounds well,
and a large number of background components are divided into
target components. By contrast, ICEW is capable of suppressing
noise, waves, islands, and other interference while ensuring a
high detection rate, which demonstrates exceptional detection
capabilities.

D. Quantitative Comparison

The ROC curves of the proposed ICEW method and the
baseline methods under 10 datasets are shown in Fig. 12. Among
the 8 baselines, LogTFNN has the worst detection accuracy
in most datasets. Although the values of Pd of GST, RLCM,
and LogTFNN are relatively high, their corresponding values
of Fa are also relatively high, which means that they lack the
ability to separate targets from the background. The curves of
PSTNN, SRWS, and RLCM rise faster compared with other
baselines, which indicates their detection accuracy is relatively
higher than other baselines. By contrast, ICEW shows an out-
standing effect. The highest values of Pd are obtained with
the lowest Fa in almost all datasets compared with baseline
methods. Benefiting from our design of iterative weights and
additional strong edge interference component, the target com-
ponents are cleanly separated. Although the values of Pd are
not the highest in datasets (b), (c), and (f) compared with
some baselines, the values of Fa are extremely low. A small
number of missed alarms is more acceptable than massive false
alarms.

The results of BSF and SCRG are shown in Tables III and IV.
In the tables, bold indicates that ICEW is superior to the baseline
methods, and the underlined indicates that ICEW is superior to
the other methods combining both BSF and SCRG. For example,
the BSF value of ICEW in Dataset 1 is lower than that of GST
and SRWS; however, the SCRG value of ICEW in Dataset 1 is
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Fig. 9. Qualitative comparison results of Datasets 1 to 4 between the proposed ICEW method and the baseline methods. The yellow circles indicate false alarms.
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Fig. 10. Qualitative comparison results of Datasets 5–8 between the proposed ICEW method and the baseline methods. The yellow circles indicate false alarms.
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Fig. 11. Qualitative comparison results of Datasets 9–10 between the proposed ICEW method and the baseline methods. The yellow circles indicate false alarms.

Fig. 12. ROC curves of the proposed ICEW method and the baseline methods. (a)–(j) Result of 10 different datasets.

obviously higher than that of GST and SRWS, so the underline
is introduced for the BSF value of ICEW in Dataset 1.

The BSF values of FKRW, and LogTFNN are relatively low,
which indicates that their background suppression abilities are
relatively weak and their detection accuracy is more susceptible
to complex backgrounds. In most datasets, ICEW demonstrates
outstanding background suppression ability, which also shows
that ICEW can handle complex scenes better than the baselines,

especially scenes with strong edge interference. Although the
BSF values of ICEW in Datasets 1 and 6 are not the highest,
their SCRG values are relatively high.

According to the results of SCRG, the signal enhancement
performance of GST, NRAM, NOLC, and SRWS is relatively
weak, which means their target enhancement performances are
not strong and easier to cause miss detections. The higher SCRG
value of RLCM profits from the appended adaptive thresholding
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TABLE III
AVERAGE BSF OF THE PROPOSED ICEW AND BASELINES

TABLE IV
AVERAGE SCRG OF THE PROPOSED ICEW AND BASELINES

TABLE V
AVERAGE RUNTIME OF THE PROPOSED ICEW AND BASELINES ON DATASET 1

at the end of the method. Although the SCRG value of FKRW,
PSTNN, and LogTFNN in some datasets are higher than that of
ICEW, their BSF values are relatively low, which indicates that
the global noise in the results is not well suppressed. Therefore,
considering BSF or SCRG alone cannot measure the detection
effect well. Considering BSF and SCRG simultaneously, the
detection effect of the proposed ICEW method is better than
that of the baseline methods. In summary, the proposed ICEW
method can separate targets from strong edge interference more
accurately compared with the baseline methods.

E. Complexity Analysis and Runtime Comparison

Here, we briefly discuss the complexity of ICEW. The main
time consumption comes from the following three aspects:
1) the conversion between tensor and matrix, 2) the tensor sin-
gular value decomposition, and 3) fast Fourier transform (FFT)
operation. Let the input image be D ∈ Rm×n, the patch size be
n1 × n2, the numbers of patches be n3, and the iteration times
be k. Then, the complexity of the conversion between tensor
and matrix is O(kmn/(n1n2)). The complexity of the tensor
singular value decomposition is O(kn1n

2
2[(n3 + 1)/2]). The

complexity of FFT is O(kn1n2n3log(n1n2)). Finally, the com-
plexity of ICEW is O(k(mn/(n1n2) + n1n

2
2[(n3 + 1)/2] +

n1n2n3log(n1n2))). All images are run on a Mac computer
(2 GHz quad-core, Intel Core I5 CPU, and 16 GB memory),
and the codes are implemented in MATLAB 2022a. The average

runtimes comparison results among the proposed ICEW method
and baselines on Dataset 1 are shown in Table V. Among all
methods, the runtimes of GST, FKRW, and PSTNN are relatively
short. The runtime of RLCM is relatively long because of the
traverse of the image. Among methods based on matrix or tensor
decomposition, the speed of ICEW is relatively fast. Since the
matrix and tensor need to be transformed in each iteration, the
running time of ICEW is longer compared with PSTNN.

IV. DISCUSSION

The accuracy of infrared maritime detection still has room
for improvement. Affected by the marine environment and the
characteristics of infrared cameras, image noise, waves, islands,
and clouds easily cause a large number of false alarms. In general
matrix or tensor decomposition methods, although a few meth-
ods also introduce additional edge interference components,
such as NRAM in the baseline methods, no weight is designed
for the interference components, resulting in the strong edge
cannot be accurately separated from the target. In addition, since
the weights have an important influence on the result, if the
designs of the weights are not accurate, the detection results are
likely to remain false alarms. However, designing more accurate
weights increases the complexity of the method, and overly strict
weights may reduce the robustness of the method. Considering
that the interference in the target and the background component
will gradually decrease with iterations in the model-solving
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process, the weight of the target and the weight of the edge
interference are designed based on the structure tensor through
the superposition of the target and background components after
each iteration, which is advantageous to separate the interference
in the target component to the edge interference component. In
addition, we keep the negative values generated during the solu-
tion process, and these represent negative polarity targets with
grayscales lower than the local background. After the iteration
stops, the target polarity is judged by the similarity between
the target weight and the targets with different polarities, which
helps to screen out interference with opposite polarity to the
target. Four parameters, Pd, Fa, BSF, and SCRG, are used as
quantitative indicators to evaluate the proposed ICEW method,
and 10 sequences with different characteristics (including sea-
sky line, noise, light interference, wave, island, cloud, etc.) and 8
baseline methods are selected for a comprehensive comparison.
Through qualitative and quantitative analysis, compared with
other baselines, ICEW shows more robustness and is suitable
for target detection in more scenes.

V. CONCLUSION

In this article, we proposed a target detection method based on
the corner and edge weights in the iterative process. Compared
with the general tensor decomposition method, we designed
the edge weight and introduced the strong edge interference
into the additional component. The weights obtained from the
original image were not accurate, so we utilized the updated
background and target components to obtain new weights in
the iterative process to improve the detection accuracy. The
outstanding ability of ICEW to suppress strong edge interference
was demonstrated on abundant datasets.

However, as a single-frame method, ICEW still remains some
false alarms and missed detections, and the iterative solution
process is time-consuming, which is difficult to meet real-time
detection requirements. Therefore, in future studies, we will
focus on using multiframe information to improve detection
accuracy and accelerate our method through parallel processing.

APPENDIX

Here, we collate some mathematical theories relevant to this
article.

Definition 1 (PSTNN [52]): Let a tensor X ∈ Rn1×n2×n3 ,
the PSTNN-norm is defined as follows:

‖X‖PSTNN =

n3∑
i=1

∥∥∥X(i)
∥∥∥
p=N

(22)

‖X‖p=N =

min(n1,n2)∑
i=p+1

σi(X) (23)

where X
(i)

denotes the Fourier transform matrix of the ith
frontal slice of X , N is the number of the protected singular

value, σi(X)(i = 1, . . . ,min(n1, n2)) indicates the ith singular
value of X .

Definition 2 (l1,1,2-norm [49]): Let a tensor X ∈
Rn1×n2×n3 , the l1,1,2-norm of X can be calculated by

‖S‖1,1,2 =
∑
i,j

‖S(i, j, :)‖F (24)

where i = 1, . . . , n1, j = 1, . . . , n2, ‖ · ‖F indicates the Frobe-
nius norm.

Definition 3 (The Construction of Structure Tensor [58]): Let
a matrix X ∈ Rn1×n2 , the structure tensor Jρ of X can be
calculated by

Jρ = Kρ ∗ (∇Dσ ⊗∇Dσ) =

[
Kρ ∗ I2

x Kρ ∗ IxIy

Kρ ∗ IxIy Kρ ∗ I2
y

]

=

[
J11 J12

J21 J22

]
(25)

where Kρ denotes the Gaussian kernel with variance ρ, Dσ

denotes the Gaussian kernel to smooth the input image with
variance σ > 0, ⊗ denotes the Kronecker product, Ix = ∂Dσ

∂x

and Iy = ∂Dσ

∂y denote the gradient ofDσ . Then, two eigenvalue
matrices Λ1 and Λ2 of Jρ can be calculated by

Λ1,Λ2 = (J11 + J22)±
√

(J11 − J22)2 + 4J2
12. (26)

Definition 4 (Soft Thresholding Operator [54]): Let X,Y ∈
Rn1×n2 . Define a general l1-norm minimization problem as

argmin
X

τ‖X‖1 + 1

2
‖X − Y ‖2F . (27)

Then, (27) can be solved by the soft thresholding operator

Sτ (x) = sign(x)× max(|x| − τ, 0). (28)

Definition 5 (PSVT [61]): LetX,Y ∈ Rn1×n2 ,d = min(n1,
n2). Y = Y 1 + Y 2 = UY1

DY1
V H
Y1

+ UY2
DY2

V H
Y2

. Define a
general partial sum of singular values minimization problem
as

argmin
X

τ‖X‖p=N +
β

2
‖X − Y ‖2F . (29)

Then, the optimal solution of (29) can be expressed by the
PVST operator, which is defined as

PN,τ (Y ) = UY (DY1
+Dτ [DY2

])V H
Y

= Y 1 + UY2
Sτ [DY2

]V H
Y2

(30)

where τ = λ/β, DY1
= diag(σY

1 , . . . , σY
N , 0, . . . , 0), and

DY2
= diag(0, . . . , 0, σY

N+1, . . . , σ
γ
d ).

Definition 6 (Fast Fourier t-SVD [48]): Let X ,Y ∈ Rn1×n2 ,
d = min(n1, n2). Define a general PSTNN minimization prob-
lem as

argmin
X

τ‖X‖PSTNN +
β

2
‖X −Y‖2F . (31)

Then, (31) can be solved by fast Fourier t-SVD described in
Algorithm 2.
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Algorithm 2: Fast Fourier t-SVD.

Input : Yk, τ

1: Compute Yk
= fft(Yk, [ ], 3)

2: Compute each frontal slice of X k+1
by;

for i = 1 : [(n3 + 1)/2] do

(X k+1
)(i) = PN,τ (Y

k
)(i)

end
for i = [(n3 + 1)/2] + 1 : n3 do

(X k+1
)(i) = conj((X k+1

)(n3−i+2))
end
3: Compute X = ifft(X , [], 3)
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