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Superpixel-Based Weighted Sparse Regression
and Spectral Similarity Constrained
for Hyperspectral Unmixing

Yao Liang ", Hengyi Zheng “, Guoguo Yang ", Qian Du

Abstract—With the support of spectral libraries, sparse unmix-
ing techniques have gradually developed. However, some existing
sparse unmixing algorithms suffer from problems, such as insuffi-
cient utilization of spatial information and sensitivity to noise. To
solve these problems, this article proposes a novel hyperspectral
unmixing algorithm, called superpixel-based weighted sparse re-
gression and spectral similarity constrained unmixing. In the pro-
posed method, a precalculated weight is introduced to help enhance
sparsity of abundances, which is obtained from coarse abundance
estimation. It also maintains spatial consistency in a local region of
a hyperspectral image to mitigate the negative influence of noise.
Additionally, the method selects optimal neighborhood pixels in
the local region by combining spatial and spectral information and
constructs a similarity matrix to explore spectral similarity in the
subspace. Meanwhile, superpixel segmentation is considered as an
auxiliary method to obtain local regions in the unmixing process.
Experiments performed on synthetic and real data demonstrate
that the proposed method achieves more accurate abundance esti-
mation than other comparison algorithms.

Index Terms—Hyperspectral unmixing (HU), spectral similarity,
superpixel segmentation, weighted sparse regression.

1. INTRODUCTION

YPERSPECTRAL imagery (HSI) covers hundreds of
H contiguous narrow bands [1], enabling it to capture de-
tailed spectral information and rich ground surface features for
object identification [2], [3]. With these characteristics, hyper-
spectral remote sensing technology is prevalent in a great deal of
works, including planetary exploration [4], environmental mon-
itoring [5], [6], and target detection [7], [8], [9]. However, the
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contradiction between its limited spatial resolution and the com-
plexity of material distribution on the ground is the fundamental
reason that mixed pixels are generally present in hyperspectral
remote sensing images [10]. Unlike pure pixels, mixed pixels
contain a great quantity of materials. The existence of mixed
pixels poses challenges for many applications of HSI. Therefore,
hyperspectral unmixing (HU) is an important research field in the
process of spectral data analysis. HU refers to the process of sep-
arating mixed spectra into pure spectra (endmembers) and pro-
portion (abundance fractions). The acquisition of endmembers
and the calculation of abundances are referred to as endmember
extraction and abundance estimation, respectively [11]. The
design of unmixing algorithms is closely related to the spectral
mixing model. According to the different forms of interaction
between solar incident radiation and objects, the existing spectral
mixture models are linear spectral mixture model (LSMM)
and nonlinear spectral mixture model (NLSMM) [12]. LSMM
considers that an observed mixed spectrum is approximately
expressed as a linear combination of endmember spectra and
their abundance fractions [13]. Compared to NLSMM, LSMM
has computational tractability and flexibility [14]. Hence, this
article focuses on LSMM-based spectral unmixing algorithms.

For LSMM, the traditional unmixing approaches involve the
content related to geometry [15], [16], [17], statistics [18], and
matrix decomposition [19], [20], [21], [22], [23], [24], [25],
[26]. The assumption of the existence of pure endmembers
needs to be satisfied in the geometry-based unmixing method,
but this is not always true. NMF-based methods may produce
meaningless virtual endmembers. Therefore, the accuracy of the
solution is seriously limited by inaccurate endmembers in the
aforementioned methods.

To solve these issues, a new framework is introduced in the
field of unmixing, called sparse unmixing. It makes a major
contribution to reducing the error caused by endmember ex-
traction, considers a part of the spectra in the spectral library
as endmembers, and directly estimate the abundance maps by
solving constrained sparse regression problem [11]. Over the
past ten years, several sparse unmixing algorithms [13], [14],
[27], [28], [29], [30], [31], [32], [33] have been developed.
This problem is described as a linear fitting problem, that is, an
observed hyperspectral vector can be linearly fitted by spectral
signatures in an available spectral library [27]. SUnSAL [13]
algorithm is the starting point to use the spectral library to carry
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out unmixing. The function of /; norm in this algorithm is to
express the sparse prior of abundance vector, and the alternating
direction method of multipliers (ADMM) [27] is generally re-
garded as the main way to solve convex optimization problems
with separability. However, the SUnSAL algorithm primarily
focuses on analyzing the sparsity of abundance and pays less
attention on spatial structure in the image. In order to improve
the unmixing accuracy, many SUnSAL-based algorithms have
been created.

Sparsity is one of the important characteristics of the abun-
dance matrix, which is usually described by /; norm. To ob-
tain more accurate estimated abundance, the sparse prior of
abundance is one aspect of improvement. The I, (0 < ¢ < 1)
norm strengthens the sparsity of abundance in the procedure of
unmixing [34]. However, considering the fact that pixels may
be mixed from the same set of endmember spectra, CLSUn-
SAL [35] algorithm is proposed, and the I5 ; norm is applied
through the collaborative way to express sparsity. In addition,
the weight is becoming a key instrument for enhancing the
ability of /; norm to represent sparsity [36], such as DRSU
[30] algorithm. This weight consists of two parts: the first
one enhances the sparsity of nonzero rows of the abundance
matrix, and the second one enhances the sparsity of the nonzero
entries in the nonzero rows. In short, the correct expression of
the sparse prior of the abundance vector plays a positive role
in HU.

On the other hand, existing research works have recognized
the key role of spatial information [37], [38], [39]. Therefore,
new algorithms based on spatial prior information have been pro-
posed by many researchers. The following algorithms show that
total variation (TV) is effective for the realization of abundance
smoothing between adjacent pixels, including SUnSAL-TV [23]
algorithm and DRSU-TV [40] algorithm. Unlike the former,
the latter simultaneously explores the weighted sparsity and the
spatial neighborhood information of fractional abundances. TV
can only describe the relationship between a center pixel and its
four neighboring pixels, but graph Laplacian is more flexible,
allowing one pixel to be connected to as many similar pixels
as possible [41], thus the approaches based on graph Laplacian
are exploited in many works. To overcome the shortcomings
of traditional hypergraphs, spectral angular distance is used as
a measure to select the nearest neighbors when constructing
hyperedges. This is the main innovation of AHGNTF [4] algo-
rithm. Besides TV and graph Laplacian, low-rank representation
(LRR) is popular in HU because it reveals that the abundance of
similar pixels is correlated [32], [33], [42], [43], [44]. All pixels
belonging to the same window are correlated, meaning they are
composed of the same materials, although maybe in different
proportions. This phenomenon shows that the abundance matrix
has linearly correlation columns, so it has the characteristics of
low rank. SUSRLR-TV [32] algorithm combines TV regularizer
with low-rank attribute to realize the abundance correlation and
the goal of smoothing. From the results, the algorithm reduces
the range of solutions and obtain more correct abundance.
Inspired by this algorithm, an algorithm considering spectral
similarity and spatial low-rank attribute of local area is proposed,
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which is called SBWCRLRU [33]. LSSP-RSU [45] algorithm
considers spectral similarity in spatial neighborhood, and pro-
poses a new spatial regularization.

In recent years, sparse unmixing is not limited to one sparse
regression, and double regression model [14], [31], [46], [47],
[48] has become popular. The double regression model achieves
unmixing through two sparse regressions. The spatial contextual
information obtained by solving the first sparse regression issue
is used as auxiliary information to participate in the second
unmixing. RDSRSU and DSGLSU algorithms both performed
the first sparse regression using coarse images obtained through
superpixel segmentation. The superpixel segmentation method
here specifically refers to simple linear iterative clustering
(SLIC) [49]. The coarse abundance contains the spatial informa-
tion of the image. In the second unmixing process of DSGLSU
algorithm, Laplacian regularization is used to express spectral
similarity. Different from DSGLSU, RDSRSU algorithm intro-
duces TV regularization to further improve the uniformity and
smoothness of adjacent pixels in the image. The experimental
results confirm that the double regression model can still produce
good abundance estimation results when the image data are
highly degraded.

To summarize, previous works have confirmed that un-
mixing approaches based on large spectral dictionaries cir-
cumvent the limitations of endmember extraction algorithms.
Moreover, effectively combining spatial and spectral infor-
mation can participate abundance estimation more accurately.
However, how to keep the essential structure distribution
of hyperspectral images and establish the unmixing model
with spectral and spatial information is still an unsolved
problem.

In this work, superpixel-based weighted sparse regression
and spectral similarity constrained unmixing (WSRSSU) is
proposed. This method considers the local spatial homogeneity
of the image, and the spectral similarity between a pixel and
its neighbors. The key contributions of the proposed WSRSSU
algorithm can be summarized as follows.

1) In the WSRSSU, a precalculate weight obtained from
coarse hyperspectral image is applied to explore the sparse
feature of the abundance matrix and maintain the original
spatial information of HSI. Then, the influence of noise
is reduced by using the local spatial homogeneity of the
image.

2) In the WSRSSU, considering the limitation of using only
distance to select neighboring pixels, a new criterion is
applied to consider both spatial structure information and
spectral information to select the optimal neighboring pix-
els. Then, the similarity weight is constructed to explore
the spectral similarity in the subspace.

The rest of this article is arranged as follows. Section II
presents the related work, including LMM and sparse unmixing.
Section III introduces the details of the proposed WSRSSU
algorithm. Section IV focuses on the performance evaluation
on synthetic and real data. Section V discusses the influence
of parameters on algorithm performance. Finally, Section VI
concludes this article.
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II. RELATED WORK
A. Linear Mixture Model

The LMM model assumes that each photon can only interact
with one object, and the signal of the object is superimposed
into the pixel spectrum. The LMM model can be described as

Y =AX+E (D

where Y = [y, - ,yn] € RE*N is the image matrix re-
arranged for an HSI cube, including N L-dimensional pixel
vectors. A € RI*M s a rich collection of spectral signatures
of ground objects, which may be from a spectral library, and
M is the number of materials contained in the image. X =
[€1, - ,xN] € RMxN g the abundance matrix, and E €
RE*N represents random noise of data. The physical meaning
of X; ; is the area proportion of the jth endmember in the
ith pixel. Theoretically, the abundance matrix should obey two
indispensable constraints: abundance nonnegativity constraint
(ANC) and abundance sum-to-one constraint (ASC), which can
be expressed as

ANC: X >0
ASC:1TXx =17 2

where 1 represents a column vector with all elements being 1.

In practice, the ASC is rarely satisfied [11]. Thus, in this arti-
cle, only the ANC is imposed on (1), resulting in the following
formula for unmixing:

1
arg min§\|Y—AX||2F+lR+ (X). 3)
X

B. Sparse Unmixing

The spectral library participating in unmixing consists of a
great quantity of spectral signatures, but only a few of them are
involved in the unmixing model, resulting in many zero elements
in the fractional abundances. Therefore, the abundance matrix
is inherently sparse, and the objective function can be described
as follows:

o1
arg min 5 |Y — AX [} 2| X o +1es (X))

where || - || ¢ is the Frobenius norm, ||Y — AX||% is the fidelity
item representing the difference between the reconstruct signal
and the original signal, || X || represents the number of nonzero
elements of X, and A is a positive parameter controlling the
relative weight of the fidelity item and the regularization term.
Here, I+ (X)) is an indicator function used to control the
estimated abundance matrix X to be nonnegative, shown as
>

e (X) = +(<)>o § 28 '

The optimization problem (4) is NP hard [50]. To solve this
kind of problem, replace the [y norm with the /; norm [27]
to achieve the purpose of convex relaxation. Then, the convex
optimization problem is converted into

1
arnglngllY—AX||%+?»HXII1,1+lR+(X) o)
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where || X |11 = Z;Vﬂ lz;]l1, «; is the abundance vector of
an L -dimensional pixel. The optimization problem in (5) can be
effectively solved through an ADMM algorithm.

III. SPARSE UNMIXING VIA WSRSSU

The algorithm focuses on local spectral similarity and local
spatial homogeneity. How to construct local regions is an is-
sue that needs to be solved. Research shows that a superpixel
segmentation method can obtain homogeneous regions to assist
hyperspectral data analysis [51]. SLIC creates irregular pixel
blocks with visual significance simply and efficiently. So, the
WSRSSU model is proposed based on SLIC. Its schematic is
summarized as in Fig. 1.

A. Superpixel Segmentation

The purpose of superpixel segmentation is to divide an image
into multiple highly similar regions, each of which is called a
superpixel [52]. In this article, SLIC is adopted for hyperspectral
image segmentation. This algorithm needs a parameter: S, where
S represents the number of superpixels. SLIC first generates an
initial set of superpixels, each of which is a regular grid region
containing N/S pixels. The center of each grid is the initialized
seed point (cluster center). In hyperspectral images, distance
measurement is constructed based on the spectra and position of
pixels. The similarity between each pixel and the seed point is
obtained based on distance measurement. Each pixel is assigned
to the nearest seed point to ensure that pixels with similar
characteristics are grouped together. This algorithm iteratively
updates the clustering center based on the average of the spectral
and spatial information of all pixels in each cluster. This process
continues until the cluster center not change significantly. The
final segmentation result is shown in Fig. 2

dspectral (27.7) = ||yz - y]”% (6)
dspatial (%J) - \/(pz - pj)2 + (ql - Qj)Q (7)
D = \/ds‘QpeCtral + adgpatial (8)

where y; and y,; represent spectral of pixel 4 and j, (p;, ¢;) and
(pj,q;) represent position of pixel 7 and j. dspeciral and dypaial
represent spectral and spatial distances, respectively.

B. Weighted Sparse Regression

Noise plays an obstacle role in the processing of hyperspectral
images. An HSIis always interfered with by noise, which affects
the unmixing accuracy. To solve this problem, the image is
reconstructed using local spatial homogeneity, and the spatial
weight matrix W o, is constructed using the reconstructed image
for unmixing.

1) Step 1: Coarse-Scale Image Approximation: First,
the primitive HSI Y € RN is segmented into S
superpixels by the SLIC algorithm. Let Y, € RE*N:
t=1,...,5 Zle N; = N) be the component of ¥ corre-
sponding to the tth superpixel and y, € R¥*1 (i = 1---N;)
be a column vector in Y. Then, the spectral average value of
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all pixels in each superpixel block replaces the original spectral
value of all pixels in the block.
A coarse-scale image Y € RE*¥ is reconstructed as

1 &
yt:ﬁt;yi

where y, represents the spectral mean value in the ¢th superpixel
block. The spectral values of all pixels in the tth superpixel
block are assigned as y,. The coarse superpixel Y, is obtained
accordingly. The coarse-scale image Y is obtained by arranging
each superpixel block Y, according to pixel position.

2) Step 2: Spatial Weight Matrix Construction: The coarse
abundance matrix X can be obtained by using the SUnSAL
algorithm. The formula is described as follows:

9

1 -~ - - -
arg min 2|V — AX[F + 2| X||11 +Lps (X). (10)
X
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To effectively reduce the impact of noise, the spectral mean
is used to represent the average spectral level of each superpixel
to construct a coarse-scale image with local spatial uniformity.
Therefore, coarse abundance matrix X and weight matrix Wy,
are less sensitive to noise.

The weight matrix W, can be calculated as

1
- =
X (@,:) 2+
where Wspam) is the element in the ith row and jth column
of Wpa. W, is used to minimize the weighted /; norm to
enhance sparsity of X and keeps the spatial information inside
each superpixel. It is applied to unmixing, shown as

M,j=1---N (11)

W, ;) =

min | W © X 11 (12)
where © is Khatri-Rao product, which is used to multiply the
elements at corresponding positions of two matrices.

C. Spectral Similarity Constrained

Pixels in a local area often have similar characteristics and
spectral values [20]. Each pixel can be approximated by the
linear representation of all pixels in the same subspace in which
it resides [53]. Therefore, in this article, we approximate each
pixel using its similar neighbors.

1) Step 1: Determination of Optimal Neighbors: The exis-
tence of spatial correlation between pixels in local areas means
that the spatial distribution of pixels and features is consistent
within a certain range. Therefore, taking action from joint spatial
and spectral information can determine more suitable neighbors
[54]. Euclidean distances are used as the basic method to calcu-
late the spectral and spatial distances between pixels. Taking the
tth superpixel as an example, the spectral distance is obtained
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by calculating the l; norm of two spectral vectors as

de (i 01) = 1yt~ wllloij=1--Ne  (13)
where N; represents the number of pixels contained in the rth
superpixel, y! represents the spectral value of the ith pixel in
the tth superpixel, and y; and y! have similar meanings. The
spectral ordinal number O} = [0, 05, - - - 0" ] is defined in
such a way that spectral distances are sorted from small to large,
meaning that the farther the distance, the greater the ordinal
number. The ordinal number is from 1 to N;.

Let the coordinates of yi and y; in the HSI be denoted as
(pi,¢;) and (pj, g;), respectively. Then, the spatial distances are

calculated by coordinates as

dspa (yi,y{) = \/(pi —pi)?+ (¢ — )i =1---N.
(14)
spa — [ spa spa sp

i oy, 05", o] is de-
fined to be similar to O;™. Then, the two ordinal numbers

O and O™ can be summed to obtain a new ordinal number
or et [0 + o, 05 + 05", -+ oj\p,f + oi\pfi]. The final
ordinal number reflects the spatial-spectral information between
pixels. Using an ordinal sequence ranging from small to large,
K pixels are selected as the spatial-spectral neighbors of the ith
pixel.

2) Step 2: Similarity Matrix Construction: Considering that
the pixels in the local region have similar spectral characteristics,
a similarity matrix is constructed to approximate the original
hyperspectral data. In order to reduce the time cost, SLIC is
used to divide the image into several superpixels and establish
a similarity matrix for each superpixel. The original data are
approximated by the optimal neighbors and the similarity matrix
to achieve the purpose of similarity constraint.

Taking the tth superpixel as an example, the formula is
described as follows:

The spatial ordinal number O

Yt == YtWt (15)

where Y, is the tth superpixel, and W, € RV:*Nt is the sim-
ilarity matrix corresponding to the ¢th superpixel. It is a sparse
matrix, in which the elements at the location of the optimal
neighbors are nonzero values, and the elements at other locations
are zero values. Its (4, j)th element can be computed as

1 _ lyi—yl 2 . .

Wi = ﬁexp o i=1---Ngj€ Gy (16)
Here, G refers to the index of the optimal neighbors’ pixel in
the superpixel block. W, , . describes the similarity between

the pixel y; and the pixel y; in the neighbor region, and

> j th.) = 1. H is a regularization term defined as
i—vjl2
H=Y exp " = (17)
jeGy

where o is a smoothing kernel [55]. In an image, the similarity
of pixels inevitably has similar abundance relationships [45].
Based on formula (15), the similarity constraint of abundance

6829

can be expressed as follows:

min || X, (I, - W) |5 (18)

where I, € RN+*Nt is the identity matrix.

D. Formulation of Proposed WSRSSU Model
WSRSSU algorithm is described as follows:
1
arg min §||Y —AX|E + M ||Wepa © X |11
b'¢

S
Jr)»zz | X (I — W) ||§7 + g+ (X)

t=1

19)

where W,, and W were introduced in Sections III-B and
ITI-C, respectively.

To solve this problem using ADMM, the original problem
is split into several small problems by introducing auxiliary
variables. The equivalent problem of (19) can be described as

1
arg iHY_V1||%+)‘1HWspa®V2”1,1

min
U,vV,,V5, V3, Vy
S
a2 > Vs, (I = W) | %+ Lg+ (V)
t=1

s.t. V1:AU,V2:U,V3:U,V4:U.
(20)

The first item is data fidelity term, the second term is weighted
sparse term, the third term is spectral similarity constraint term,
and the last term is nonnegative constraint term.

Optimization of (20) for a simplified version yields

Il}li‘l/lg(U,V) st. GU+ BV =0 2D
where V = (V1,V3, V3, V) T, ¢gU,V) =
minU,V17V27V3,V4 %”Y - VIH%‘ + )\IHWspa O] V2H1,1 +
o Yoy Vs, (I = W) |3 + L+ (Vy), and

A - 0 0 O
I 0O -1 0 O
G= I B = 0 0 —-I o0
I 0o o 0 -I

The constrained problem (21) is transformed into an un-
constrained problem (22) by using the augmented Lagrange
algorithm

L(U,V,D)=g(U,V)+ gHGU BV -DIZ (22

where >0 is a penalty parameter, and D =
(Dy,Dy, D3, Dy)" is the Lagrange multipliers. During
each iteration of L(U,V,D), U, V, and D are updated
gradually.

When the variable is only U, the optimization problem is

U(mJFl) = arg m[}ngHAU - ng) - ng)HQF

H m m
+ 51U - vy - Dy
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n
+5IU - v§Y - Dy

+ 5lu - v - D (23)
Taking the partial derivative of (23) results in
Uty = (ATA +31) (AT (VI + D)
+ (Vi + Di™)
+ (Vi)
+ (v + D). (24)

When the variable is only V1, the optimization problem is

m 1
Vi = agmin Y - Vi 7
+ gHAU("”“) v, -D™|Z.  (©25)
Taking the partial derivative of (25) for V';
1
vimt — —— [y 4 (AU - D)) 26
1 T+ 5 + 1 (26)

When the variable is only V5, the optimization problem is

VO _ g min by [Wpa © Va1
2

+ SIU — v - DEVE. @)
The partial derivative of (27) results in
m m )\'
Vi = soft <U<m+1> - D™, ;Wspa) .8

Here, soft(-,7) 1is the soft-threshold function ap-
plied to each element in the matrix [56], soft(U,a) =
sign())max{|U| — a,0}.

When the variable is only V'3, the optimization problem is

(m+1) >
vyt = in A Vi, (I — W) ||2
5 argminio Y ||V (I = W) |7

t=1

+ SIUe — vy - DI 29)

After calculating the partial derivative of (29)

V:(;tnﬂ) _ ‘u(U(erl) B Dém))t

~1

(22 (L =W L =W +uI) . GO)
Here, V'3, is the component corresponding to ¢th superpixel

block in V3. Arrange V'3, according to pixel position to get V's.
When the variable is only V4, the optimization problem is

V(m+1) _

i = argminig+ (Vy)
\

+ S0 — v - DM E @)
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Calculating the partial derivative of (31) to generate the result

of V4
Vflm+1) — max (U(m.—i-l) _ Dz(Lm)’ 0) . (32)

Finally, the Lagrange multipliers are sequentially updated as

D™D = plm _ Ay m+h) 4y (mtD (33
o I AR (34)
D{™Y = p{m _ gim+D) 4 (D (35)
D"t = p{m — gyt Lyt (36)

For clarity, the pseudocode of WSRSSU algorithm is summa-
rized as Algorithm 1.

According to Algorithm 1, the computation complexity of
U and V3 is relatively high, so they dominate the complex-

ity of the entire algorithm. The terms (AT A + 3T )71 and

(2xa(Iy — W) (I, — W) + /LI)71 can be precomputed.
Therefore, U "+1) complexity is O(MN L) and V{" ™) com-
plexity is O(SM N?). The complexity of the WSRSSU algo-
rithm is O(MNL) + O(SM N?).

IV. EXPERIMENTS

The performance of the WSRSSU algorithm is evaluated by
using two synthetic datasets and three real hyperspectral im-
ages. Comparison algorithms involved in the experiment include
SUnSAL [27], SUnSAL-TV [28], MUAgp1c [31], SUSRLR-
TV [32], SBWCRLRU ([33], and RDSRSU [14]. For quanti-
tative comparison, two image quality evaluation indicators are
adopted. The signal-to-reconstruction error (SRE, measured in
decibel) [32] is used to evaluate the difference between the
original signal and the reconstructed signal, which is defined
as

E1X13]

SRE = 10log;o [ —————2—
EB[lx - X|3]

(37

where X and X represent the true and the estimated abundance,
respectively. Higher SRE value means more accurate abundance
estimation result.

Another image quality evaluation index is root-mean-square
error (RMSE) [44]. RMSE is used to describe the difference
between the original abundance and the estimated abundance by
the algorithm. The lower the RMSE, the more similar the original
abundance and estimated abundance. The RMSE is defined as

LN

Lower RMSE value means more accurate abundance estima-
tion result.

(38)

A. Experiments on Synthetic Data

1) Data Details: Two synthetic datasets are generated with
the same spectral library A € R*24240_ The spectral library
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Algorithm 1: Instructions of WSRSSU Algorithm.

Step 1:
Input: Y, A, the number of superpixels S
Use SLIC algorithm for local area acquisition
Calculate (9) to get the coarse image Y _
Calculate (10) to get the coarse abundance X
Calculate (11) to get the weight W g,
Step 2:
1: Initialization: set m = 0, choose A1, Ao, p1,€ > 0

v vO v v viO p® b b, DY

AN

2: Repeat:
30 U™« (ATA+31) (AT (V™ 4+ D{™)
+ (Vi + DMy + (V™ 4 DY) +
(V™4 < ?hsp12pt? > DI™))
4 VMY e LY 4 (AU — D))
50 VY e soft(UY — DY AW )
6: fort = 1toS
7 Determine of optimized neighbors according to
(13) and (14)
8: Calculate W, according to (16) and (17)
N R N CARRES )
(2ha(Ir = W) (I~ W) +ul)
10: Rearrange Vg:”l) according to the index to get
V§m+1)
11: end for
12 Vflmﬂ) — max(U™H) — Dflm),O)
13 D™« D™ AUtHY vt
14 DY« pim — gt Lyt
15: DY« pim gt oyt
16: DY D™ -yt oy Y
17: Update loops iteration: m < m + 1
18: until some stopping criterion is satisfied.

includes 240 materials, covering 224 bands from visible light
to short-wave infrared [11]. Two synthetic data cubes were ob-
tained by mixing endmembers with specific proportions, which
are described in detail as follows.

Synthetic Data 1 (SD1): SD1 is a square data composed of
5625 pixels, with 224 bands per pixel. Its formation depends
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Ground truth of SD1. (a)—(e) True spatial distribution of endmember 1-5, respectively.

on five endmembers in the spectral library A. There are pure
regions and mixed regions in these data. The mixed region is
obtained by mixing ranging between two and five endmembers.
It is worth mentioning that the background is constructed with
five endmembers in the proportions of 0.1149, 0.0741, 0.2003,
0.2055, and 0.4051 [28]. The synthetic data are arranged in
a square in space. Fig. 3 lists five authentic abundance maps
of SD1. In order to make the synthetic data closer to the real
hyperspectral data, different levels of Gaussian noise are added.
Therefore, the SNR of SD1 used in the experiment is 20, 30, and
40 dB, respectively.

Synthetic Data 2 (SD2): SD2 is the same square data as SD1
and consists of 10 000 pixels and 224 bands. Nine spectral sig-
natures are selected from the spectral library A as endmembers,
following the abundance distribution in Fig. 4, and noise is added
similarly.

2) Result Comparison: Table I shows the results of differ-
ent unmixing algorithms on both SD1 and SD2, covering all
three SNR levels. The table includes the values of SRE and
RMSE, with the best result for each algorithm being bolded. It
is clear from the table that the proposed WSRSSU algorithm
outperforms other comparison algorithms, regardless of which
synthetic data and SNR level are used.

First, the experimental results in Table I are compared hor-
izontally, meaning that the changes of different algorithms are
analyzed when the SNR is the same. SUnSAL, which is the
most classical sparse unmixing method, has the worst results
among all the algorithms compared. The other five comparison
algorithms are superior to SUnSAL because they use spatial
information for unmixing. Among the three algorithms that use
TV regularizer for unmixing, SUnSAL-TV directly adds TV
regularizer to the sparse unmixing method, whereas SUSRLR-
TV introduces LRR as a spatial constraint in the optimization
process. On the other hand, RDSRSU combines TV regularizer
with weighted sparse representation. As can be observed from
Table I, the RDSRSU algorithm outperforms the other two
algorithms using the TV regularizer, indicating the advantages of
weighted sparse representation in HU. In contrast, the WSRSSU
algorithm utilizes both spatial and spectral information for un-
mixing, and uses spatial weights to enhance sparsity and reduce
the impact of noise, resulting in superior performance compared
to other algorithms.

Second, in a longitudinal comparison of the same algorithm
across different SNRs, increasing the SNR tends to result in
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Fig. 4. Ground truth of SD2. (a)—(i) True spatial distribution of endmember 1-9, respectively.
TABLEI
EVALUATION INDEXES VALUES OF SEVEN ALGORITHMS ON SYNTHETIC DATA
Data  SNR Er:;‘:“;‘;"‘c‘:“ SUNSAL  SUNSAL-TV ~ MUAsuc  SUSRLR-TV SBWCRLRU  RDSRSU WSRSSU
20 dB SRE 13.9531 17.5316 22.933 37.645 44.5823 37.338 50.2155
RMSE 0.0069 0.0046 0.0025 0.0005 0.0002 0.0005 0.0001
o1 30ds SRE 8.9261 14.4408 15.7067 24.5938 34.706 27.7451 41.9053
RMSE 0.0124 0.0066 0.0057 0.002 0.0006 0.0014 0.0003
ods SRE 45263 9.4239 11.3633 13.3089 20.1345 18.4413 25.3707
RMSE 0.0205 0.0117 0.0093 0.0075 0.0034 0.0041 0.0019
10 dB SRE 17.8794 20.6237 20.703 25.8057 27.11 25.6138 29.6604
RMSE 0.007 0.0051 0.005 0.0028 0.0024 0.0029 0.0018
2 305 SRE 10.4376 18.0279 18.6229 21.7077 2225 243517 25.0497
RMSE 0.0164 0.0068 0.0064 0.0045 0.0042 0.0033 0.0030
odn SRE 42481 11.8626 15.0433 15.2361 14.9447 16.7237 20.5070
RMSE 0.0334 0.0139 0.0096 0.0094 0.0098 0.0079 0.0051

larger SRE values and smaller RMSE values. It is noteworthy
that the WSRSSU algorithm performs exceptionally well in
unmixing low-SNR images.

In addition to quantitative evaluation, the evaluation of visual
effects is also crucial. Figs. 5 and 6 show the abundance maps
of the fourth endmember of SD1 and the second endmember of
SD2 at 30 dB, respectively. They convey an important message:
the abundance map obtained by using the SUnSAL algorithm
has a large number of noise points, and the image quality is poor.
The comparison between the results of SUnSAL-TV algorithm
and SUnSAL proves that the spatial neighborhood information
makes the abundance map smooth to a certain extent. However,
the smooth transition may lose detail information. MUAgr 1
algorithm makes use of SLIC, and it can be seen that the
abundance map has obvious square areas, as shown in Fig. 5(c).
Due to the influence of low-rank constraints, SUSRLR-TV and
SBWCRLRU algorithms have better abundance graphs than
the aforementioned methods. In other words, the difference

between the estimated abundance by WSRSSU and the reference
abundance is the smallest. The spectral similarity constraint en-
ables the abundance map to maintain more detailed information,
which is the best for unmixing. Table II shows the optimal
parameter setting.

B. Experiments on Real Hyperspectral Data

1) Data Details:

a) Samsondata: The original datasize is 925 x 925 pixels
and each pixel has 156 bands, and its wavelength is between 401
and 889 nm [19]. The spectral resolution is up to 3.13 nm. To
simplify the experiment, a local region of size 95 x 95 pixels
was selected, which is composed of soil, tree, and water.

b) Jasper Ridge data: These data are collected by an air-
borne visible/infrared imaging spectrometer (AVIRIS) sensor.
The original data size is 512 x 614 pixels and each pixel is
recorded at 224 channels ranging from 380 to 2500 nm, where
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Fig. 6.
(h) Ground truth.

1-3, 108112, 154166, and 220-224 are noisy bands. Spectral
resolution is up to 9.64 nm [24]. To simplify the experiment,
the area with 100 x 100 pixels and 198 bands is selected as
experimental data. Trees, water, dirt, and roads in this area are
selected as endmembers.

c) Urban data: Compared to Samson and Jasper Ridge,
Urban is a large range of data for unmixing. The data size is
307 x 307 pixels and each pixel has 162 bands. The spectral

-w

Estimated abundance of SD1_30 dB. (a) SUnSAL. (b) SUnSAL-TV. (c) MUAsy1c. (d) SUSRLR-TV. (¢) SBWCRLRU. (f) RDSRSU. (g) WSRSSU.
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Estimated abundance of SD2_30 dB. (a) SUnSAL. (b) SUnSAL-TV. (c) MUAgr1c- (d) SUSRLR-TV. (¢) SBWCRLRU. (f) RDSRSU. (g) WSRSSU.

resolution is 10 nm. These data include six endmembers, namely
asphalt, grass, tree, roof, metal, and dirt [31]. The pseudocolor
images and endmember spectral curve of the three true hyper-
spectral data are shown in Fig. 7.

The spectral libraries of Samson, Jasper Ridge, and Urban
data are constructed based on the observed images [57]. First,
the pure pixels in the image are extracted to construct the initial
spectral library. Afterward, to obtain the final library, the initial



6834

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023

TABLE II
OPTIMAL PARAMETERS OF SIMULATION DATA ON SEVEN ALGORITHMS

Algorithm Parameter SD1_20dB SD1_30dB SD1_40dB SD2_20dB SD2_30dB SD2_40dB
_____ SUmSAL A el el ez Te o Me2 e
A Se-2 7e-3 5e-3 le-2 Se-3 Se-3
SUnSAL-TV
S 2SS 2 le2 ] led e T3t
A 3e-2 7e-3 le-3 7e-3 3e-3 le-3
MUAsLIc A, le-2 5e-2 le-2 le-1 3e-2 le-2
e B 30 ] 10 3 ] LN
Arv le-2 le-2 Se-4 3e-2 7e-3 le-3
SUSRLR-TV
p Se-2 Se-2 le-2 Se-2 le-2 le-2
A 8e-1 Se-4 Se-2 le-2 Se-4 Se-5
SBWCRLRU
_________________________ L S Ll o S ool S e SO L SR
A le-2 S5e-3 le-3 S5e-3 Se-3 S5e-3
RDSRSU Ag 4e-2 2e-2 le-3 Se-2 Se-2 Se-2
_________________________ Mo Ted e el e e
A 5e-3 S5e-3 5e-3 Se-3 Se-3 Se-3
WSRSSU A le-1 le-2 le-3 0.9 0.1 0.1
A, 100 100 100 1 0.3 0.1

o 2 w0 & ® 10 120 w0 w0 10

®

Fig.7. Pseudocolorimages and endmember spectral of Samson and Jasper. (a)
Samson. (b) Endmember spectra of Samson. (c) Jasper. (d) Endmember spectra
of Jasper. (e) Urban. (f) Endmember spectra of Urban.

library is pruned to limit the number of signatures for each
material [31].

d) Cuprite data: These data show the mineral distribution
in the Cuprite area of Nevada, United States, and was collected
by the AVIRIS in 1997. There are 224 channels, ranging from
370t0 2480 nm and the spatial resolutionis 20 m. Only 188 bands
can be used for experiment after removing the bands affected by
water absorption and noise. The experimental area of containing
250 x 191 pixels and mineral location are shown in Fig. 8.

Cuprite, Nevada
AVIRIS 1995 Data
USGS
Clark & Swayze

Tricorder 3.3 product
K-Alunite 150C
K-Alunite 250C
K-Alunite 450C
Na82-Alunite 100C
Nad0-Alunite 400C

Kaolinite wx1
Kaolinite pxl
Kaolinite+smectite
or muscovite

Il Halloysite

B Dickite

- Alunite+Kaolinite
and/or Muscovite

- Caleite

- Calcite + o
Montmorillonite

B Calcite +Kaolinite

i

Montmorillonite

low-Al muscovite
med-Al muscovite

I 1ich- Al muscovite
B oot

Buddingtonite

[ chatcedony

Nontronite
Pyrophyllite
+ alunite

Chlorite +

I Montmoritionite

or Muscovite

B chorite

2km

Fig. 8.

Mineral distribution map of Cuprite data.

The spectral library for Cuprite data is the USGS library, which
contains 498 mineral’s spectral signatures. There are mainly
12 kinds of minerals in this area, including Alunite, Andradite,
Buddingtonite, Chalcedony, Kaolinite, and other minerals [19].
The parameters of all algorithms are set according to experience.
The specific description is as follows: A = le — 3 for SUnSAL,
L = le—3and Apy = le — 3for SUnSAL-TV, Ay = le — 3
and § = 3 for MUAgp1c, Ay = le —3and p = le — 3 for
SUSRLR-TV, A = le—9and 7 = le — 4 for SRWCRLRU,
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TABLE III
EVALUATION INDEXES VALUES OF SEVEN ALGORITHMS ON REAL DATA

Data Ef;('i‘;ite':“ SUnSAL SUNSAL-TV MUAsyic SUSRLR-TV SBWCRLRU  RDSRSU WSRSSU
Samson SRE 17.671 16.8739 16.1979 15.5208 17.1434 15.8073 20.2308
RMSE 0.0656 0.0719 0.0777 0.084 0.0697 0.0813 0.0489
Jasper SRE 16.7681 16.7246 18.0992 16.9293 17.4494 16.4496 19.6871
RMSE 0.0624 0.0627 0.0535 0.0612 0.0577 0.0647 0.0446
Urban SRE 9.9631 10.1437 10.648 11.4331 11.9637 12.1146 14.4543
RMSE 0.1064 0.1042 0.0984 0.0899 0.0845 0.0831 0.0635

Tree Soil

Water

Visual contrast between estimated abundance and reference abundance on Samson data. (a) SUnSAL. (b) SUnSAL-TV. (¢) MUAgt 1. (d) SUSRLR-TV.
(e) SBWCRLRU. (f) RDSRSU. (g) WSRSSU. (h) Ground truth.

Fig. 9.

As = de—3and Ay, = le — 2forRDSRSU,and A; = le — 2
and Ao = le — 1 for WSRSSU.

2) Result Comparison: The unmixing results of different
algorithms on Samson data are displayed in Table III, and
the visual comparison of the estimated abundance is shown
in Fig. 9. The analysis of the Samson data unmixing results
under different algorithms is as follows. First, from the perspec-
tive of SRE and RMSE, the proposed WSRSSU improves the
SRE of the Samson data to 20.2308 and reduces the RMSE
to 0.0489, which is better than the other six comparison algo-
rithms. From the abundance map, it is very close to the true
abundance, and there is good consistency between quantitative
evaluation and visual evaluation. However, other algorithms
have produced some incorrect abundances in some cases. The
soil abundance of the Samson data obtained by the MUAgy 1¢
algorithm is quite different from the true abundance, so some
trees are wrongly identified as soil. The SUSRLR-TV algorithm
cannot accurately estimate the water abundance in the Samson
data.

Analyzing the abundance of data Jasper Ridge generated by
different algorithms according to Table III and Fig. 10. All
algorithms are good at estimating the abundance of trees, dirt,
and roads, except that the estimated abundance of water is
much different from the true abundance. Especially the water
abundance estimated by the RDSRSU algorithm is the worst.

However, the proposed algorithm is the closest to the true
abundance for the estimation of water abundance, which is better
than the other six comparison algorithms.

For the Urban dataset, the abundance maps obtained through
different algorithms are shown in Fig. 11. Compared with other
methods, the estimated abundance of WSRSSU method is close
to the true abundance. The SRE of the WSRSSU method reaches
14.4543 and the RMSE reaches 0.0635, which is significantly
better than other algorithms. Table IV shows the best parameters
for the three real data.

Since the Cuprite data does not have a real abundance map as
reference, the performance of the algorithm cannot be measured
quantitatively. Fig. 12 shows the estimated abundance maps of
12 endmembers in the Cuprite data. Alunite, Buddingtonite,
and Chalcedony are often selected as representatives of the
region to analyze the performance of algorithms. It can be
concluded that the SUnSAL method has the worst effect in
estimating abundance. The abundance maps obtained by the
RDSRSU method are overly smooth, especially Buddingtonite
and Chalcedony. Compared with other methods, the WSRSSU
method has better unmixing results. From the evaluation indexes
and estimated abundance maps of four real data, it can be seen
that the proposed algorithm can obtain significant results. In
summary, the WSRSSU algorithm is an effective unmixing
method.
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Fig. 10.  Visual contrast between estimated abundance and reference abundance on Jasper data. (a) SUnSAL. (b) SUnSAL-TV. (c) MUAgr1c. (d) SUSRLR-TV.

(e) SBWCRLRU. (f) RDSRSU. (g) WSRSSU. (h) Ground truth.

TABLE IV

OPTIMAL PARAMETERS OF REAL DATA ON SEVEN ALGORITHMS

Algorithm Parameter Samson Jasper Urban
__________ SUmSAL A e e Me2
A 5e-3 Se-3 5e-3
SUnSAL-TV
. . AR e e . Te3 L
A 7e-3 le-3 5e-3
MUASL]C 22 Te-2 le-2 le-2
e B ] £ S
Ay 5e-2 le-2 le-3
SUSRLR-TV
e PN e e
A le-2 le-4 le-3
SBWCRLRU
_________________________________________ L £ SRS L SR SRR
2 5e-3 5e-3 5e-3
RDSRSU As 1.5 le3 le-2
________________________________________ A e M3 e
A le-2 5e-3 5e-3
WSRSSU A 1.2 le2 2e-1
Ay le-2 2e-1 Se-2

V. DISCUSSIONS

To illustrate the effect of WSRSSU algorithm is valid, the
experiments of synthetic data on four different parameters are
concerned. The four parameters are the regularization parameter
A1, Ao, the penalty parameter 1, number of superpixels, and K.
For convenience, the experimental results of SD1 and SD2 at
30 dB with the changes of four parameters are analyzed. And
we conducted a convergence analysis of the algorithm, which
are as follows.

1) Regularization parameter analysis: In the proposed

WSRSSU algorithm, the objective function includes
the regularization parameters A; and A,. Parameter Xq

represents the influence of weighted sparsity on unmix-
ing, and parameter Ao represents the influence of spectral
similarity constraint on unmixing. For SD1, the penalty
parameter u is set to 0.1 temporarily, and then A; and X9
are selected from the set {0, 0.001, 0.01, 0.1, 0.2,0.3, 0.4,
0.5,0.6,0.7,0.8,0.9, 1 } and the set {0,0.001,0.01,0.1,0.2,
0.3,0.4,0.5,0.6,0.7, 0.8, 0.9, 1, 10, 100, 1000, 10 000},
respectively. Based on the unmixing results of different
A1 and A5 combinations, the optimize parameters are used
for subsequent experiments. As shown in Fig. 13(a), SRE
reaches a peak at a certain position and then decreases.
Therefore, A1 = 0.01 and 1o = 100 to SD1. Temporarily
pof SD2is setto 0.1, and then A and A5 are selected from
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Fig. 11.

(e) SBWCRLRU. (f) RDSRSU. (g) WSRSSU. (h) Ground truth.

2)

the set {0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1}. From Fig. 13(c) and (d), it can be seen that A4
and Ao tend to be stable at 0.1-1. Finally, A.; = 0.1, and
Ay = 0.3to SD2.

Penalty parameter analysis: When analyzing the penalty
parameter u, the regularization parameter A; and A, are
fixed at their optimal values obtained in 1). The range of
values for parameter p is {0, 0.001,0.01,0.1,0.2,0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1}. Following the same process as
before, the optimal 1 for SD1 and SD2 is determined based
on the SRE and RMSE metrics. The unmixing results
obtained for different 1 values are shown in Fig. 14. For
SDI1, u is set to 0.6. For SD2, p is set to 0.5.

3) Number of superpixels and K analysis: In this section,

the experiments of SD1 and SD2 at 30 dB are used as
examples to discuss the influence of different numbers of
superpixels and K on unmixing. For SD1, the number of
superpixels was set to {1, 4, 9, 16, 25, 36, 49, 64, 81,
100, 121, 169, 225, 361, 625}. For SD2, the number of
superpixels was set to {1, 4, 15, 25, 49, 64, 81, 100, 144,

Visual contrast between estimated abundance and reference abundance on Urban data. (a) SUnSAL. (b) SUnSAL-TV. (c) MUAgr,1c. (d) SUSRLR-TV.

169, 225, 289, 400, 625}. The value range of K is set to
{5,6,7,8,9,10, 11, 12, 13, 14, 15} for SD1 and SD2.

Fig. 15 shows the changes of SRE and RMSE with the number
of superpixels and K. From the results, it is found that when the
number of superpixels is 1 and K is 14, the SD1 has the best
unmixing result, with the largest SRE and the smallest RMSE.
SD2 has the best abundance estimation when the number of
superpixels is 25 and K is 12.

4)

5)

Effectiveness of weighted sparse constraint: To analyze
the effectiveness of weighted sparse constraint, two ex-
periments were designed: an experiment without weighted
sparse constraint and an experiment with weighted sparse
constraint. The SRE and RMSE of two experiments
were compared. Fig. 16 shows weighted sparse unmixing
method estimates more accurate abundance, which means
that weighted sparse constraint plays a positive role in
unmixing.

Effectiveness of spectral similarity constraint: To demon-
strate the effectiveness of spectral similarity constraint in
unmixing, the precisions of experiments without spectral
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Fig. 12.
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3. Response of evaluation indexes to parameters A1 and Ao for WSRSSU algorithm. (a) and (b) SD1. (¢) and (d) SD2.
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larity constraint were compared. From Fig. 17, it can be
concluded that spectral similarity constraints are effective.
Effectiveness of optimal neighbors: Choosing the optimal
neighbors is crucial for unmixing. To analyze the effective-
ness of optimal neighbors, experiments were designed on
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Response of evaluation indexes to weighted sparse constraint. (a), (b), (c), and (d).

the best neighbors for unmixing is better than not selecting
the best neighbors. Therefore, it is proven that the optimal
neighborhood pixels are effective for unmixing.

Convergence analysis: In order to analyze the convergence
of the algorithm, SRE and RMSE are used as functions of
the number of iterations to obtain the convergence curve.
Fig. 19 shows that when the number of iterations ap-
proaches 200, the values of SRE and RMSE remain almost
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Fig. 19. Response of evaluation indexes to iterations for WSRSSU algorithm. (a) and (b) SD1. (c) and (d) SD2.
TABLE V
RUNTIME OF ALL ALGORITHMS ON DIFFERENT DATA
Data SUnSAL SUnSAL-TV MUASsLIc SUSRLR-TV SBWCRLRU RDSRSU WSRSSU
SD1 7.612 114.625 13.811 150.608 132.261 118.429 2688.9269
SD2 13.741 147.991 10.699 214.294 207.541 160.667 199
Runtime Samson 10.3194 86.5927 8.7198 115.8295 76.0827 97.0363 206.1528
(second) Jasper 57.4477 325.611 87.4701 588.1076 551.1584 437.7699 570.6062
Urban 91.7271 1326.979 667.0721 1921.2868 1749.9046 850.0002 269.8940
Cuprite 301.024 1806.864 183.184 2623.982 1810.502 1999.334 518.03

unchanged, which is sufficient to prove the convergence
of WSRSSU. The running time of all algorithms on all
data is shown in Table V. The SUnSAL method takes less
time, whereas the WSRSSU method takes more time due
to the selection of neighboring pixels.

VI. CONCLUSION

This article proposes a new algorithm for HU, which is
based on the framework of sparse unmixing. The WSRSSU
algorithm uses image segmentation to construct local regions,
and then makes full use of the spatial-spectral information of

the image from the perspective of sparsity enhancement and
spectral similarity constraint. The experimental results show
that it can offer more accurate abundance estimation results and
abundance graphs, and also demonstrate that the weighted sparse
regularization and the spectral similarity regularization of a local
region have a positive effect for unmixing.
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