
7248 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

Seafloor Habitat Mapping by Combining Multiple
Features From Optic and Acoustic Data: A Case
Study From Ganquan Island, South China Sea

Jiaxin Wan , Zhiliang Qin , Xiaodong Cui , Muhammad Yasir , and Benjun Ma

Abstract—Seafloor habitat mapping plays an important role in
marine environment monitoring and marine geological research.
Optic and acoustic remote sensing are becoming common sur-
vey tools in seafloor habitat mapping. However, a single acoustic
or optic technique may have a limited detection range and be
more susceptible to the impact of image quality. Additionally, it
is challenging to satisfy the requirements for accurate detection
since single-source data cannot fully reflect the substrate distribu-
tion characteristics. This article developed a method for detecting
coastal seafloor habitats through the fusion of multiscale optics
and acoustics data. First, the original feature set was composed
of multispectral satellite data and bathymetric data by multibeam
echo sounder and airborne light detection and ranging at different
scales, which improved the capacity to represent feature informa-
tion. Then, a ReliefF–mRMR method was implemented to select
optimal features with appropriate scales and remove redundant
features. Finally, the optimal features were employed in model
training and classification of several supervised classifiers to verify
the effectiveness of the strategy. The developed method was applied
to the Ganquan Island survey in the South China Sea. The results
demonstrated that, after integrating multisource data, the accu-
racies were up to 3.31% and 17.28% higher than those obtained
using multispectral data or bathymetric data alone, respectively.
ReliefF–mRMR exhibited better performance than other feature
selection methods. The average coral coverage in the study area
was estimated to range from 70.85% to 80.33%. This research
highlights the greater potential of multisource data for precisely
detecting seafloor habitats.

Index Terms—Multiscale features, multisource data fusion,
reliefF–mRMR, seafloor habitat mapping.
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I. INTRODUCTION

S EABED sediment is an important part of geomorphology,
and bottom sediment classification is an important tool

for understanding the distribution of sediments. Since different
seafloor organisms prefer different seafloor geomorphologies
for foraging, spawning, and avoiding natural enemies, there is a
strong correlation between sediment classification and seafloor
habitats [1]. Seafloor habitat mapping is crucial for seabed biotic
and abiotic resource assessment, marine space management,
and support of marine protected areas and fisheries reserves
[2], [3]. Conventional in situ sampling approaches were initially
used to quantify benthic habitats while investigating the seafloor
surface. Still, they have disadvantages, such as low efficiency,
high subjectivity, and limited sampling, particularly in deep
waters [4]. To date, the exploration devices for seafloor habitat
mapping are basically mature, and the mainstream has developed
into optical and acoustical sensors.

The optical remote sensing techniques for seafloor habitat
mapping mainly include active airborne light detection and rang-
ing (LiDAR) and passive satellite sensors [5], [6], [7]. Through
waveform processing, airborne LiDAR can differentiate several
types of seafloor from bottom returns and measure the depth of
shallow-water regions. Optical satellite remote sensing offers a
cost-effective alternative and has the potential for broad spatial
coverage and high temporal resolution [8]. However, owing
to the significant attenuation of optical signals in the water,
airborne LiDAR and optical satellites can only detect the seabed
in very shallow and clear waters, and the image quality decreases
significantly with increasing water depth.

The acoustic signal has minimal attenuation in water, mak-
ing acoustic transmission the most appropriate mechanism for
transmitting information through the water column [9], [10].
Shipboard multibeam echo sounder (MBES) is rapidly becom-
ing the most common acoustic survey tool of choice [11],
[12], mainly because it allows the collection of continuous
bathymetric information. High-resolution and high-precision
bathymetric information is of key importance in characterizing
substrate types. Numerous studies have experimentally revealed
that bathymetric derivatives are highly correlated with the distri-
bution of substrates (e.g., with steep ridges, crests, and depres-
sions being dominated by rock and wide, flat plains being located
in sand-dominated areas of bays) [13], [14]. Koop exclusively
used multiple bathymetric derivatives to classify substrates in
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parts of Norwegian waters [15]. However, shipboard MBES data
collection is costly and highly challenging in very shallow water
[16]. In addition, MBES images tend to contain stripes and noise.

In short, single-source data yield images with noise and have
limited coverage. Besides, in nearshore coastal areas, there are
various types of seafloor substrates with a mixed sedimentation
phenomenon. All these factors make it difficult to reflect the
attributes and distribution characteristics of seabed substrates
with only one data source. The combination of multisource data
can compensate for the limitations of single-source data and
achieve high-precision, full-coverage substrate classification.
Some studies have demonstrated the advantages of combining
multisource data to map seabed substrates and habitats [14],
[17], [18], [19]. Wang et al. [20] merged multibeam backscatter
and airborne LiDAR data and found that joint classification
achieved comparatively higher accuracies than single-source
classification, although accuracy evaluation was conducted in
only a small part of the study area. Zhang et al. [21] inves-
tigated the terrain complexity parameter and mapped seabed
coral abundance using LiDAR and multibeam bathymetry data
without considering classification accuracy. Presently, benthic
surveying of the seafloor via the combination of acoustics and
optics is still in its infancy, as evidenced by the few relevant
experiments and insufficient accuracy assessments. Therefore,
assessing the effectiveness of the method requires more exper-
imental validation. In addition, although accompanied by more
extractable features, habitat mapping studies using multisource
data seldom employ feature selection methods, so their feature
set is not necessarily a good representation of the differences in
each class.

In the context of the acquisition and fusion of multisource
information, the features used for detection and classification
exhibit scale complexity and dimensional explosion. On the
one hand, different scales can fully reflect the characteristics of
different classes and their topographic distributions. Therefore,
it is necessary to extract multiscale features [22]. On the other
hand, a larger feature set often leads to an increase in redun-
dant and low-quality features, which may negatively impact
classification, particularly for seafloor surveys with insufficient
ground truth data [23], [24]. Therefore, optimizing and select-
ing high-dimensional feature sets formed by multisource and
multiscale features is a key challenge. In recent years, a variety
of feature selection methods have been employed to select a
subset of features for the purpose of creating simpler and more
reliable learning models [24], [25], [26]. Cui et al. [24] proposed
a seabed sediment classification model using the deep belief
network based on fuzzy ranking feature optimization. Ji et al.
[25] utilized the selecting optimal random forest (RF) model
to acquire the importance of each feature and determined the
feature dimension according to certain decision principles. Al-
though both classification models based on feature optimization
significantly improved the accuracy compared with the original
feature set, these methods have high computational complexity
or poor universality. Relevant studies have focused only on the
selection of acoustic features with a single scale, and more
analysis and assessment of multisource and multiscale features
are needed.

Fig. 1. Study area. (a) Location of Xisha Archipelago. (b) Location,
(b) multispectral remote sensing image, and (c) bathymetric data of Ganquan
Island.

The objectives of this research mainly include three aspects.
1) To extract features reflecting substrate differences accu-

rately based on multisource fusion techniques.
2) To mitigate the impacts of feature spatial-scale differences

and interference features for the classification task.
3) To accomplish continuous high-resolution detection of

coastal seafloor habitats.
To achieve these objectives, this paper proposes, develops and

tests a classification approach that combines optic and acoustic
remote sensing features to produce high precision seafloor habi-
tat maps in Ganquan Island, Xisha Archipelago. We first extract
multispectral data (obtained by GeoEye 1 satellite) and bathy-
metric features (obtained by MBES and LiDAR) of different
scales. A ReliefF mRMR strategy is then de veloped to select
optimal features with the most appropriate scales and remove
redundant features. Finally, four supervised classification mod-
els are constructed to achieve the prediction of sand, coral reef,
reef crest, and coral fragments and gravel, and the classification
results are compared with those of traditional methods.

The rest of this paper is organized as follows. Section II
presents the study sites and experimental data. Section III in-
troduces the proposed method. Section IV reports experimental
results. Section V provides further discussion on the basis of
Section IV. Finally, Section VI concludes the article.

II. STUDY SITES AND EXPERIMENTAL DATA

The study site is located on Ganquan Island, Xisha
Archipelago, South China Sea (see Fig. 1). The land has an
area of approximately 0.3 km2 and belongs to the temperate
marine climate. The bathymetry of the study area ranges from 0
to −23 m. Water depth increases from the land in the southern
area to the reef flat in the north. A significant number of coral
reefs have developed on the high platform close to the shore
because of the relatively stable surface temperature of its water.
The ecosystem of the local coral reefs has been harmed in recent
years due to increased human activity, and the environmental
conservation and habitat investigation are gradually gaining
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TABLE I
PARAMETERS OF SENSORS AND MEASUREMENTS

greater attention. This region is dominated by coral habitats,
including rocks, reefs, and sand. Because of its heterogeneous
substrate distribution, this region is ideal for evaluating the
efficacy of various approaches for classifying seafloor habitats
[20], [27].

A GeoEye-1 image acquired on February 18, 2013, was used
as the remote sensing data for mapping the habitats on Ganquan
Island. The GeoEye-1 satellite has a high spatial resolution
of 0.41 m (pan) and 1.61 m (multispectral). The multispectral
image has four bands: blue (450–510 nm), green (520–580 nm),
red (655–690 nm), and near infrared (780–920 nm). The image
was acquired when the cloud cover was less than 10%. As
a part of the preprocessing stage, geometric and atmospheric
corrections were applied to the raw image.

The bathymetric data were mainly collected in May 2016
by a high-resolution shallow-water MBES, R2SONIC 2024,
and processed by the CARIS HISP/SISP 9.1 package [21]. The
swath sector in real time for R2SONIC 2024 is 10°–160°, and its
frequency ranges from 200 to 400 kHz. To ensure the horizontal
coverage rate, the spacing between adjacent survey lines was
adjusted according to the depth to achieve different overlap rates
of 40%–70%. The parameters of the sensors and measurements
are listed in Table I.

In very shallow water, ships could not safely approach the
nearshore waters of Ganquan Island, so no MBES data were
available for these regions; only a single-beam echo sounder
installed on a dinghy could take isolated depth measurements.
Bathymetric data acquired using airborne LiDAR were required
as a supplement to provide complete and seamless coverage
of the seafloor habitats. After manually removing outliers, all
bathymetric data were gridded into XYZ format with a 2-m
horizontal resolution. Field data were obtained by diving, under-
water photography, and video recording. Owing to the different

TABLE II
NUMBER OF TRAINING AND TEST SAMPLES IN GANQUAN ISLAND

Fig. 2. Multispectral and bathymetric data of Wuzhizhou Island. (a) World
View-2 multispectral image. (b) Bathymetric image.

TABLE III
NUMBER OF TRAINING AND TEST SAMPLES IN WUZHIZHOU ISLAND

proportions of different classes in the study area, unbalanced
sample datasets were selected, with 612 training samples and
544 test samples (see Table II). To ensure the representativeness
of the samples, the training and test samples were manually
selected in different regions of the study area.

To further verify the universality of our proposed method, we
also conducted research on Wuzhizhou Island, Hainan province
(see Fig. 2). The island has several naturally formed bays and
beaches, and the visibility of the sea around the island is high.
The multispectral image was obtained by the WorldView-2
satellite in September 2012. The WorldView-2 image includes
four standard bands (red, green, blue, and near infrared) and
four additional bands (coastal blue, yellow, red edge, and near
infrared II). The bathymetric data were also collected by the
R2SONIC 2024 MBES in 2016, ranging from 0 to 20 m. The
preprocessing method was consistent with that of Ganquan
Island, as shown in Table I. In this area, we selected 1366 training
and 998 test samples (see Table III). The specific application of
this data is shown in Section V.

III. METHODOLOGY

We propose a novel seafloor habitat mapping method that
combines optic and acoustic remote sensing data. This method
mainly includes three steps.
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1) First, we extract multiscale features from the multispectral
image and bathymetric data, where the fusion of acous-
tic and optic information can compensate for the lim-
ited detection range and incomplete representation of the
substrates by single-source data. Additionally, multiscale
characteristics can understand the process of interest more
thoroughly.

2) To select the most appropriate scale of different features,
remove redundant and irrelevant features, and reduce data
dimensionality, we propose ReliefF–mRMR for feature
selection.

3) Based on the selected features, four popular supervised
machine learning classifiers are then employed to ver-
ify the feasibility of our proposed method. The research
framework is shown in Fig. 3.

A. Multiscale Feature Extraction

Using default scales alone may not be appropriate for rep-
resenting the processes of interest [28], [29]. Previous studies
have illustrated that the results and interpretation can be im-
pacted by different scales in the marine environment [30], [31].
In addition, since different habitats vary in size and scale, a
single scale of features may ignore some details or macroscopic
differences between classes. We extract multiscale features from
the multispectral image and the bathymetry grid by calculating
the original data map using sliding windows of different sizes
[32]. The scales of different features are determined by the range
of the study area, the resolution of the data, and the feature
diversity.

For the multispectral image, we extract the band derivatives,
band math features, and texture features to comprehensively
represent the global and local statistics. The gray-level co-
occurrence matrix (GLCM) is commonly used when describing
surface textures [33]. Moreover, many bathymetric derivatives
are calculated from bathymetric data, such as slope, aspect, and
the bathymetric position index (BPI). The bathymetric deriva-
tives represent the macro- and microtopography of the seafloor,
including the structural and scattering properties. The GLCM
of water depth is not calculated since relevant studies rarely use
this feature, and bathymetric derivatives, in a sense, represent
the variations in topographic textures [24], [34]. Details of the
feature variables are shown in Tables IV and V.

B. ReliefF–mRMR Feature Selection Algorithm

After extracting multiscale features from the optics and acous-
tics data, poor features, i.e., those with a messy distribution or
less useful information, are identified and removed by manual
selection. After this process, 158 features are available as candi-
dates. For small samples, the prediction ability may decrease as
the feature dimensionality grows with a fixed number of training
samples [36]. In this article, we propose a robust filter-based fea-
ture selection model, ReliefF–mRMR, because of the complex
scale of benthic habitats and the tendency for mixed deposition.
ReliefF–mRMR not only offers different weights to different
features to obtain the most appropriate scales of features but
also minimizes the redundancy between features and reduces

Fig. 3. Research framework.

the computational effort. ReliefF–mRMR combines the benefits
of the ReliefF and mRMR algorithms.

The ReliefF algorithm is able to assign higher weights to
features with good classification capacity [37]. However, not
accounting for the redundancy between features may result
in no significant improvement in classification accuracy after
feature selection, especially unreliable with insufficient train-
ing samples [38]. The mRMR algorithm can extract features
with minimum redundancy and maximum correlation between
features and classes. However, the mRMR algorithm has high
computational expense and complexity; the extracted feature
set cannot accurately reflect the discrepancies in the roles of
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TABLE IV
DETAILS OF THE EXTRACTED FEATURES OF THE MULTISPECTRAL IMAGE

various features for classification due to the absence of weights
[39], which may lead to the mistaken removal of features that
are beneficial for discrimination. Therefore, ReliefF–mRMR
is employed, which combines the advantages of ReliefF and
mRMR. To obtain the candidate feature sets with high relevance
to each habitat, the ReliefF algorithm is utilized to reserve valu-
able features while minimizing the computational expense of the
mRMR algorithm. The mRMR algorithm is then employed to
remove the redundant features among the candidate features.
Table VI presents the details of the ReliefF–mRMR feature
selection algorithm.

In addition, we introduce the classical feature selection
method—principal component analysis (PCA)—which pre-
serves more than 85% of the information in the bands. We also
employ fuzzy ranking (FR) and the variance inflation factor
(VIF), which have been proposed for feature optimization in
seabed substrate mapping in recent years [25], [55]. These
feature selection methods are used and compared to verify the
effectiveness of the ReliefF–mRMR algorithm.

C. Classification Methods and Accuracy Assessment

This study uses four popular machine learning classifiers to
map the habitat based on the multiscale features derived from
optics and acoustics data, as described in the following text.

1) Random Forest: RF assembles multiple classification de-
cision trees [40]. The final classification result is determined
based on the voting results of each tree. Compared with a single
decision tree, RF is less sensitive to the overfitting and quality
of training samples [41] and is more stable and generalizable.
Recent years have seen a rise in the popularity of RF, which has
consistently performed well in seabed mapping [42].

TABLE V
DETAILS OF EXTRACTED BATHYMETRIC DERIVATIVES

2) Extreme Gradient Boosting (XGBoost): XGBoost is an
improvement of the gradient boosting decision tree [43]. The
main idea of the gradient boosting algorithm is that each model
update is in the negative direction of the gradient from the
previous round of the loss function. Decision tree algorithms,
such as XGBoost and RF, are better suited for this scenario than
neural networks because of the small size of the experimental
dataset. Wang et al. [44] found that both XGBoost and RF
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TABLE VI
DETAILED DESCRIPTION OF THE RELIEFF–MRMR FEATURE SELECTION

ALGORITHM

follows:

showed good classification performance in mapping seafloor
habitats.

3) Support Vector Machine (SVM): Its decision boundary is
the maximum-margin hyperplane solved for the samples [45].
By using kernel functions to transform high-dimensional feature
data, SVM can address the problem that classes cannot be
separated linearly [46], but it is greatly influenced by the kernels
and parameters. In previous studies on seabed mapping, SVM
was always inferior to RF [47], [48], [49]. In this experiment,
the SVM classifier with the RBF kernel is applied since the RBF
kernel often performs better than the other kernels [27], [47].

TABLE VII
PARAMETER SETTING OF DIFFERENT CLASSIFIERS

4) K-Nearest Neighbor (KNN): KNN examines the K sam-
ples most similar to the samples to be classified, which is
determined by the distance between the test and training samples
[50]. The choice of the K value is crucial. If the K value is too
small, it cannot fully represent the characteristics of the samples;
when the K value is too large, training instances that are distant
from the input instance can also play a role in the prediction,
which affects classification accuracy. KNN has been applied to
many substrate classification studies [34].

5) Parameter Setting: The optimal parameters of the afore-
mentioned four classifiers are adjusted by fivefold cross vali-
dation. The detailed parameters of these models are shown in
Table VII.

6) Accuracy Assessment: In the experiments, the user’s accu-
racy (UA), producer’s accuracy (PA), overall accuracy (OA), and
Kappa coefficient are used to represent the prediction accuracy
[51], [52]. We also introduce a weighted average of precision
and recall, and the F1-score to show the classification capacities
of classifiers, which is a reliable measurement when datasets are
imbalanced [53].

IV. RESULTS AND ANALYSIS

A. Feature Selection Results

After selecting the most relevant features and removal of the
redundant features by ReliefF–mRMR, 20 predictor variables
are obtained. Next, the number of predictor variables is reduced
to 16 by correlation analysis, retaining eight multispectral fea-
tures and eight bathymetric derivatives (see Figs. 4 and 5). Most
bathymetric derivatives may be able to better reflect seafloor
habitat characteristics at a scale of 15. The weights of different
features are shown in Fig. 6. The proportions of bathymetric and
multispectral features are comparable, indicating that single-
source data are important for classification. Eastness (15) has
the largest percentage at 21.1%.

B. Experimental Results of Different Classification Methods

Based on the selected multiscale optic and acoustic features,
four typical classifiers are used to construct the seafloor habi-
tat classification models and conduct the accuracy assessment.
This section compares and analyzes the classification results of
different data sources and feature selection methods.
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TABLE VIII
MODEL EVALUATION RESULTS WITH DIFFERENT INPUTS

Fig. 4. Correlation analysis between different features. F1–F20 represent the
20 features selected by ReliefF–mRMR. F1–F3: Band 1 (B1)–Band 3 (B3),
F4: B1 derivative, F5: B3 derivative, F6: B1 second derivative, F7: B2 second
derivative, F8: B1 homogeneity (19), F9: B2 correlation (19), F10: B2 correlation
(15), F11: B2 correlation (11), F12: B2 mean (3), F13: Depth, F14: Ruggedness
(15), F15: Fine_BPI (25), F16: Fine_BPI (15), F17: Broad_BPI (15), F18: Aspect
(45), F19: Local mean depth (15), and F20: Eastness (15).

As illustrated in Fig. 7 and Table VIII, when the input features
are the combination of multispectral and bathymetric features
optimized by the ReliefF–mRMR method, the classification
accuracies are ordered as follows: RF (94.85%)>XGBoost
(93.38%)>SVM (89.52%)>KNN (88.60%). RF and XGBoost
perform well independently of the input characteristics, with
accuracies above 90%. RF is more accurate than XGBoost,
mainly reflected in the fact that less sand is misclassified into
coral reefs with the RF method. Continuously distributed algal
ridges show a break in the XGBoost result map. For the reef crest,
all models achieve satisfactory results, where the true samples
are almost precisely predicted.

Compared with multispectral features alone, the multisource
features yield a maximum increase of 3.31%. Greater varia-
tion occurs with bathymetric features, where the accuracies are
11.76%–17.28% lower than those achieved with multisource
features. Using multispectral data alone yield better results
than using bathymetric data alone, possibly because multi-
spectral data are directly related to the substrate properties,
while bathymetric data represent indirect constraint information.
However, the bathymetric features are considered important in
Fig. 6 because the calculated weight or contribution degree
is specific to the features, which does not directly reflect the
classification accuracy. Taking RF as an example, compared
with those achieved with multispectral features, the accuracies
of multisource features increase by up to 8.27% (UA) and 6.20%
(PA), respectively. For bathymetric features, the accuracies of all
classes exhibit noticeable decreases relative to those achieved
with multisource features, with the largest changes in the sand
(up to 32.87%) and coral fragments and gravel (up to 28.20%).

We then compare and statistically evaluate the classification
performance among different feature selection methods (see
Table IX). Regardless of the classifier, our proposed ReliefF–
mRMR method consistently presents the highest accuracies,
followed by ReliefF and no feature selection method. The
largest discrepancy is seen with SVM, where the accuracy of
ReliefF–mRMR–SVM is 19.30% and 30.70% higher than that
of ReliefF–SVM and SVM, respectively. For other classifiers,
the accuracies of ReliefF–mRMR are still 1.28%–2.75% and
2.75%–4.78% larger than those of ReliefF and the original
feature set. ReliefF–mRMR achieves an improvement over VIF
(of 7.35%) and FR (of 2.75%). PCA has poor performance, pre-
senting 15.07%–21.69% lower accuracies than ReliefF–mRMR.
The reason for this poor performance may be that the candidate
features contain both bathymetric derivatives and the texture
and spectral information of the multispectral image. Thus, the
significant difference between these features is not conducive to
being mapped to the new dimension by PCA.
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Fig. 5. Final 16 features for classification (the number in brackets means the scale of features). (a) B1. (b) B3. (c) B1 second derivative. (d) B2 second derivative.
(e) B1 homogeneity (19). (f) B2 mean (3). (g) B2 correlation (15). (h) B2 correlation (19). (i) Depth. (j) Aspect (45). (k) Eastness (15). (l) Local mean depth (15).
(m) Ruggedness (15). (n) Broad_BPI (15). (o) Fine_BPI (15). (p) Fine_BPI (25).

The classification methods are also visually evaluated by
seafloor habitat maps (see Fig. 8). Regardless of the input
variables, the prediction results given by the four supervised
classification methods are generally consistent. Still, large dif-
ferences remain between the perspectives of local details. When
using multisource features, the map produced by RF is the
most accurate representation of reality, followed by XGBoost.
A small area of reefs exists between the coral sand and reef

crest on the north side of the land. However, in the experimental
results, some sand areas are undetected in the slight gaps be-
tween reef blocks. The classification map of bathymetric data
shows that coral reefs are distributed in large aggregations; in
reality, they are scattered throughout the coral sand. In addi-
tion, the area of the reef crest is larger than the actual area
because the sand or coral reef is misclassified as a reef crest.
We subsequently calculate the intermodel agreement based on
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Fig. 6. Schematic of the weights of different features.

Fig. 7. Confusion matrices of different classifiers using our proposed method. (a) RF. (b) XGBoost. (c) SVM. (d) KNN.

the resulting map (see Table X). From the table, it can be
concluded that the agreement between different classifiers is
high. The agreement between RF and XGBoost ranks first at
93.34%, perhaps because both classifiers belong to ensemble
learning.

V. DISCUSSION

This article proposes a seafloor habitat mapping method
combining optic and acoustic remote sensing features. Using
the ReliefF–mRMR feature selection method, we select the
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TABLE IX
COMPARISON OF CLASSIFICATION ACCURACIES UNDER DIFFERENT FEATURE SELECTION METHODS

TABLE X
INTERMODEL AGREEMENT (IN %), CALCULATED FROM THE RESULT MAPs

scales of features that best represent the processes of interest
and ultimately obtain multisource multiscale features most fa-
vorable for classification. This method overcomes the problem
that single-source data cannot completely cover the study area
and have difficulty fully reflecting the substrate distribution
characteristics. Based on the above results, several issues are
further discussed in the following sections.

A. Comparability of the Classification Results

From the results of different classifiers, we can conclude
that when the combination of multisource features is input,
RF and XGBoost are both superior to SVM and KNN, in
line with previous seafloor habitat classification studies [26],
[44]. In comparison to ReliefF or no feature selection approach,
using ReliefF–mRMR is identified with the highest accuracies.
This may be because many irrelevant and redundant features
negatively affect the classification when the feature size is
large. The fact that RF and XGBoost use ensemble learning

techniques, which combine multiple classifiers with more stable
characteristics than a single classifier, may explain why the
performance of these approaches is less impacted by feature
selection. In contrast, SVM struggles to perform effectively with
a high number of features because it has poor training properties
on large data and is prone to being impacted by negative data
[54].

Compared with the adjacent coral fragments and gravel, the
proportion of reef crest samples correctly classified by RF is
8.66% larger. Sand tends to be distributed between coral reefs,
and in RF, the classification accuracy of coral reefs is higher
than that of sand for all the inputs. This may be because the
distribution of sand is concentrated around the land and in the
dense coral reef area in the north. The nature of sand in these
two places differs somewhat and, thus, affects the classification
accuracy.

We also compare the classification results of different feature
sets after using the ReliefF–mRMR algorithm. Fig. 9 shows that
the accuracies remain highest when the number of features is
20. Therefore, this article uses the ReliefF–mRMR algorithm to
select 20 features and then remove features with high correlation
coefficients to obtain the final 16 features for the classification
task. When the number of features is less than 20, the accu-
racies of the classifiers exhibit upward trends as the number
of features grows. Above 20 features, the accuracies of SVM
tend to decrease significantly as the number of features in-
creases, while other classifiers show fluctuations within a certain
range.
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Fig. 8. Seafloor habitat maps of different data sources by multiple classifiers. The input data are the same in each row; the classification methods are consistent
in each column.

B. Distribution of Topographic Features for Different
Habitat Types

Topographic factors derived from bathymetric data are in-
fluenced by the structure and properties of the seafloor. For

example, the slope and bathymetric position indices derived
from bathymetric data represent the structural properties of
the seafloor influenced by submarine wave energy and bottom
currents; the topographic roughness reflects the spatial sensi-
tivity of the seafloor substrates [14], [55]. These characteristics
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Fig. 9. Performance of different classifiers when the number of features
increases (For display purposes, the horizontal coordinate refers to the number
of features without correlation analysis; the actual result is after correlation
analysis.).

of the bottom have significant impacts on how substrates are
distributed. Therefore, these topographic factors are related to
benthic substrate types. We use boxplots to visually depict the
effects of topographic factors on the distribution of substrates
(see Fig. 10).

As shown in Fig. 10, the selected topographic features clearly
discriminate between various substrates, indicating that these
features may contribute to the classification process. Both
reef crest and coral fragments are distributed in shallower ar-
eas with larger slopes. In contrast, sand and coral reefs are
widely distributed in deeper areas, covering a large range of
slopes. The fact that Fine_BPI (15) and Fine_BPI (25) have
different values highlights the importance of choosing the
proper scale of features. Although several studies have shown
relationships between topographic parameters and substrate
type [14], [42], additional research and in-depth analysis are
needed.

C. Coral Coverage Estimation

To better characterize the geomorphic formation process of
the seafloor, we develop a coral reef geomorphic unit system
based on substrate classification maps. This system is based
on many previous studies [56], [57], [58], [59]. The system
considers the oceanic processes in the formation process of coral
reef geomorphology and dynamic factors, and coral coverage
is taken into account in the development of the classification
system. This system is able to direct the conservation and
cultivation of coral reefs in addition to providing technical
support for the dynamic monitoring of coral reefs. Table XI
presents the coral reef geomorphic unit system in this study area,
including distribution characteristics, multispectral images, and
field photos. The study area includes the shallow slope of the fore
reef, reef crest, reef-clumping area, and reef-depositional area.
We cut, merge, and reclassify the RF result map of multisource
features in Section IV-B according to expert knowledge and vi-
sual interpretation, and finally produce the coral reef geomorphic
unit map of Ganquan Island (see Fig. 11).

Fig. 10. Boxplots of the habitat distribution of topographic factors for different
classes. (a) Depth. (b) Aspect (45). (c) Eastness (15). (d) Local mean depth (15).
(e) Ruggedness (15). (f) Broad_BPI (15). (g) Fine_BPI (15). (h) Fine_BPI (25).

Fig. 11 shows that a tiny reef-clumping area with abun-
dant corals is situated in the northern section of the nearshore
reef-depositional area, primarily distributed close to the land.
A narrow transitional zone, known as the reef crest, exists
outside the reef-depositional area. Outside the reef crest, the
shallow slope of the fore reef is dominated by large coral
reefs, whose surrounding seafloor is primarily covered by
sand. The average coral coverage D in the study area can
be estimated using the following equation by measuring the
coral coverage of various geomorphological units [58] (see
Table XII):

D =
∑ Si

S
× di (5)

where Si is the area of each geomorphic unit, di is the estimated
coral coverage of each geomorphic unit, and S is the total area
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TABLE XI
CORAL REEF GEOMORPHIC UNIT SYSTEM IN THE STUDY AREA

TABLE XII
CORAL REEF GEOMORPHIC UNIT SYSTEM IN THE STUDY AREA

Fig. 11. Classification map of coral reef geomorphic units of Ganquan Island.

TABLE XIII
MODEL EVALUATION RESULTS WITH DIFFERENT INPUTS ON WUZHIZHOU

ISLAND
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TABLE XIV
COMPARISON OF CLASSIFICATION ACCURACIES UNDER DIFFERENT FEATURE SELECTION METHODS ON WUZHIZHOU ISLAND

of the study area. The average coral coverage in the study area
calculated by (5) is 70.85%–80.33%.

D. Wuzhizhou Island Application of the Proposed Method

We also assess the classification performance of Wuzhizhou
Island. Tables XIII and XIV present the results of different
inputs and different feature selection methods, respectively.
When the input data are multisource features, all four classi-
fiers perform best, with accuracies at most 7.31% and 16.74%
higher than multispectral data only and bathymetric data only,
respectively. KNN achieves the highest accuracy (85.87%),
followed by RF (82.26%). The results of different feature se-
lection methods also show that our proposed ReliefF–mRMR
method presents the highest accuracies, with an improvement
of 5.11%–15.93% over the no-selection method. Other fea-
ture selection methods achieve less improvement, some even
inferior to the original input. The above experiments demon-
strate the effectiveness of our proposed method in different
regions.

E. Limitations

The MBES backscatter intensity, which directly reflects the
diversity of various substrate types on the seafloor, is a common
piece of information employed in multibeam seafloor habitat
classification. However, the survey did not obtain high-quality
backscatter intensity data due to disruptive echoes from the reefs.
Therefore, our experiment only employs bathymetric features of
multibeam acoustic data. In the future, incorporating backscatter
intensity data, as well as the texture and statistics of backscatter
to candidate features, might be beneficial for seabed mapping.

Additionally, we will conduct more studies that include different
times, water temperatures, or water qualities.

VI. CONCLUSION

This article proposes a supervised classification approach that
employs multiscale optics and acoustics data fusion for coastal
seafloor habitats. In nearshore coastal areas, single-source data
yield images with noise and limited coverage; the employment of
multisource data was able to compensate for the limited charac-
terization capability of single-source data. To remove redundant
and irrelevant features, optimal features with appropriate scales
were selected by ReliefF–mRMR, which improved the quality
of the features input into the classifier. The joint classification
achieved the best classification result, with accuracy up to 3.31%
and 17.28% higher than that obtained by multispectral data and
bathymetric data only, respectively. In addition, we found that
ReliefF–mRMR achieved significant improvement over other
feature selection methods. By calculating the coral coverage of
each geomorphic unit, we estimated that the average coral cover-
age for the study area is 70.85%–80.33%. This research provides
feasible suggestions for mapping coastal areas by multisource
data with high precision and has important implications for mon-
itoring coral reef health. As a part of our ongoing study, we intend
to conduct more experiments in other nearshore coastal regions
and integrate backscatter characteristics to further enhance the
predictive capability for seafloor habitats.
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